

MATHS

BOOKS - KALYANI MATHS (ASSAMESE ENGLISH)

RECAPITULATION: RATIONAL AND IRRATIONAL NUMBERS

Example

1. Show the following fractions have terminating decimal expression.

 $\frac{225}{9}$

Watch Video Solution

2. Show the following fractions have terminating decimal expression.

 $\frac{664}{625}$

3. Show the following fractions have terminating decimal expression.

 $\frac{426}{500}$

Watch Video Solution

4. Show that the following decimal expression can be put in the form of $\frac{p}{q}$, where q is of the form of 2^m . 5^n .

3.78125

5. Show that the following decimal expression can be put in the form of $\frac{p}{q}$, where q is of the form of 2^m . 5^n .

Watch Video Solution

6. Show that the following decimal expression can be put in the form of $\frac{p}{q}$, where q is of the form of 2^m . 5^n .

1.2315

7. Show that $2 + \sqrt{3}$ is an irrational number.

Watch Video Solution

8. Prove that $\sqrt{2}+\sqrt{3}$ is irrational.

1. Stane Euclid's division lemma.

Watch Video Solution

2. What is an algorithm?

Watch Video Solution

3. Write down the form of any positive integer:

When it is dividing by 2.

4. Write down the form of any positive integer: When it is dividing by 3.

Watch Video Solution

5. Write down the form of any square of an positive integer.

6. What is the HCF of two numbers when one of it is zero?

Watch Video Solution

7. What is the HCF and LCM of two prime numbers p and q?

Watch Video Solution

8. What is the LCM of x and y if the HCF is r?

9. If $2^a \cdot 3^b \cdot 5^c = 10800$, find a, b, c.

Watch Video Solution

10. If $a^4 \cdot b^2 \cdot c = 1008$ find a, b, c.

11. If the product and LCM of two quantities are ab^2c and abc respectively What is their HCF?

Watch Video Solution

12. If the product and LCM of two quantities are ab^2c and abc respectively

What may be two quantit

13. Without performing the division state $\frac{9}{1600} \text{ will be a terminating decimal or not.}$

Watch Video Solution

14. Fill In the blanks:

____ is neither prime nor composite

15. Fill In the blanks:

The only even prime number is____.

Watch Video Solution

16. Fill In the blanks:

Sum of two irrational number is .____but its product may not be .

17. Fill In the blanks:

There are infinite irrational numbers between any two ____ numbers.

Watch Video Solution

18. Fill In the blanks:

The ___of HCF and LCM of two numbers is

____to the product of the numbers.

19. Euclid's division Lemma states that if a and b are any two positive integers,then there exists unique integers q and r such that

A.
$$0 < r < b$$

$$\mathsf{B.}\, 0 \leq r \leq b$$

$$C.0 \le r \le b$$

D.
$$0 < r \le b$$

Answer:

20. HCF(a, b) equals to

- A. HCF (b, r)
- B. HCF (q, r)
- C. HCF (a, r)
- D. None.

Answer:

21. If LCM(91, 26) = 182, then HCF(91, 26)

A. 13

B. 23

C. 7

D. None.

Answer:

22. The largest number which divides 74 and

88 leaving remainde 2 ad 4 respectively is

- A. 10
- B. 14
- C. 12
- D. 16

Answer:

23. The least number that is divisible by all the numbers from 1 to 3 is

- A. 20
- B. 10
- C. 30
- D. 60

Answer:

