©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - KALYANI MATHS (ASSAMESE

ENGLISH)

similarity of geometric figures

Exercise

1. prove that two isosceles triangles are similar
if their vertical angles are equal. (it is
supposed that the angle on the base of a triangle are equal).

D Watch Video Solution

2. the altitude $A M$ and $B N$ of a triangle $A B C$ intersects at P . prove that $\triangle A P N$ and $\triangle B P M$ are similar.

D Watch Video Solution

3. D is the point on the side $B C$ of $A B C$ such
that $\angle A D C=\angle B A C$. Prove that, $\frac{B C}{C A}=\frac{C A}{C D}$.

- Watch Video Solution

4. $A B C$ and $D B C$ are two right angled triangles
with common hypotenuse $B C$ with their sides
$A C$ and $B D$ intersecting at P. Prove that:
$A P \times P C=D P \times P B$.
5. the two triangles formed by drawing perpendicular from right angle to the hypotenuse of a right angled triangle are similar and both of them are similar to the original triangle.

D Watch Video Solution

6. prove by using the principle of similar triangles that:
the line segment drawn parallel to the side of
a triangle divides the other sides proportionally.

D Watch Video Solution

7. prove by using the principle of similar triangles that:
if a line segment divides two sides of a triangle proportionally, then it is a parallel to the third side.
8. prove by using the principle of similar triangles that:
the centroid of triangle divides a median in the ratio of $2: 1$.

D Watch Video Solution

9. prove by using the principle of similar triangles that:
the diagonals of of a parallelogram bisects each other.
10. find the lengths of diagonals of a rhombus
$A C$ and $B D$.given $A B=60 \mathrm{~cm}$ and
$\angle B A D=60$ degree.

D Watch Video Solution
11. prove by using the principle of similar triangles that:
in a right angle triangle, the square on the
hypotenuse is equal to the sum of squares on
the two other sides. (Pythagoras theorem)

D Watch Video Solution

12. $A B C D$ is a parallelogram. E is the middle point of the side CD. $B E$ intersects $A C$ at the point X . prove that $A X=\frac{2}{3} A C$.

- Watch Video Solution

13. in $\mathrm{ABC}, A B=4 \mathrm{~cm}, B C=5 \mathrm{~cm}$ and
$A C=6 \mathrm{~cm}$. construct a triangle similar to ABC such that each of its sides is $\frac{2}{3}$ rd of the corresponding sides of $A B C$.

D Watch Video Solution

14. In $\mathrm{ABC}, A B=3 \mathrm{~cm} \quad B C=4 \mathrm{~cm}$ and
$C A=5 \mathrm{~cm}$, construct a triangle similar to
$A B C$ such that each of its sides is $\frac{3}{4}$ of the corresponding sides of $A B C$.
15. $A B C D$ is a parallelogram. E is any point on the side $B C$, line segment drawn through D and E cards the extended $A B$ at T Prove that $D E \cdot E B=C E \cdot T E$.

- Watch Video Solution

16. $A B$ and $B D$ are two parallel sides of trapezium $A B C D$. if the diagonals $A C$ and $B D$ meet at O, then prove that $\frac{A O}{O C}=\frac{B O}{O D}$.
17. $A B$ and $C D$ two parallel sides of trapezium

ABCD where $A B=2 C D$. AC and BD intersects
at X. prove that $A X=\frac{2}{3} A C$.

- Watch Video Solution

