

MATHS

BOOKS - KALYANI MATHS (ASSAMESE ENGLISH)

Real Numbers

Example

1. Every integer can be expressed in the form of 3p or $(3p\pm1)$

2. Square of n integers can be expressed in the form of 4p or (4p+1).

3. Show that any positive odd interger is of the form 6q+1,or 6q+3,or 6q+5,where q is some integer.

4. Prove that the product of two consecutive positive integers is divisible by 2.

Watch Video Solution

5. If a and b are two odd positive integers such that a>b. Then prove that one of the two numbers $\frac{a+b}{2}$ and $\frac{a-b}{2}$ is odd and other is even.

1. Applying division algorithm prove that every intiger can de expressed in the following form $(q \in Z, q > 0)$

$$4q, (4q \pm 1) \text{ or } (4q \pm 2)$$

2. Applying division algorithm prove that every intiger can de expressed in the following form

$$(q\in Z,q>0)$$

$$5q, (5q \pm 1) \text{ or } (5q \pm 2)$$

Watch Video Solution

3. Prove that every odd integer can be expressed in the form of $(q \in Z)$

 $4q \pm 1$

4. Prove that every odd integer can be expressed in the form of $(q \in Z)$

 $4q\pm 1$

Watch Video Solution

5. If q is a positive integer, square of every integer can be expressed in the form of 8q+1.

6. Prove that an integer which can be expressed in the form of 6k+5 can be also expressed in the form of 3k-1.

Watch Video Solution

7. Show that cube of any positive integer is either of the form 4q, 4q+1, 4q+3 for $(q \in Z)$

8. Show that any positive even integer is of the form 6q, 6q+2,6q+4.

Watch Video Solution

9. If $(n \in N)$ then applying division algorithm prove that each of the following in an integer n(3n+1)

$$\frac{n(3n+1)}{2}$$

10. If $(n \in N)$ then applying division algorithm prove that each of the following in an integer

$$\frac{n\big(4n^2-1\big)}{3}$$

Watch Video Solution

11. If $(n \in N)$ then applying division algorithm prove that each of the following in an integer

$$\frac{n^3-n}{3}$$

12. If $(n \in N)$ then applying division algorithm prove that each of the following in an integer

$$\frac{n^3+3n^2+2n}{6}$$

