©゙" doubtnut

India's Number 1 Education App

BOOKS - EDUCART PUBLICATION

SAMPLE PAPER 2

Section A

1. Write the discriminant of the quadratic equation
$(x+5)^{2}=2(5 x-3)$.

- Watch Video Solution

2. Find after how many places of decimal the decimal form of the number $\frac{27}{2^{3} .5^{4} \cdot 3^{2}}$ will terminate.

- Watch Video Solution

3. Express 429 as a product of its prime factors.

- Watch Video Solution

4. Find the sum of first 10 multiples of 6 .
5. Find the value (s) of x, if the distance between the points $A(0,0)$ and $B(x,-4)$ is 5 units.

- Watch Video Solution

6. Two concentric circles of radii a and $b(a>b)$ are given. Find the length of the chord of the larger circle which touches the smaller circle.
7. In Figure , $\mathrm{PS}=3 \mathrm{~cm}, \mathrm{QS}=4 \mathrm{~cm}$,
$\angle P R Q=\theta, \angle P S Q=90^{\circ}, P Q \perp R Q$ and $R Q=9$
cm . Evaluate $\tan \theta$.

- Watch Video Solution

8. If $\tan \alpha=\frac{5}{12}$, find the value of $\sec \alpha$.
9. Which of the following is a prime number ?
A. 11
B. 22
C. 33
D. 44

Answer: A

- Watch Video Solution

10. Which of the following is a zero of the polynomial $x^{3}-8$?
A. -2
B. 2
C. 0
D. $\sqrt{8}$

Answer: B

- Watch Video Solution

11. The roots of the equation $\sqrt{3} x^{2}-2 x-\sqrt{3}=0$ are :
A. $-\sqrt{3}, \frac{1}{\sqrt{3}}$
B. 2,3
C. $\frac{\sqrt{3}}{2},-\frac{2}{\sqrt{3}}$
D. $\sqrt{3},-\frac{1}{\sqrt{3}}$

Answer: D

- Watch Video Solution

12. The $15^{\text {th }}$ term of the AP , $x-7, x-2, x+3$ is
A. $x+63$
B. $x+73$
C. $x+83$
D. $x+53$

Answer: A

- Watch Video Solution

13. If the points $(a, 0)(0, b)$ and $(1,1)$ are collinear , then $\frac{1}{a}+\frac{1}{b}$ is :
A. -1
B. 1
C. 0
D. 2

Answer: B

- Watch Video Solution

14. How many parallel tangents can a circle have ?
A. 1
B. 2
C. infinite
D. 0

Answer: B

- Watch Video Solution

15. If $3 \cos \theta=1$, then $\operatorname{cosec} \theta$ is equal to :
A. $2 \sqrt{2}$

3
B.
$2 \sqrt{2}$
C. $\frac{2 \sqrt{3}}{3}$
D. $\frac{4}{3 \sqrt{2}}$

Answer: B

- Watch Video Solution

16. The perimeter of a quadrant of a circle of radius
' r ' is :
A. $\frac{\neq r}{2}$
B. $2 \pi r$
C. $\frac{r}{2}[\pi+4]$
D. $2 \pi r+\frac{r}{2}$

Answer: C

- Watch Video Solution

17. The probability of drawing a green coloured ball
from a bag containing 6 red and 5 black balls is :

$$
\begin{aligned}
& \text { A. } \frac{6}{11} \\
& \text { B. } \frac{5}{11}
\end{aligned}
$$

C. 1
D. 0

Answer: D

- Watch Video Solution

18. A data has 25 observations arranged in a descending order. Which observation represents the median?
A. $12^{\text {th }}$
B. $13^{\text {th }}$
C. $14^{\text {th }}$
D. $15^{\text {th }}$

Answer: B

- Watch Video Solution

Section B

1. Points $A(3,1), \quad B(5,1), \quad C(a, b)$ and $D(4,3)$ are vertices of a parallelogram $A B C D$. Find the values of a and b.
2. Points P and Q trisect the line segment joining the points $A(-2,0)$ a and $B(0,8)$ such that , P is near to A . Find the coordinates of points P and Q .

D Watch Video Solution

3. Solve the pair of linear equations. $y-4 x=1$ and $6 x-5 y=9$
4. If $H C F$ of 65 and 117 is expressible in the form $65 m-117$, then the value of m is

- Watch Video Solution

5. On a morning walk ,three persons step out together and their steps measure $30 \mathrm{~cm}, 36 \mathrm{~cm}$ and 40 cm respectively . What is the minimum distance each should walk so that each can cover the same distance in complete steps?

- Watch Video Solution

6. A die is thrown once .Find the probability of getting
(i) a composite number, (ii) a prime number.

- Watch Video Solution

7. Using completing the square method show that the equation $x^{2}-8 x+18=0$ has no solution.

- Watch Video Solution

8. Cards numbered 7 to 40 were put in a box. Poonam selects a card at random .What is the
probability that Poonam selects a card which is a multiple of 7 ?

- Watch Video Solution

9. Are the points $(0,5),(0,-9)$ and $(3,6)$ collinear ?

Justify your answer .

- Watch Video Solution

10. Find the zeroes of the polynomial $x^{2}-3$
11. In the given figure $A D=4 \mathrm{~cm} B D=3 \mathrm{~cm}$ and $C B=$

12 cm . Find the value of $\cot \theta$

- Watch Video Solution

12. The figure shows the cross-section of the interior of thermos flask.

The top part is a trapezium, the middle part is a rectangle and the bottom part is a semicircle if $\mathrm{CE}=$ $20 \mathrm{~cm}, \mathrm{BC}=25 \mathrm{~cm}, \mathrm{AB}=\mathrm{GF}=13 \mathrm{~cm}, \mathrm{AG}=10 \mathrm{~cm}$ and
$\mathrm{AN}=12 \mathrm{~cm}$, the find :

The perimeter of the cross-section

- Watch Video Solution

13. Area of a sector of a circle of radius 36 cm is $54 \pi \mathrm{~cm}^{2}$. Find the length of the corresponding arc of sector.

D Watch Video Solution

14. Write the prime factorisation of 8190

- Watch Video Solution

15. Find the HCF of 2205,5145 and 4410
16. The perpendicular from A on side BC of a $\triangle A B C$ meets $B C$ at D such that $D B=3 C D$.Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$.

D Watch Video Solution

2. If $A D$ and $P M$ are medians of triangles $A B C$ and PQR , respectively where $\triangle A B C \Delta P Q R$, prove that $\frac{A B}{P Q}=\frac{A D}{P M}$
3. Check whether $g(x)$ is a factor of $p(x)$ by dividing polynomial $p(x)$ by polynomial $g(x)$, where $p(x)=x^{5}-4 x^{3}+x^{2}+3 x+1, g(x)=x^{3}-3 x+1$

- Watch Video Solution

4. Find the area of the triangle formed by joining the mid -points of the sides of the triangle $A B C$,whose vertices are $A(0,-1), B(2,1)$ and $C(0,3)$.
5. Find the values of x and y which satisfy both the equations:
$\mathrm{x}-\mathrm{y}=11$ and $4 \mathrm{x}+\mathrm{y}=14$.

- Watch Video Solution

6. Prove that $\sqrt{3}$ is an irrational number.

- Watch Video Solution

7. Find the greatest number which an dividing 1251,

9377 and 15628 leaves remainders 1,2 and 3
respectively .

- Watch Video Solution

8. (i) A, B and C are interior angles of a triangle

ABC. Show that $\sin \left(\frac{B+C}{2}\right)=\cos \left(\frac{A}{2}\right)$.
(ii) If $\angle A=90^{\circ}$, then find the value of $\tan \left(\frac{B+C}{2}\right)$.

D Watch Video Solution

$$
\begin{aligned}
& \text { 9. If } \quad \tan (A+B)=\sqrt{3} \quad \text { and } \\
& \tan (A-B)=\frac{1}{\sqrt{3}}, 0^{\circ}<A+B \leq 90^{\circ}, A>B \text {, }
\end{aligned}
$$

then find the value of A and B.

- Watch Video Solution

10. $P Q$ is a chord of length 8 cm of a circle of radius 5 cm . The tangents at P and Q intersect at a point T. Find the length $T P$.

- Watch Video Solution

11. Prove that opposite sides of a quadrilateral
circumscribing a circle subtend supplementary angles at the centre of the circle.

- Watch Video Solution

12. Water in a canal, 6 m wide and 1.5 m deep, is flowing with a speed of $10 \mathrm{~km} / \mathrm{h}$. How much area will it irrigate in 30 minutes, if 8 cm of standing water is needed?

- Watch Video Solution

13. A class teacher has the following absentee record of 40 students of a class for the whole term.

Find the mean number of days a student was absent.

- Watch Video Solution

14. A car has two wipers which do not overlap. Each wiper has a blade of length 21 cm , sweeping through an angle of 120°. Find the total area cleaned at each sweep of the blades.

- Watch Video Solution

15. If $\mathrm{Q}(0,1)$ is equidistant from $P(5,3)$ and $\mathrm{R}(\mathrm{x}, 6)$,
find the values of x . Also find the distances QR and PR.
16. The sum of two numbers as well as the difference between their squares is 9 . Find the numbers.

D Watch Video Solution

17. Prove that $2 \sqrt{3}-4$ is an irrational number, using the fact that $\sqrt{3}$ is an irrational number.
18. Find the HCF and LCM of 15,18 and 45 , by the prime factorisation method.

- Watch Video Solution

19. The length of the minute hand of a clock is 14
cm . Find the area swept by the minute hand in 15
minutes.

- Watch Video Solution

20. The radii of the two circles are 4 cm and 3 cm .

Find the radius of the circle whose area is equal to the sum of the areas of the two circles. Also, find the circumference of the circle .

- Watch Video Solution

21. Two concentric circles are of radii 5 cm and 3 cm .

Find the length of the chord of the larger circle which touches the smaller circle.
22. Draw a circle of radius 3.5 cm . Take a point P outside the circle at a distance of 7 cm from the centre of the circle and construct a pair of tangents to the circle from the point.

- Watch Video Solution

23. If $\mathrm{AB}=40 \mathrm{~cm}, \angle C A B=45^{\circ}$ and
$\angle C B A=30^{\circ}$

Find
(i) the length of AC
(ii) the length of $B C$.

D Watch Video Solution
24. Prove that the line segments joining the midpoints of the sides of a triangle from four triangles, each of which is similar to the original triangle.

- Watch Video Solution

25. Find the mean marks from the following
frequency distribution

Marks	Below 10	Below 20	Below 30	Below 40	Below 50
Number of students	2	5	16	20	30

- Watch Video Solution

1. A pole has to be erected at a point on the boundary of a circular park of diameter 13 metres in such a way that the differences of its distances from two diametrically opposite fixed gates A and B on the boundary is 7 metres. Is it possible t

- Watch Video Solution

2. If m time the $m^{t h}$ term of an Arithmetic Progression is equal to n times its $n^{\text {th }}$ term and
$m \neq n$,show that the $(m+n)^{t h}$ term of the AP is zero.

- Watch Video Solution

3. The sum of the first three numbers in an

Arithmetic Progression is 18 . If the product of the first and the third term is 5 times the common difference, find the three numbers.
4. Draw a triangle $A B C$ with side $B C=6 \mathrm{~cm}, A B=5$
cm and $\angle A B C=60^{\circ}$. Then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the triangle $A B C$.

- Watch Video Solution

5. The decorative block is made of two solids a cube and a hemisphere. The base of the block is a cube with edge 5 cm , and the hemisphere fixed on the top has a diameter of 4.2 cm . Find the total surface area of the block.
6. In Figure a decorative block is shown which is made of two solids, a cube and a hemisphere .The base of the block is cube with edge 6 cm and the hemisphere fixed on the top has a diameter of 4.2 cm .Find :

the volume of the block formed `

- Watch Video Solution

7. A bucket is in form of a frustum of a cone with a copacity of $12308.8 \mathrm{~cm}^{3}$ of water. The radii of the
tope bottom circular ends are 20 cm and 12 cm
respectively. Find the height of the bucket and the area of the metal sheet used in its making. [Use $\pi=3.14$.

- Watch Video Solution

8. Theorem 6.1 : If a line is drawn parallel to one side of a triangle to intersect the other two sides in
distinct points, the other two sides are divided in the same ratio.
9. Prove that is a right angle triangle, the square of the hypotenuse is equal the sum of the squares of other two sides.

- Watch Video Solution

10. If $1+\sin ^{2} \beta=3 \sin \beta$. $\cos \beta$, then prove that $\tan \alpha=1$ or $\tan \alpha=\frac{1}{2}$.

- Watch Video Solution

11. For what values of x does the equation hold true?
$2^{4 x^{2}+5 x-2}=16$

- Watch Video Solution

12. The shadow of a tower standing on a level ground is found to be 40 m longer when the Suns altitude is $30 o$ than when it is $60 o$. Find the height of the tower.

- Watch Video Solution

13. Find two consecutive odd positive integers, sum of whose squares is 290.

- Watch Video Solution

14. The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 45°. If the tower is 30 m high, find the height of the building.

- Watch Video Solution

15. If $\tan \theta+\sin \theta=$ mandtan $\theta-\sin \theta=n$,
show that $m^{2}-n^{2} 4 \sqrt{m m}$
16. The $6^{\text {th }}$ term of an AP is five times the $1^{\text {st }}$ term and the $11^{\text {th }}$ term exceeds twice the $5^{t h}$ term by 3. Find the $8^{\text {th }}$ term of the AP.

- Watch Video Solution

17. Solve for x, using the quadratic formula :
$x-\frac{1}{x}=3$
18. A circle is inscribed in a $\triangle A B C$ having sides 8 $\mathrm{cm}, 10 \mathrm{~cm}$ and 12 cm as shown in figure. Find AD, BE and CF.

D Watch Video Solution
19. In a quadrilateral $\mathrm{ABCD}, \angle A+\angle D=90^{\circ}$. Prove that
$A C^{2}+B D^{2}=A D^{2}+B C^{2}$

- Watch Video Solution

20. In Fig. 4.123, $A B C D$ is a trapezium with
$A B|\mid D C$. If $\triangle A E D$ is similar to $\triangle B E C$, prove that $A D=B C$.
21. A cylindrical bucket, 32 cm high and with radius of base 18 cm , is filled with sand. This bucket is emptied out on the ground and a conical heap of sand is formed. If the height of the conical heap is

24 cm , find the radius and slant height of the heap.

- Watch Video Solution

Section A Fill In The Blanks

1. The next term of AP , 3
$3+\sqrt{2}, 3+2 \sqrt{2}, 3+3 \sqrt{2}$. is
2. The maximum value of $\frac{1}{\operatorname{cosec} \theta}$ is

- Watch Video Solution

3. The median of the first 50 even natural numbers
is \qquad

- Watch Video Solution

4. If x_{i} 's are the mid-points of the class intervals of grouped data, $f_{i}{ }^{\prime} s$ are the corresponding
frequencies and \bar{x} is the mean, then $\sum\left(f_{i} x_{i}-\bar{x}\right)$ equal to

- Watch Video Solution

5. When a die is thrown the probability of getting an odd number greater than 5 is \qquad

- Watch Video Solution

Section A Short Answer Type Question

1. Find $\operatorname{cosec} \mathrm{A}$, if $\tan A=\frac{1}{\sqrt{3}}$
2. Find the mean of the following data :
$54,62,69,45,23,48,76,25,36,62$

D Watch Video Solution
3. A card is drawn at random from a pack of 52
playing cards. Determine the probability of it being a red king card .

- Watch Video Solution

4. Determine the number of zeroes of the polynomial $x^{4}-1$

- Watch Video Solution

5. Find the value of ' k ' so that the following pair of
linear equation has infinite number of solutions:
$2 x-3 y+6=0,3 x+k y+9=0$

- Watch Video Solution

6. If $\frac{1}{2}$ is a root of the equation
$x^{2}+k x-\frac{5}{4}=0$, then find the value of k.

Watch Video Solution

