©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - EDUCART PUBLICATION

SAMPLE PAPER - 3

Section A

1. Evaluate $\sin \theta \times \cos \theta$ if $\sin \theta+\cos \theta=\sqrt{2}$
A. $\sqrt{2}$
B. 1
C. 0
D. $\frac{1}{2}$

Answer: D

D Watch Video Solution

2. Write the algebraic representation of the situation, the sum of two numbers is 137 and their difference is $43^{\prime \prime}$
A. $x-y=137, x-y=43$
B. $x+y=137, x-y=43$
C. $2 x+y=137, x-y=43$
D. $3 x+y=137, x+y=137$

Answer: B

D Watch Video Solution
3. On rolling two dice at once, what is the probability of getting a sum of doublets less than 5 ?
A. $\frac{1}{6}$
B. $\frac{2}{9}$
C. $\frac{1}{18}$
D. $\frac{3}{7}$

Answer: C

D Watch Video Solution

4. Calculate the number of solutions for the
pair of linear equations $\mathrm{y}=0$ and $\mathrm{y}=7$.
A. Two solution
B. Three solution
C. No solution
D. One solution

Answer: C

D Watch Video Solution
5. In $\triangle A B C$, right angled at B , if $\sin A=\frac{1}{2}$,

Then the value of $\sin C \cos A-\cos C \sin A$ is
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. 1
D. 0

Answer: B

D Watch Video Solution

6. Write the area of the sector of a circle whose radius is r and length of the arc is l.
A. $\frac{1}{2} l r$
B. Ir
C. $\frac{\theta}{360^{\circ}} \times \operatorname{lr}$
D. $\frac{\theta}{180^{\circ}} \times l r$

Answer: A

D Watch Video Solution

7. A bag contains tickets numbered 11, 12, 13, 30. A ticket is taken out from the bag at random. Find the probability that the number
on the drawn ticket (i) is a multiple of 7 (ii) is greater than 15 and a multiple of 5.

> A. $\frac{1}{21}$
> B. $\frac{1}{7}$
> C. $\frac{7}{20}$
> D. $\frac{3}{20}$

Answer: D

D Watch Video Solution

8. Determine the ratio in which the line
$3 x+y-9=0$ divides the segment joining
the points $(1,3)$ and (2, 7).
A. $4: 3$
B. 3: 4
C. $4: 7$
D. 7: 4

Answer: B

D Watch Video Solution
9. In the given figure, PQRS is a trapezium,
such that $P Q|\mid S R$. Find x.

A. 2
B. 5
C. 3
D. 4

Answer: C

D View Text Solution

10. Calculate the least positive integer which is
divisible by 20 and 24 .
A. 120
B. 200

C. 150

D. 480

Answer: A

D Watch Video Solution

11. If $L C M(x, 18)=36$ and $\operatorname{HCF}(x, 18)=2$,
then x is
A. 4
B. 8
C. 2
D. 6

Answer: A

D Watch Video Solution

12. After how many places, the decimal form of
the number $\frac{27}{2^{3} 5^{4} 3^{2}}$ will terminate?

A. one

B. two
C. three
D. four

Answer: D

D Watch Video Solution

13. $\triangle P Q R$ and $\triangle Q S T$ are two equilateral triangles such that T is the mid-point of $Q R$.

Find the ratio of the areas of $\triangle P Q R$ and
$\Delta Q S T$.

A. 1:1
B. 1:2
C. 2:1
D. $4: 1$

Answer: D

- Watch Video Solution

14. For some integer q, every odd is of the form
A. m
B. $m+1$
C. 2 m

D. $2 m+1$

Answer: A

- Watch Video Solution

15. If $\frac{241}{400}=\frac{241}{2^{m} \times 5^{n}}$ then then find the value of $m+n$, where m and n are nonnegative integers.
A. 10
B. 8

C. 6

D. 7

Answer: B

D Watch Video Solution

16. In which quadrant does the mid-point of
the Line segment joining the points ($-1,2$) and
$(3,4)$ lies?
A. I
B. II
C. III
D. IV

Answer: A

D Watch Video Solution

17. A card is drawn at random from a pack of 52 playing cards. Find the probability that the card drawn is either a king or an ace.
A. $\frac{2}{13}$
B. $\frac{1}{13}$
C. $\frac{4}{13}$
D. $\frac{3}{13}$

Answer: A

D Watch Video Solution

18. What is the value of k, if one of the zeroes

> of the quadratic $(k-1) x^{2}+k x+1$ is 3 ?
A. $\frac{4}{3}$
B. $\frac{2}{3}$
C. $\frac{1}{5}$
D. $\frac{5}{7}$

Answer: A

D Watch Video Solution

19. $A B C$ is a isosceles right angled triangle,
right angled at C . prove that $A B^{2}=2 A C^{2}$
A. one
B. two
C. three
D. four

Answer: B

D Watch Video Solution
20. From the adjoining figure of a rectangle,
find the values of x and y.

A. 12,18
B. 8,16
C. 22,8
D. 20,10

Answer: C

- Watch Video Solution

Section B

1. What is the perimeter of the semi-circular field, whose area is 15400 sq. m ?
A. $460 \sqrt{2} m$
B. $360 \sqrt{2} m$
C. $260 \sqrt{2} m$
D. $160 \sqrt{2} m$

Answer: B

D Watch Video Solution
2. The probability that a leap year, selected at random. will contain 53 Sunday is:
A. $\frac{1}{7}$
B. $\frac{2}{7}$
C. $\frac{3}{7}$
D. $\frac{4}{7}$

Answer: B

3. In a $\triangle A B C$ right angled at B , if the two legs

$A B$ and $B C$ are in the ratio 1:3, evaluate the
value of $\sin \mathrm{C}$.

> A. $\frac{\sqrt{10}}{3}$
> B. $\frac{3}{\sqrt{10}}$
> C. $\frac{1}{3}$
> D. $\frac{1}{\sqrt{10}}$

Answer: D

- Watch Video Solution

4. Find the area of a quadrant of a circle whose circumference is 22 cm .

A. $9.625 .3 \mathrm{~cm}^{2}$
B. $10.25 \mathrm{~cm}^{2}$
C. $11.275 \mathrm{~cm}^{2}$
D. $8.625 \mathrm{~cm}^{2}$

Answer: A
(D) Watch Video Solution
5. Write the values of k for which the system of equations $x+k y=0,2 x-y=0$ has unique solution.

$$
\begin{aligned}
& \text { A. } k \neq-\frac{1}{2} \\
& \text { B. } k \neq \frac{3}{2} \\
& \text { C. } k \neq \frac{1}{2} \\
& \text { D. } k \neq-\frac{3}{2}
\end{aligned}
$$

Answer: A

6. The diagonals of a rhombus are 10 cm and 24 cm . Find the length of a side of the rhombus.
A. 9 cm
B. 13 cm
C. 15 cm
D. Both (a) and (b)

Answer: B

- Watch Video Solution

7. If $x \sin \theta+y \cos \theta=\sin \theta \cdot \cos \theta$ and $x \sin \theta-y \cos \theta=0$ find $x^{2}+y^{2}$
A. 1
B. $\frac{3}{2}$
C. $\frac{1}{2}$
D. 0

Answer: C

- Watch Video Solution

8. A situation is given. Represent it in the form
of linear equations, 5 books and 7 pens together cost Rs 79 whereas 7 books and 5 pens together cost 77. Here consider cost of each book as x and that of each pen as Rs y.
A. $17 x+7 y=79,5 x+5 y=77$
B. $5 x+7 y=79,7 x+5 y=77$
C. $5 x+5 y=79,7 x+7 y=77$
D. Data is insufficient

Answer: B
9. The HCF of 85 and 153 can be expressed in the form of $85 \mathrm{~m}-153$. Calculate the value of m .
A. 1
B. 5
C. -1
D. 2

Answer: D

10. A thief runs with a uniform speed of 100 $\mathrm{m} / \mathrm{min}$. After one minute a policeman runs after the thief to catch him. He goes with a speed of $100 \mathrm{~m} / \mathrm{min}$ in first minute and increases his speed by $10 \mathrm{~m} / \mathrm{min}$ every succeeding minute. After how many minutes the policeman will catch the thief.
A. 60 min
B. 50 min
C. 1 hr 5 min

D. 15 min

Answer: A

D Watch Video Solution

11. The number of revolutions made by a wheel
of diameter 1 m to cover a distance of 22 km
will be:
A. 4000
B. 5500

C. 7000

D. 2800

Answer: C

D Watch Video Solution

12. Evalate $\left(1-\sin ^{2} \theta\right)-\cos ^{2} \theta$.
A. 0
B. 1
C. -1

D. 2

Answer: A

D Watch Video Solution

13. What is the type of solution the pair of
linear equation $x+3 y=4$ and $2 x+y=5$
have.
A. unique
B. Infinite

C. No Solution

D. Both (a) and (b)

Answer: A

D Watch Video Solution

14. A ladder 17 m long reaches a window of a
building 15 m above the ground. Find the distance of the foot of the ladder from the building.
A. 8 m
B. 12 m
C. 10 m
D. 13 m

Answer: A

D Watch Video Solution

15. Find the area of a quadrant of a circle whose circumference is 44 cm .
A. $\frac{77}{2} \mathrm{~cm}^{2}$
B. $77 \mathrm{~cm}^{2}$
C. $\frac{44}{7} \mathrm{~cm}^{2}$
D. $44 \mathrm{~cm}^{2}$

Answer: D

D Watch Video Solution
16. Out of 2000 tickets of a lottery, there are 16
tickets, which have prizes. Anupam purchased
one lottery ticket. What is the probability that he wins a prize?

D Watch Video Solution
17. $A B C$ is an isosceles triangle, which is right angled at B with $A B=4 \mathrm{~cm}$. What is the length of $A C$?
A. 2 cm
B. $2 \sqrt{2} \mathrm{~cm}$
C. 4 cm
D. $4 \sqrt{2} \mathrm{~cm}$

Answer: B

D View Text Solution

18. If in $\triangle A B C, \angle B=90^{\circ}, A B=6 \sqrt{3}$ and
$A C=12 \mathrm{~cm}$, find BC.
A. 5 cm
B. 6 cm
C. 7 cm
D. 8 cm

Answer: B

D Watch Video Solution

19. A single letter is selected at random from
the word "PROBABILITY" . The probability that
it is a vowel is
A. $\frac{4}{11}$
B. $\frac{5}{11}$
c. $\frac{6}{11}$
D. $\frac{7}{11}$

Answer: A

- Watch Video Solution

20. If in two $\triangle A B C$ and $\triangle P Q R$,
$\frac{A B}{Q R}=\frac{B C}{P R}=\frac{C A}{P Q}$, then
A. $\triangle B C A \sim \triangle P Q R$
B. $\triangle P Q R \sim \triangle C A B$

C. $\triangle P Q R \sim \Delta A B C$

D. $\triangle C B A \sim \Delta P Q R$

Answer: B

D Watch Video Solution

Section C

1. Last month, heavy storm came in Kerala. Due
to which lots of damage had occured Due to
this storm thousands of trees got broke and
electric poles bent out. Place picture of the storm in which trees and electric poles are bent.

Some of the electric poles bent into the shape of parabola. One of the images of bent electric pole is shown in the figure below:

Calculate the zeroes of the given curve?

A. -2 and 1
B. - 2 and -1
C. 2 and -1
D. Both (a) and (b)

Answer: A

D Watch Video Solution
2. Last month, heavy storm came in Kerala. Due to which lots of damage had occured Due to
this storm thousands of trees got broke and
electric poles bent out. Place picture of the storm in which trees and electric poles are bent.

Some of the electric poles bent into the shape of parabola. One of the images of bent electric pole is shown in the figure below:

What is the polynomial expression of given
A. $x^{2}+x-2$
B. $x^{2}-x+2$
C. $x^{2}-x-2$
D. $x+x+2$

Answer: A

D Watch Video Solution

3. Last month, heavy storm came in Kerala. Due
to which lots of damage had occured Due to
this storm thousands of trees got broke and
electric poles bent out. Place picture of the storm in which trees and electric poles are bent.

Some of the electric poles bent into the shape of parabola. One of the images of bent electric pole is shown in the figure below:

If $x=2$, then what will be the value of the polynomial?
A. 3
B. -4
C. 2
D. 4

Answer: D

- Watch Video Solution

4.

If the parabola is moved towards the right
side by one unit, then find the polynomial expression.

$$
\begin{aligned}
& \text { А. } x^{2}-3 x+2 \\
& \text { В. } x^{2}+x+2 \\
& \text { С. } x^{2}+x-2
\end{aligned}
$$

$$
\text { D. } x^{2}-x-2
$$

Answer: B

D Watch Video Solution

5. Last month, heavy storm came in Kerala. Due to which lots of damage had occured Due to
this storm thousands of trees got broke and electric poles bent out. Place picture of the storm in which trees and electric poles are bent.

Some of the electric poles bent into the shape of parabola. One of the images of bent electric pole is shown in the figure below:

Suppose the quadratic polynomial for given
curve is $a x^{2}+b x+c$. Then 'a' always is:

$$
\text { A. }>0
$$

B. <0

C. ≥ 0

D. ≤ 0

Answer: B
(D) Watch Video Solution

Scale: One block is of 1×1 squares.
6.

What are the coordinates of points E and B of

rectangle ABDE?

A. $(4,2),(6,8)$
B. $(3,2),(7,8)$
C. $(4,2),(7,8)$
D. Both (a) and (b)

Answer: C

D Watch Video Solution

7. Radhika and Samira are playing with a dice.

The dice is a hexagonal three-dimensional shaped. They cut the dice into three parts as shown in the coordinate axes along the figure.

Scale: One block is of 1×1 squares.

What is the length AE of $\Delta A E F ?$
A. 3
B. 4
C. 5
D. 6

Answer: D
(D) Watch Video Solution

Scale : One block is of 1×1 squares.
8.

Evaluate : ar $(\Delta B C D)$
A. 5 sq. units
B. 6 sq. units
C. 8 sq. units
D. 7 sq. units

Answer: B

D Watch Video Solution

9. Radhika and Samira are playing with a dice.

The dice is a hexagonal three-dimensional
shaped. They cut the dice into three parts as
shown in the coordinate axes along the figure.

Scale: One block is of 1×1 squares.

Evaluate perimeter of the rectangle $A B D E$.
A. 16 units
B. 17 units

C. 18 units

D. 20 units

Answer: C
(D) Watch Video Solution

Scale: One block is of 1×1 squares.
10.

What are the coordinate of intersection point

of diagonals in the rectange ABDE.

$$
\text { A. }\left(\frac{11}{2}, 5\right)
$$

B. $\left(\frac{11}{3}, 5\right)$
C. $\left(\frac{11}{2}, 6\right)$
D. Both (a) and (b)

Answer: A

- Watch Video Solution

