© 'doubtnut

MATHS

BOOKS - EDUCART PUBLICATION

INTRODUCTION TO TRIGNOMETRY AND ITS APPLICATIONS

Examples

1. Suppose angle of depression from top of the tower to point A is 45° and height of tower is 10 m . What is the
distance of point A from the building?

- Watch Video Solution

2. The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of the tower, is 30°. Find the height of the tower.

Objective Type Questions Multiple Choice Questions

1. If $\tan A=\frac{4}{3}$, the value of $\sin \mathrm{A}$ is:
A. $\frac{4}{5}$
B. $\frac{3}{4}$
C. $\frac{5}{3}$
D. $\frac{7}{5}$

Answer: A

- Watch Video Solution

2. If $3 \tan A=4$, then the value of
$3 \sin A+2 \cos A$
$3 \sin A-2 \cos A$ is:
A. 4
B. $\frac{11}{15}$
C. $\frac{7}{15}$
D. 3

Answer: D

- Watch Video Solution

3. If $\sin \theta+\cos \theta=\sqrt{2} \cos \theta,\left(\theta \neq 90^{\circ}\right)$ then value of $\tan \theta$ is
A. $\sqrt{2}-1$
B. $\sqrt{2}+1$
C. $\sqrt{2}$
D. $-\sqrt{2}$

Answer: A

- Watch Video Solution

4. Given that $\sin \alpha=\frac{\sqrt{3}}{2}$ and $\cos \beta=0$, then the value of $\beta-\alpha$ is
A. 0°
B. 90°
C. 60°
D. 30°

Answer: D

D Watch Video Solution
5. If $\sin (A+B)=\cos (A-B)=1$, then
A. $A=B=0$
B. $A=B=45^{\circ}$
C. $A=60^{\circ}, B=30^{\circ}$
D. None of these

Answer: B

D Watch Video Solution
6. If $\cos A=\frac{5}{13}$, find the value of $\tan \mathrm{A}+\cot \mathrm{A}$
A. $\frac{169}{60}$
B. $\frac{12}{13}$
C. 1
D. $\frac{60}{169}$

Answer: D

D Watch Video Solution

7. If $5 x=\sec \theta$ and $\frac{5}{x}=\tan \theta$, find the value of $5\left(x^{2}-\frac{1}{x^{2}}\right)$.
A. 5
B. $\frac{1}{5}$
C. $\frac{2}{5}$
D. 0

Answer: B

- Watch Video Solution

8. If $\sin \theta+\sin ^{2} \theta=1$, then the value of $\cos ^{2} \theta+\cos ^{4} \theta$ is
A. 1
B. $\frac{1}{2}$
C. 2
D. 3

Answer: A

D Watch Video Solution

9. The value of $(1+\cos \theta)(1-\cos \theta) \operatorname{cosec}^{2} \theta=$
A. 0
B. 1
C. $\cos ^{2} \theta$
D. $\sin ^{2} \theta$

Answer: B

- Watch Video Solution

10. If $\sin \theta-\cos \theta=0$, then the value of $\sin ^{4} \theta+\cos ^{4} \theta$ is
A. 1
B. $\frac{3}{4}$
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: C

- Watch Video Solution

11. if $\theta=45^{\circ}$ then $\sec \theta \cot \theta-\operatorname{cosec} \theta$ is:
A. 0
B. 1
C. 2
D. 3

Answer: A

D Watch Video Solution

12. If $x=a \sin \theta$ and $y=a \cos \theta$ then find the value of $x^{2}+y^{2}$
A. a
B. a^{2}
C. 1
D. b^{2}

Answer: B

- Watch Video Solution

13. $4 \tan ^{2} A-4 \sec ^{2} A$ is equal to:
A. 2
B. 3
C. 4
D. -4

Answer: D
(Watch Video Solution
14. If $3 \cos \theta=1$, then $\operatorname{cosec} \theta$ is equal to:
A. $2 \sqrt{2}$
B. $\frac{3}{2 \sqrt{2}}$
C. $\frac{2 \sqrt{3}}{3}$
D. $\frac{4}{3 \sqrt{2}}$

Answer: B

- Watch Video Solution

15. If $\operatorname{cosec} \theta-\cot \theta=\frac{1}{3}$, then the value of $\operatorname{cosec} \theta+\cot \theta$ is:
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

16. If $2 \sin 2 \theta=\sqrt{3}$ then $\theta=$?
A. 90°
B. 30°
C. 60°
D. 45°

Answer: B

- Watch Video Solution

17. If the height and length of the shadow of a man are the same, then the angle of elevation of the sun is:
A. 45°
B. 60°
C. 90°
D. 120°

Answer: A

Objective Type Questions Write True False

1. If a man standing on a plat form 3 m above the surface of a lake observes a cloud and its reflection in the lake at this time the height of reflection of cloud in lake is $(\mathrm{h}+3$) because in lake platform height is also added to reflection of cloud.

So, angle of depression is different in the lake from the angle of elevation of the cloud is equal to the angle of depressin of its reflection.

- Watch Video Solution

2. $\cos \theta=\frac{a^{2}+b^{2}}{2 a b}$, where a and b are two distinct numbers such that $a b>0$.

- Watch Video Solution

3. The angle of elevation of the top of a tower is 30°. if the height of the tower is doubled, then the angle of elevation of its top will also be doubled.

- Watch Video Solution

4. If the height of a tower and the distance of the point of observation from its foot, both are increased by 10%, then the angle of elevation of its top remains unchanged.

- Watch Video Solution

Objective Type Questions Fill In The Blanks

1. Simplest form of $\left(1+\tan ^{2} \mathrm{~A}\right) /\left(1+\cot ^{\wedge} 2^{\prime} \mathrm{A}\right)$ IS

- Watch Video Solution

2. If $\tan \mathrm{A}=1$, then $2 \sin \mathrm{~A} \cos \mathrm{~A}=$ \qquad

- Watch Video Solution

3. In Fig. 12.58, what are the angles of depression from the observing positions O_{1} and O_{2} of the object at A ?
(FIGURE)
4. What is the value of $\sin ^{2} \theta+\frac{1}{1+\tan ^{2} \theta}$?

- Watch Video Solution

5. Simplest form of $\left(1-\cos ^{2} A\right)\left(1+\cot ^{2} A\right)$ is

D Watch Video Solution

6. If $3 \sec \theta-5=0$, then $\cot \theta=$

- Watch Video Solution

7. If $\sin \theta-\cos \theta=0,0 \leq \theta \leq 90^{\circ}$ then the value of θ is

- Watch Video Solution

8. $\cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ} \ldots . . \cos 180^{\circ}$.

- Watch Video Solution

9. If $\tan \theta=\sqrt{3}$, then $\sec \theta \ldots$.

- Watch Video Solution

10. The maximum value of $\frac{1}{\operatorname{cosec} \theta}$ is

- Watch Video Solution

11. If $\tan \theta+\cot \theta=2$ then the value of $\tan ^{2} \theta+\cot ^{2} \theta$ is

- Watch Video Solution

Objective Type Questions Very Short Answer Type Questions

1.

If figure, the angle of elevation of the top of a tower from
a point C on the ground which is 30 m away from the foot of the tower, is 30°. Find th height of the tower.

D Watch Video Solution

2. Write the value of $\sin ^{2} 30^{\circ}+\cos ^{2} 60^{\circ}$.

- Watch Video Solution

3. If $\sin x+\cos y=1, x=30^{\circ}$ and y is an acute angle.

Find the value of y

- Watch Video Solution

4. $\sin ^{2} 60^{\circ}+2 \tan 45^{\circ}-\cos ^{2} 30^{\circ}$

- Watch Video Solution

5. If $\sin A=\frac{3}{4}$, calculate $\sec \mathrm{A}$.

- Watch Video Solution

6. If $(1+\cos A)(1-\cos A)=\frac{3}{4}$, find the value of $\sec \mathrm{A}$.

- Watch Video Solution

7. The angle of elevation of the top of a tower at a point on the ground, 50 m away from the foot of the tower, is
60°. Find the height of the tower.

D Watch Video Solution

8. A ladder 15 m long makes an angle of 60° with the wall.

Find the height of the point, where the ladder touches the wall.

- Watch Video Solution

9. If a tower 30 m high, casts a shadow $10 \sqrt{3} \mathrm{~m}$ long on the ground, then what is the angle of elevation of the sun
10. If $\tan A=1\left(0^{\circ}<A<90^{\circ}\right)$ and
$\cos B=\frac{1}{\sqrt{2}}\left(0^{\circ}<B<90^{\circ}\right)$, then find $\cos (A+B)$

- Watch Video Solution

11. Evaluate :
$2 \sec 30^{\circ} \times \tan 60^{\circ}$

D Watch Video Solution

Short Answer Sa I Type Questions

1. The length of a vertical rod and its shadow are in the ratio $1: \sqrt{3}$. The angle of elevation of the sun is

- Watch Video Solution

2. When the shadow of a pole ' h ' metres high is $\frac{\sqrt{3} h}{3}$ metres, what is the angle of elevation of the sun at that time?

- Watch Video Solution

3. In fig $A B$ is a 6 m high pole and $C D$ is a ladder inclined at an angle of 60° to the horizontal and reaches up to a point D of pole. If $\mathrm{AD}=2.54 \mathrm{~m}$, find the length of the ladder.
(use $\sqrt{3}=1.73$)

- Watch Video Solution

4. Prove that : $1+\frac{\cot ^{2} \alpha}{1+\operatorname{cosec} \alpha}=\operatorname{cesec} \alpha$

D Watch Video Solution

5. Prove that :

$\tan ^{4} \theta+\tan ^{2} \theta=\sec ^{4} \theta-\sec ^{2} \theta$

- Watch Video Solution

6. Find A and B , if $\sin (A+2 B)=\frac{\sqrt{3}}{2}$, and $\cos (A+B)=\frac{1}{2}$

- Watch Video Solution

7. A ladder is placed along a wall of a house such that its upper end is touching the top of the wall. The foot of the
ladder is $2 m$ away from the wall and the ladder is making an angle of $60 o$ with the level of the ground. Determine the height of the wall.

- Watch Video Solution

8. A vertical flagstaff stands on a horizontal plane. From a point 100 m from its foot, the angle of elevation the its
top is 30°. Find the height of the flqgstaf.

- Watch Video Solution

9. If $x \cos \theta-y \sin \theta=a, x \sin \theta+y \cos \theta=b$, prove that:
$x^{2}+y^{2}=a^{2}+b^{2}$.
10. If $x=a \cos ^{3} \theta$ and $y=b \sin ^{3} \theta$, prove that $\left(\frac{x}{a}\right)^{2 / 3}+\left(\frac{y}{b}\right)^{2 / 3}=1$.

- Watch Video Solution

11. The shadow of a 5 -m-long stick is 2 m long. At the same time, the length of the shadow of a 12.5 m high tree is

- Watch Video Solution

12.

Evaluate:
$\left(\sin ^{4} 60^{\circ}+\sec ^{4} 30^{\circ}\right)-2\left(\cos ^{2} 45^{\circ}-\sin ^{2} 90^{\circ}\right)$
13. If $a \cos \theta-b \sin \theta=\mathrm{c}$, prove that $\mathrm{a} \sin$ $\theta+b \cos \theta= \pm \sqrt{a^{2}+b^{2}-c^{2}}$.

- Watch Video Solution

14. Simplify $\left(1+\tan ^{2} \theta\right)(1-\sin \theta)(1+\sin \theta)$

- Watch Video Solution

15. When the ratio of the height of a telephone pole and the length of its shadow is $\sqrt{3}: 1$, find the angle of the elevation of sun

Short Answer Sa li Type Questions

1. An observer, 1.5 m tall, is 28.5 m away from a tower 30 m high. Determine the angle of elevation of the top of the tower from his eye.

D Watch Video Solution

2. In $\triangle A B C$, right angled at $\mathrm{A}, A C=1.5 m, C B=3 m$ and $\angle A B C=\theta$ find:
(i) $\tan \theta$ (ii) $\sec \theta+\operatorname{cosec} \theta$

3. Prove that

$\frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1}=\frac{1}{(\sec \theta-\tan \theta)}$.

D Watch Video Solution

4. Prove that $\sqrt{\frac{1+\sin A}{1-\sin A}}=\sec A+\tan A$

D Watch Video Solution

5. Prove each of the following identities :
$\frac{\sin \theta}{(1+\cos \theta)}+\frac{(1+\cos \theta)}{\sin \theta}=2 \operatorname{cosec} \theta$

- Watch Video Solution

6. If $\sin \theta+\cos \theta=\sqrt{2}$ then prove that $\tan \theta+\cot \theta=2$

- Watch Video Solution

7. Prove that $\frac{\cot \theta+\operatorname{cosec} \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}=\frac{1+\cos \theta}{\sin \theta}$.

D Watch Video Solution

8. Prove : $2\left(\sin ^{6} \theta+\cos ^{6} \theta\right)-3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+1=0$.

- Watch Video Solution

9. If $\sin \theta+\cos \theta=\sqrt{3}$, then prove that $\tan \theta+\cot \theta=1$

- Watch Video Solution

10. Prove that :
$\left(\sin ^{4} \theta-\cos ^{4} \theta+1\right) \operatorname{cosec}^{2} \theta=2$

- Watch Video Solution

11. Prove that:
$2 \cos ^{2} \theta-\cos \theta$
$\sin \theta-2 \sin ^{3} \theta$
12. If $\tan A=\frac{3}{4}$, then show that $\sin \mathrm{A} \cos \mathrm{A}^{\prime}=(12) /(25)$

- Watch Video Solution

13.

Prove
that:
$\left(\frac{\tan \theta}{1-\tan \theta}\right)-\left(\frac{\cot \theta}{1-\cot \theta}\right)=\frac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}$

D Watch Video Solution

14. If $\cos \theta+\sin \theta=\sqrt{2} \cos \theta$, show that $\cos \theta-\sin \theta=\sqrt{2} \sin \theta$.
15. Prove that: $\frac{\tan A+\tan B}{\cot A+\cot B}=\tan A \tan B$

D Watch Video Solution

16. A ladder 15 metres long just reaches the top of a vertical wall. If the ladder makes an angle of 60° with the wall, find the height of the wall.

D Watch Video Solution

17. Prove that: $\sqrt{\frac{\sec \theta-1}{\sec \theta+1}}+\sqrt{\frac{\sec \theta+1}{\sec \theta-1}}=2 \operatorname{cosec} \theta$
18. Prove that
$(\sin \theta+\operatorname{cosec} \theta)^{2}+(\cos \theta+\sec \theta)^{2}=\left(7+\tan ^{2} \theta+\cot ^{2} \theta\right)$.

- Watch Video Solution

19.

Prove that:
$(1+\cot A-\operatorname{cosec} A)(1+\tan A+\sec A)=2$

- Watch Video Solution

20. If $4 \tan \theta=3$, evaluate $\frac{4 \sin \theta-\cos \theta+1}{4 \sin \theta+\cos \theta-1}$
21. A player sitting on the top of a tower of height 20 m observes the angle of depression of a ball lying on the ground as' 60°. Find the distance between the foot of the tower and the balL Take $\sqrt{3}=1.732$

D Watch Video Solution

22. Using the formula $\cos 2 \theta=2 \cos ^{2} \theta-1$, find the value of $\cos 30^{\circ}$, it is being given that $\cos 60^{\circ}=\frac{1}{2}$

D Watch Video Solution

23. If $\sin \theta+\cos \theta=\sqrt{3}$, then prove that $\tan \theta+\cot \theta=1$.

D Watch Video Solution

24. Prove that : $\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A$

D Watch Video Solution

25. Prove that : $\sec ^{2} \theta+\operatorname{cosec}^{2} \theta=\sec ^{2} \theta \cdot \operatorname{cosec}^{2} \theta$

- Watch Video Solution

26. If $2 \sin ^{2} \theta-\cos ^{2} \theta=2$, then find the value of θ.

D Watch Video Solution

27. The shadow of a tower standing on a level plane is found to be 50 m longer when when sun's elevation is 30° than when it is 60°. Find the height of the tower.

- Watch Video Solution

Long Answer Type Questions

1. From a window 15 metres high above the ground in a street, the angles of elevation and depression of the top and the foot of another house on the opposite side of the street are 30^{0} and 45^{0} respectively show that the height of the opposite house is 23.66 metres $(\operatorname{take} \sqrt{3}=1.732)$
2. A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m / h.

D Watch Video Solution

3. An observer 1.5 m tall is $20 \sqrt{3} \mathrm{~m}$ away from a chimney.

The angle of elevation from the top of the chimney from his eyes is 30° and from bottom is 45°. Find the height of the chimney.
4. Two men on either sideof a 75 m high building and in
line with base of buildig observe the angle of elevation of the top of the building as 30° and 60°. Find the distance between the two men. (Use $\sqrt{3}=1.73$)

- Watch Video Solution

5. The angles of depression of the and bottom of a 50 m high building from the top of a tower are 45° and 60° respectively. Find the height of the tower and the horixontal distance between the tower and the building.

$$
\text { (Use } \sqrt{3}=1.73)
$$

D Watch Video Solution

6. A man standing on the deck of a ship, which is 10 m above water level, observes the angle of elevation of the top of a hill as 60° and the angle of depression the base of hill as 30°. Find the distance of the hill from the ship and the height of the hill.

- Watch Video Solution

7. A statue 1.6 m tall stands on the top of pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60 o and from the same point the angle of elevation of the top of the pedestal is 450 . Find the height of the pedestal.
8. The angle of elevation of a jet plane from a point A on the ground is 60 o . After a flight of 30 seconds, the angle of elevation changes to 30 o . If the jet plane is flying at a constant height of $3600 \sqrt{3} m$, find the speed of the jet plane.

D Watch Video Solution

9. From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60 o and the angle of depression of its foot is $45 o$. Determine the height of the tower.
10. The angle of elevation of the top of a tower from a certain point is 30 o . If the observer moves 20 m towards the tower, the angle of elevation of the top of the tower increases by $15 o$. The height of the tower is (a) 17.3 m (b) 21.9 m (c) 27.3 m (d) 30 m

- Watch Video Solution

11. A straight highway leads to the foot of a tower. A man
standing at the top of the tower observes a car at an angle of depression of 30 o , which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depres

- Watch Video Solution

12. The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of tower from the foot of the building is 60°, If the tower is 50 m high, find the height of the building.

- Watch Video Solution

13. If $1+\sin ^{2} \theta=3 \sin \theta \cos \theta$, then prove that $\tan \theta=1$ or $\frac{1}{2}$.

D Watch Video Solution

14. From a point on the ground the angles of elevation of the bottom and top of a transmission tower fixed at the
top of 20 m high building are 45 o and 60 o respectively. Find the height of the transmission tower.

- Watch Video Solution

15. A vertical tower stands on a horizontal land and is
surmounted by a vertical flag staff of height 12 metres. At
a point on the plane, the angle of elevation of the bottom and the top of the flag staff are respectively 45° and 60°.

Find the height of tower.

- Watch Video Solution

16. From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at
the top of a 20 m high building are 45oand $60 o$ respectively. Find the height of the tower.

- Watch Video Solution

17. A boy standing on a horizontal plane finds a bird flying at a distance of 100 m from him at an elevation of 30°. A girl standing on the roof of 20 metre high building, finds the angle of elevation of the same bird to be 45°. Both the boy and the girl are on opposite sides of the bird. Find the distance of bird from the girl.

- Watch Video Solution

18. If $\sin \theta+\cos \theta=p$ and $\sec \theta+\operatorname{cosec} \theta=q$, then prove that $q\left(p^{2}-1\right)=2 p$.

D Watch Video Solution

19. The angle of elevation of a jet plane from a point A on the ground is 60 o . After a flight of 30 seconds, the angle of elevation changes to 30 o . If the jet plane is flying at a constant height of $3600 \sqrt{3} m$, find the speed of the jet plane.

D Watch Video Solution

20. Prove that: $\frac{(1+\cot \theta+\tan \theta)(\sin \theta-\cos \theta)}{\sec ^{3} \theta-\operatorname{cosec}^{3} \theta}=$ $\sin ^{2} \theta \cos ^{2} \theta$

D Watch Video Solution

21. If $\sec \theta+\tan \theta=m$, show that $\frac{\left(m^{2}-1\right)}{\left(m^{2}+1\right)}=\sin \theta$.

D Watch Video Solution

22. A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m / h.
23. A ladder rests against a vertical wall at inclination α to the horizontal. Its foot is pulled away from the wall through a distance p so that it's upper end slides q down the wall and then ladder make an angle β to the horizontal show that $\frac{p}{q}=\frac{\cos \beta-\cos \alpha}{\sin \alpha-\sin \beta}$.

- Watch Video Solution

24. There are two temples, one on each bank of a river, just opposite to each other. One temple is 50 m high. From the top of this temple, the angles of depression of the top and the foot of the other temple are $30 o$ and $60 o$ respectively.

Find the width of the river and the height of the other temple.

D Watch Video Solution

25. A boy standing on a horizontal plane finds a bird flying at a distance of 100 m from him at an elevation of 30°. A girl standing on the roof of 20 metre high building, finds the angle of elevation of the same bird to be 45°. Both the boy and the girl are on opposite sides of the bird. Find the distance of bird from the girl.

- Watch Video Solution

26. prove that:
$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$

- Watch Video Solution

27. The lower window of a house is at a height of 2 m above the ground and its upper window is 4 m vertically above the tower window. At certain instant the angles of elevation of a balloon from these windows are observed to be 60° and 30°, respectively. Find the height of the balloon above the ground.
28. Prove that: $\frac{\sin \theta}{\cot \theta+\operatorname{cosec} \theta}=2+\frac{\sin \theta}{\cot \theta-\operatorname{cosec} \theta}$

D Watch Video Solution

29. Prove that $\frac{\sin A-\cos A+1}{\sin A+\cos A-1}=\frac{1}{\sec A-\tan A}$

- Watch Video Solution

30. A man in a boat rowing away from a light house 100 m high takes 2 minutes to change the angle of elevation of the top of the light house from 60° to 30°. Find the speed of the boat in meters per minute. [Use $\sqrt{3}=1.732$)

D Watch Video Solution

31. Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60 oand $30 o$, respectively. Find the hei

D Watch Video Solution

32. The shadow of a flagstaff is three times as long as the shadow of the flagstaff when the sun rays meet the ground at 60°. Find the angle between the sun rays and the ground at the time of longer shadow
33. Prove that: $\frac{\sin A-2 \sin ^{3} A}{2 \cos ^{3} A-\cos A}=\tan A$

- Watch Video Solution

34. A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30 o , which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depres

- Watch Video Solution

35. The angle of elevation of a cloud from a point 10 meters above the surface of a lake is 30° and the angle of
depression of its reflection from that point is 60°. Then the height of the could above the lake is

- Watch Video Solution

36. From a point A on the ground, the angles of elevation of the top of a 10 m tall building and a helicopter hovering at some height of the building are 30° and 60° respectively. Find the height of the helicopter above the building

- Watch Video Solution

37. A 1.5 m tall boy is standing at some distance from a 30 m tall building. The angle of elevation from his eyes to the
top of the building increases from $30 o$ to $60 o$ as he walks towards the building. Find the distance he walked towards the building.

D Watch Video Solution

38. From the top of a 120 m hight tower a man observes
two cars on the opposite sides of the tower and in straight line with the base of tower with angles of depression as 60° and 45°. Find the distance between the cars.

- Watch Video Solution

39. A vertical tower stands on a horizontal plane and is surmounted by a flagstaff of height 5 m . From a point on the ground the angles of elevation of the top and bottom of the flagstaff are 60° and 30° respectively. Find the height of the tower and the distance of the point from the tower. (Take $\sqrt{3}=1.732$)

- Watch Video Solution

40. From a point 200 m above a lake, the angle of elevation of a cloud is 30° and the angle of depression of its reflection in take is 60° then the distance of cloud from the point is
41. A bird is sitting on the top of a 80 m high tree. From a point on the ground, the angle of elevation of the bird is 45°. The bird flies away horizontally in such a way that it remained at a constant height from the ground. After 2 secounds, the angle of elevation of the bird from the same point is 30°. Find the speed of flying of the bird. (Take $\sqrt{3}=1.732$).

- Watch Video Solution

42. As observed from the top of a 100 m high light house from the sea level, the angles of depression of two ships are 30° and 45° If one ship is exactly behind the other
one on the same side of the light house, find the distance between the two ships.
