©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - EDUCART PUBLICATION

SAMPLE PAPER 03

Section A

1. What is the value of k in the quadratic is one
of polynomial $3 x^{2}+2 k x-3$, if $x=\frac{1}{2}$ the
zeroes of it?

> A. $\frac{1}{5}$
> B. $\frac{3}{2}$
> C. $-\frac{1}{4}$
> D. $-\frac{9}{4}$

Answer: D

D Watch Video Solution

2. A circle, has its centre at $(-1,3)$. If one end of a diameter of the circle has co-ordinates $(2,5)$,
then find the co-ordinates of the other end of the diameter.
A. $(-4,1)$
B. $(1,8)$
C. $(0.5,4)$
D. $(-1,4)$

Answer: A
(D) Watch Video Solution
3. $\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=$..
A. $\sec ^{2} A$
B. -1
C. $\cot ^{2} A$
D. $\tan ^{2} A$

Answer: D
(Watch Video Solution
4. What is value of $\mathrm{x}+\mathrm{y}$, if $\triangle A B C$ and $\triangle P Q R$ are similar?

A. 12.8 cm
B. 12.5 cm
C. 14.3 cm
D. 14 cm
5. If we toss two unbiased coins simultaneously, then the probability of getting no head is $\frac{A}{B}$. Then $(A+B)^{2}$ will be equal to:
A. 21
B. 25
C. 10
D. 5

6. What is the smallest number by which $\frac{891}{3500}$

 must be multiplied so it becomes a terminating decimal?A. 6
B. 7
C. 10
D. 5
7. The value of k for which the system of equations $x+y-4=0$ and $2 x+k y=3$ has no solution, is:
A. -2
B. $\neq 2$
C. 2
D. 3
8. If $1-p$ is a root of the quadratic equation $x^{2}+p x+1-p=0$, then its roots are
A. $0,-1$
B. 1,-1
C. 1, 0
D. 0,0

Answer: A

9. In an isosceles right angled triangle, what is

the length of the equal sides of the triangle, if its hypotenuse is $6 \sqrt{2} \mathrm{~cm}$?
A. $3 \sqrt{2} \mathrm{~cm}$
B. 6 cm
C. 12 cm
D. 5 cm
10. The area of the largest circle, that can be drawn inside a rectangle with sides 18 cm . by 14 cm , is
A. $\frac{12}{7} \mathrm{~cm}^{2}$
B. $\frac{17}{7} \mathrm{~cm}^{2}$
C. $\frac{77}{8} \mathrm{~cm}^{2}$
D. $\frac{22}{7} \mathrm{~cm}^{2}$

- Watch Video Solution

11. Find the value of p if the distance between
the points $(4, \mathrm{p})$ and $(1,0)$ is 5.
A. ± 4
B. ± 6
C. ± 8
D. ± 7

Answer: A
12. What is the value of k if the point $(-3, k)$
divides the line segment joining the points (-5 ,
$-4)$ and ($-2,3$) in a certain ratio?
A. -1
B. 3
C. 2
D. $\frac{2}{3}$
13. if 3 is the least prime factor of number a
and 7 is the least prime factor of number b,
then the least prime factor of $a+b$, is
A. 0
B. 1
C. 2
D. 3

D Watch Video Solution

14. In the given figure AD is the bisector of $\angle A$.

If $B D=4 \mathrm{~cm}, D C=3 \mathrm{~cm}$ and $A B=6 \mathrm{~cm}$. Find $A C$.

A. 4.5 cm
B. 6 cm
C. 3 cm
D. 7 cm

Answer: A

D Watch Video Solution

15. Find the area of a quadrant of a circle whose circumference is 44 cm .
A. $\frac{77}{2} \mathrm{~cm}^{2}$
B. $77 \mathrm{~cm}^{2}$
C. $\frac{44}{7} \mathrm{~cm}^{2}$
D. $44 \mathrm{~cm}^{2}$

Answer: A

D Watch Video Solution

16. The HCF of 85 and 153 can be expressed in
the form of $85 m-153$. Calculate the value of m.
A. 1
B. 5

C. -1

D. 2

Answer: D

D Watch Video Solution

17. What is the total number of factors of a prime number?
A. 0
B. 1
C. 2
D. 3

Answer: C

- Watch Video Solution

18. Find the distance between the following pair of points: $(a \sin \alpha,-b \cos \alpha)$ and $(-a \cos \alpha, b \sin \alpha)$ (ii) $(a, 0)$ and $(0, b)$
A. 1
B. $\sqrt{a^{2}+b^{2}}$
C. $2 \sqrt{a^{2}+b^{2}}$
D. $\sqrt{a^{2}+b^{2}}(\sin \alpha+\cos \alpha)$

Answer: D

D Watch Video Solution

19. For the given polynomial
$p(x)=x^{2}-5 x-1$, if α and β are its zeroes,
then find the value of $\alpha^{2} \beta+\alpha \beta^{2}$
A. -5
B. 4
C. 0
D. -7

Answer: A

D Watch Video Solution

20. The centroid of a $\Delta A B C$ with vertices $\mathrm{A}(-4$,
$6), B(2,-2)$ and $C(2,5)$ is:
A. $(3,0)$
B. $\left(\frac{8}{3}, 3\right)$
C. $\left(3, \frac{8}{3}\right)$
D. $(0,3)$

Answer: D

D Watch Video Solution

Section B

1. Find the value of $-\frac{3-4 \sin ^{2} A}{4 \cos ^{2} A-3}$ If sec

$$
A=\frac{17}{8}
$$

A. $\frac{33}{611}$
B. $\frac{53}{78}$
C. $\frac{2}{\sqrt{3}}$
D. $\frac{17}{64}$

Answer: A
2. A, B and C start at the same time in the same direction to run around a circular stadium. A completes a round in 252 seconds, B in 308 seconds and C in 198 seconds, all starting at same point After what time will they again at the starting point ?
A. 46 min 12 sec
B. 42 min 6 sec
C. 52 min 12 sec
D. 56 min 10 sec

Answer: A

- Watch Video Solution

3. If a number x is chosen at random from the number $-2,-1,0,1,2$. What is the probability that $x^{2}<2$?
A. $\frac{4}{5}$
B. $\frac{1}{5}$
C. $\frac{3}{5}$
D. $\frac{2}{5}$

Answer: C

- Watch Video Solution

4. The diagonals of a rhombus are 10 cm and

24 cm . Find the length of a side of the rhombus.
A. 9 cm
B. 13 cm
C. 15 cm
D. 17 cm

Answer: B

D Watch Video Solution

5. In $\Delta A B C$, $\mathrm{DE} \| \mathrm{BC}$. If $\mathrm{AD}=2 \mathrm{x}-1, \mathrm{AE}=2 \mathrm{x}+5$, $B D=x-3$ and $C E=x-1$, then the value of x is:
A. 8
B. 9
C. 10
D. 11

Answer: A

D Watch Video Solution

6. What is the ratio of the areas of a circle and
an equilateral triangle whose diameter and a side are respectively equal?
A. $\sqrt{2}: \pi$
B. $\sqrt{3}: \pi$
C. $\pi: \sqrt{3}$
D. $\pi: \sqrt{2}$

Answer: C

D Watch Video Solution

7. A line intersects the y-axis and x-axis at the points P and Q respectively. If $(2,-5)$ is the midpoint of $P Q$ then find the coordinates of P and Q.
A. $(0,-10)$
B. $(4,0)$
C. $(10,0)$

D. $(0,-4)$

Answer: A

D Watch Video Solution

8. What is the area of the segment $P Q R$, in the given figure, if the radius of the circle is 7 cm ?
(use $\pi=\frac{22}{7}$)

A. $\frac{12}{7} \mathrm{~cm}^{2}$
B. $\frac{11}{5} \mathrm{~cm}^{2}$
C. $\frac{22}{7} \mathrm{~cm}^{2}$
D. $\frac{7}{12} \mathrm{~cm}^{2}$

Answer: D

D Watch Video Solution

9. Cards marked with the numbers 2 to 101 are placed in a box and mixed thoroughly. One card is drawn from this box. Find the probability that the number on the card is: a number which is a perfect square (ii) a prime number less than 20.

$$
\text { A. } \frac{1}{20}
$$

B. $\frac{7}{100}$
C. $\frac{9}{100}$
D. $\frac{3}{100}$

Answer: D

- Watch Video Solution

10. The H.C.F. And L.C.M. of two numbers are 44 and 264 respectively. If the first number is dividded by2, the quotient is 44 , The other numbes is
A. 66
B. 132
C. 58
D. 73

Answer: B

D Watch Video Solution

11. Find the zeroes of the polynomial:
$6 x^{2}-7 x-3$
A. $-\frac{1}{3}, \frac{2}{3}$
B. $-\frac{1}{2}, \frac{1}{3}$
C. $-\frac{1}{3}, \frac{3}{2}$
D. $\frac{1}{2},-\frac{3}{2}$

Answer: C

- Watch Video Solution

12. $\triangle P O R$ and $\triangle Q S T$ are two equilateral triangles such that T is the mid-point of $Q R$.

Find the ratio of areas of $\triangle P O R$ and $\triangle Q S T$.

A. 1:1
B. 1:2
C. 2:1
D. $4: 1$

Answer: D

D Watch Video Solution

13. The point which divides the line segment
joining the points $(8,-9)$ and $(2,3)$ in ratio $1: 2$ internally lies in the
A. $(6,-5)$
B. $(5,5)$
C. $(1,-4)$
D. $(2,3)$

Answer: A

D Watch Video Solution

14. If three points $(0,0),(3, \sqrt{3})$ and $(3, \lambda)$
form an equilateral triangle, then $\lambda=$ (a) 2
(b) -3 (c) -4 (d) None of these
A. -4
B. 2
C. -3
D. $\pm \sqrt{3}$

Answer: D

D Watch Video Solution

15. The king, queen and jack of clubs are removed from a deck of 52 playing cards and the remaining cards are shuffled. A card is drawn from the remaining cards. Find the probability of getting a card of (i) heart (ii) queen (iii) clubs.

$$
\text { A. } \frac{10}{49}
$$

B. $\frac{5}{49}$
C. $\frac{8}{49}$
D. $\frac{13}{49}$

Answer: A

D Watch Video Solution

16. The graph of a polynomial $p(x)$ is given in
the figure. What are the zeroes of the
polynomial $\mathrm{p}(\mathrm{x})$?

A. 3 and 0
B. - 3 and -1
C. -3 and 0
D. - 1 and 0

Answer: B

D Watch Video Solution

17. Evaluate the value of x in terms of a, b and
C.

A. $\frac{a c}{b+c}$
B. $\frac{a b+a c}{b^{2}}$

$$
\begin{aligned}
& \text { C. }\left(\frac{1}{a}+\frac{1}{b}\right)^{2} \\
& \text { D. } \frac{a+b}{c}
\end{aligned}
$$

Answer: A

D Watch Video Solution

18. What is the value of a, If 2 is a zero of the polynomial $p(x)=4 x^{2}+2 x-5 a ?$
A. 4
B. 6

C. -1

D. 0

Answer: A

- Watch Video Solution

19. Determine the ratio in which the line
$3 x+y-9=0$ divides the segment joining
the points $(1,3)$ and $(2,7)$.
A. $4: 3$
B. 3: 4
C. $4: 7$
D. 7: 4

Answer: B

D Watch Video Solution

20. Calculate $\frac{x}{y}$

A. 14
B. 3
C. 15
D. 18

Answer: A

D Watch Video Solution

Section C

1. $\angle B A X=70^{\circ} \angle B A X=40^{\circ} \angle A B X=$?

A. 6 m
B. $6 \sqrt{3} m$
C. 12 m
D. $12 \sqrt{3} m$

Answer: C

- Watch Video Solution

2. $P A$ and $P B$ are tangents to a circle with centre 0 , from a point P outside the circle, and
A and B are point on the circle. If $\angle A P B=30^{\circ}$, then $\angle O A B$ is equal to:
A. 6 m
B. 12 m
C. $6 \sqrt{3} m$
D. $12 \sqrt{3} m$

Answer: C
3. $\angle B A X=70^{\circ} \angle B A X=40^{\circ} \angle A B X=$?

A. 1:2
B. $1: \sqrt{3}$
C. $\sqrt{3}: 1$
D. 1:1

Answer: D

D Watch Video Solution

4.

The
valiue
of
$\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$ is
A. 1
B. 0
C. -1
D. $\frac{1}{4}$

- Watch Video Solution

5. Neeraj who belongs to a small town in

Maharashtra was coming to a big city for the first time. As he was driving past the Mumbai airport road along with his family, he observed
a big billboard of length 6 m and width 3 m .
Further, $\angle D Q A=30^{\circ}$ and $\angle A P B=30^{\circ}$

The length of $(A P+A Q)$ is:
A. $6(\sqrt{3}+1) m$
B. $18 m$
C. $36 m$
D. $12(\sqrt{3}+1) m$

Answer: B

6. Solve for (x, y) and hence find the value of
$4 x-3 y$.
$y=5 x+20$
$y=8 x+50$

- Watch Video Solution

7. Solve for xand y :
$y=0.25 x+20$
$y=0.08 x+40$

- Watch Video Solution

8. What are the values of x and y in the system
of linear equations $4 x+5 y=-3$ and $2 x-y=2 ?$
A. $(-3,-2)$
B. $(3,2)$
C. $(-3,2)$
D. $(3,-2)$
9. If the system of pair of linear equations
$k x+4 y=2,7 x+3 y=1$ has a unique solution, then the value of k is :
A. $k=6$
B. $k \neq 6$
C. $k \neq \frac{3}{2}$
D. $k \neq \frac{2}{3}$

- Watch Video Solution

10. Rajesh want to choose a best plan for his mobile phone. He has 2 options available with him. The first plan of company A, cost Rs. 20 per month, with costing an additional 25 paise per minute.

The second plan of company B charges Rs. 40 per month, but calls cost 8 paise per minute.

These two situations are shown below in the form of linear equations.
$y=0.25 x+20$
and $y=0.08 x+40$

Where, x is the minutes used any is the total

cost per month

Cost:
Plans prices
range from under 10 to aver 100

Network: Types of Plan: Network: paid or phone on a plane

Other
beniffits:
Calls SMS,
Data and other extras

Which type of lies is represented by the system
of
linear
$x+2 y-4=0,2 x+4 y-12=0 ?$
equations
A. Coincident lines
B. Parallel lines
C. Intersecting lines
D. Can't say

Answer: B

1. Write the discriminant of the quadratic equation $(x+5)^{2}=2(5 x-3)$.

- Watch Video Solution

2. Find after how many places of decimal the decimal form of the number $\frac{27}{2^{3} \cdot 5^{4} \cdot 3^{2}}$ will terminate.

3. Express 429 as a product of its prime factors.

D Watch Video Solution

4. Find the sum of first 10 multiples of 6 .

D Watch Video Solution

5. Find the value(s) of x, if the distance between the points $A(0,0)$ and $B(x,-4)$ is 5 units.

- Watch Video Solution

6. Two concentric circles of radii a and $b(a>b)$ are given. Find the length of the chord of the larger circle which touches the smaller circle.

- Watch Video Solution

7. In Figure, $\mathrm{PS}=3$, $\mathrm{QS}=4 \mathrm{~cm}$,
$\angle P R Q=\theta, \angle P S Q=90^{\circ}, P Q \perp R Q \quad$ and
$\mathrm{RQ}=9 \mathrm{~cm}$. Evaluate $\tan \theta$.

- Watch Video Solution

8. If $\tan \alpha=\frac{5}{12}$, find the value of $\sec \alpha$.

- Watch Video Solution

Section B

1. Points $A(3,1), B(5,1), C(a, b)$ and $D(4,3)$ are vertices of a parallelogram $A B C D$. Find the values of a and b.

- Watch Video Solution

2. Points P and Q trisect the line segment joining the points $A(-2,0)$ and $B(0,8)$ such that, P is near to A. Find the coordinates of points P and Q .
3. Solve the following pair of linear equations
$3 x-5 y=4$ and $2 y+7=9 x$

- Watch Video Solution

4. If HCF of 65 and 117 is expressible in the form $65 n-117$, then find the value of n.
(Watch Video Solution
5. On a morning walk, three persons step out together and their steps measure $30 \mathrm{~cm}, 36 \mathrm{~cm}$ and 40 cm respectively. What is the minimum distance each should walk so that each can cover the same distance in complete steps?

D Watch Video Solution

6. A die is thrown once. Find the probability of getting a composite number.

7. A dice is thrown once. Find the probability of

 getting a prime number .
D Watch Video Solution

8. Using completing the square method, show
that the equation $x^{2}-8 x+18=0$ has no solution.
9. Cards numbered 7 to 40 were put in a box.

Poonam selects a card at random. What is the probability that Poonam selects a card which is a multiple of 7 ?

D Watch Video Solution

Section C

1. The perpendicular from A on side BC of a Δ
$A B C$ meets $B C$ at D such that $D B=3 C D$. Prove
that $2 A B^{2}=2 A C^{2}+B C^{2}$

- Watch Video Solution

2. $A D$ and $P M$ are medians of triangles $A B C$ and PQR respectively where $\Delta A B C \sim \Delta P Q R$. Prove
that: $\frac{A B}{P Q}=\frac{A D}{P M}$.

D Watch Video Solution

> 3. Find
> $p(x)=x^{5}-4 x^{3}+x^{2}+3 x+1$ is divide by
$g(x)=x^{3}-3 x+1$.

D Watch Video Solution

4. Find the area of the triangle formed by joining the mid-points of the sides of the triangle whose vertices are
$(0,-1),(2,1)$ and $(0,3)$. Find the ratio of this area to the area of the given triangle.

D Watch Video Solution

5. Find the values of x and y which satisfy the equations:
$y+4 x=9$ and $3 y+2 x=5$

- Watch Video Solution

6. Prove that $\sqrt{3}$ is an irrational number
(Watch Video Solution
7. Find the greatest number which on dividing

251 and 628 leaves remainders 1 and 3 respectively.

D Watch Video Solution

8. If A, B and C are interior angles of a triangle

ABC , then show that $\sin \left(\frac{B+C}{2}\right)=\frac{\cos A}{2}$.

- Watch Video Solution

9. If $\angle A=90^{\circ}$, then find the value of $\tan \left(\frac{B+C}{2}\right)$

- Watch Video Solution

$$
\begin{aligned}
& \text { 10. If } \quad \tan (A+B)=\sqrt{3} \quad \text { and } \\
& \tan (A-B)=\frac{1}{\sqrt{3}}, 0^{\circ}<A+B \leq 90^{\circ}, A>B
\end{aligned}
$$

, then find the value of A and B.

- Watch Video Solution

11. $P Q$ is a chord of length 8 cm of a circle of radius 5 cm . The tangents at P and Q intersect at a point T. Find the length $T P$.

- Watch Video Solution

12. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

- Watch Video Solution

13. Water in a canal, 6 m wide and 1.5 m deep, is
flowing with a speed of $10 \mathrm{~km} / \mathrm{h}$. How much area will it irrigate in 30 minutes, if 8 cm of standing water is needed?

D Watch Video Solution

14. The ratio of the number of students of
three class is $2: 3: 5$.If 20 students are added
in each class then the ratio becomes $4: 5: 7$
.Find the number of student in each class before adding .

- Watch Video Solution

15. A car has two wipers which do not overlap.

Each wiper has a blade of length 21 cm , sweeping through an angle of 120°. Find the total area cleaned at each sweep of the blades.

- Watch Video Solution

1. A pole has to be erected at a point on the boundary of a circular park of diameter 13 metres in such a way that the differences of its distances from two diametrically opposite fixed gates A and B on the boundary is 7 metres. Is it possible t

D Watch Video Solution

2. If m times the $m^{t h}$ term of an A.P. is equal to
n times its $n^{t h}$ term, show that the $(m+n)^{t h}$ term of the A.P. is zero.

- Watch Video Solution

3. The sum of the first three numbers in an

Arithmetic Progression is 18 . If the product of the first and the third term is 5 times the common difference, find the three numbers.

- Watch Video Solution

4. Draw a triangle $A B C$ with side $B C=6 \mathrm{~cm}, A B=$

5 cm and $\angle A B C=60^{\circ}$. Then construct a
triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the triangle $A B C$.

D Watch Video Solution

5. The decorative block is made of two solids a
cube and a hemisphere. The base of the block
is a cube with edge 5 cm , and the hemisphere
fixed on the top has a diameter of 4.2 cm . Find the total surface area of the block.
6. A decorative block shown in Fig. 16.50 is made of two solids a cube and a hemisphere.

The base of the block is a cube with edge 5 cm , and the hemisphere fixed on the top has a diameter 4.2 cm . Find the total surface area of the block (Take $\pi=22 / 7$).

D Watch Video Solution

7. A bucket is in form of a frustum of a cone with a copacity of $12308.8 \mathrm{~cm}^{3}$ of water. The radii of the tope bottom circular ends are 20
cm and 12 cm respectively. Find the height of the bucket and the area of the metal sheet used in its making. [Use $\pi=3.14$.]

D Watch Video Solution

8. Theorem 6.1 : If a line is drawn parallel to one
side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
9. Prove that is a right angle triangle, the square of the hypotenuse is equal the sum of the squares of other two sides.

- Watch Video Solution

10. If $1+\sin ^{2} \theta=3 \sin \theta \cos \theta$, then prove
that $\tan \theta=1$ or $\tan \theta=\frac{1}{2}$.

O
 Watch Video Solution

11. about to only mathematics

D Watch Video Solution

12. The shadow of a tower standing on a level ground is found to be 40 m longer when the

Suns altitude is $30 o$ than when it is $60 o$. Find the height of the tower.

D Watch Video Solution

