© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - EDUCART PUBLICATION

TRIANGLES

Objective Type Qustions Multiple Choice Questions

1. In figure $A B C$ is an isosceles triangle, right angled at C.

Therefore

A. $A B^{2}=2 A C^{2}$
B. $B C^{2}=2 A B^{2}$
C. $A C^{2}=2 A B^{2}$
D. $A B^{2}=4 A C^{2}$

Answer: A
2. In a right-angled triangle ABC , right angled at $\mathrm{B}, A B=\frac{x}{2}$, $B C=x+2$ and $A C=x+3$. The value of x is:
A. 5
B. 10
C. 12
D. 14

Answer: B

- Watch Video Solution

3. In the figure, if $\angle B A C=90^{\circ}$ and $A D \perp B C$, then:

A. $B D . C D=B C^{2}$
B. $A B . A C=B C^{2}$
C. $B D \cdot C D=A D^{2}$
D. $A B . A C=A D^{2}$

Answer: C
4. The lengths of the diagonals of a rhombus are 16 cm and 12 cm . Then, the length of the side of the rhombus is
A. 9 cm
B. 10 cm
C. 8 cm
D. 20 cm

Answer: B

- Watch Video Solution

5. If D, E and F are the mid-points of sides $B C, C A$ and $A B$ respectively of $\triangle A B C$, then the ratio of the areas of $\triangle D E F$ to the area of $\triangle A B C$ is :
A. $1: 4$
B. $1: 2$
C. $1: 3$
D. $2: 3$

Answer: A

- View Text Solution

6. If $\triangle A B C \sim \triangle E D F$ and $\triangle A B C$ is not similar to $\triangle D E F$ then which of the following is not ture?
A. $B C . E F=A C . F D$
B. $A B . E F=A C . D E$
C. $B C . D E=A B . E F$
D. $B C . D E=A B . F D$

Answer: C

D Watch Video Solution

7. If in two $\triangle A B C$ and $\triangle P Q R, \frac{A B}{Q R}=\frac{B C}{P R}=\frac{C A}{P Q}$, then
A. $\triangle P Q E \sim \triangle C A B$
B. $\triangle P Q R \sim \triangle A B C$
C. $\triangle C B A \sim \triangle C B A \sim \triangle P Q R$
D. $\triangle B C A \sim \triangle P Q R$

Answer: A

8. In figure, two line segments $A C$ and $B D$ intersects each other at the point P such that $P A=6 \mathrm{~cm}, P B=3 \mathrm{~cm}, P C=$ $2.5 \mathrm{~cm}, P D=5 \mathrm{~cm}, \angle A P B=50^{\circ}$ and $\angle C D P=30^{\circ}$. Then, $\angle P B A$ is equal to

A. 50°
B. 30°
C. 60°
D. 100°

(D) Watch Video Solution

9. In $\triangle A B C$ and $\triangle D E F$, it is given that
$\angle B=\angle E \angle F=\angle C$ and $A B=-3 D E$, then the two triangles are
A. congruent but not similar
B. similar but not congruent
C. neither congruent nor similar
D. congruent as well as similar

Answer: B

10. In $\triangle D E F$ and $\triangle P Q R$, it is given that
$\angle D=\angle Q$ and $\angle R=\angle E$, then which of the following is not true?
A. $\frac{E F}{P R}=\frac{D E}{P Q}$
B. $\frac{D E}{P Q}=\frac{E F}{R P}$
C. $\frac{D E}{Q R}=\frac{D F}{P Q}$
D. $\frac{E F}{R P}=\frac{D E}{Q R}$

Answer: B

- Watch Video Solution

11. If $\triangle A B C \sim \triangle P Q R$ with $\frac{B C}{Q R}=\frac{1}{3}$, then $\frac{\operatorname{ar}(\triangle P R Q)}{\operatorname{ar}(\triangle B C A)}$ is equal to
A. 9
B. 3
C. $\frac{1}{3}$
D. $\frac{1}{9}$

Answer: A

- Watch Video Solution

12. In $\triangle A B C$ and $\triangle D E F$, it is given that $\frac{A B}{D E}=\frac{B C}{F D}$ then
A. $\angle B=\angle E$
B. $\angle A=\angle D$
C. $\angle B=\angle D$
D. $\angle A=\angle F$

D Watch Video Solution

13. If $\triangle A B C \sim \Delta Q R P, \frac{\operatorname{ar}(\Delta A B C)}{\operatorname{ar}(\Delta P Q R)}=\frac{9}{4}, \mathrm{AB}=18 \mathrm{~cm}$ and $\mathrm{BC}=$

15 cm , then PR is equal to
A. 10 cm
B. 12 cm
C. $\frac{20}{3} \mathrm{~cm}$
D. 8 cm

Answer: A

- Watch Video Solution

14. If S is a point on side PQ of a $\Delta P Q R$ such that $\mathrm{PS}=\mathrm{QS}=\mathrm{RS}$, then
A. $P R Q R=R S^{2}$
B. $Q S^{2}+R S^{2}=Q R^{2}$
C. $P R^{2}+Q R^{2}=P Q^{2}$
D. $P S^{2}+R S^{2}=P R^{2}$

Answer: C

- Watch Video Solution

Objective Type Qustions Fill In The Blanks

1. Let $A B C \sim \triangle D E F$ and their areas be $81 \mathrm{~cm}^{2}$ and $144 \mathrm{~cm}^{2}$. If $E F=24 \mathrm{~cm}$, then length of side $B C$ is Cm

D Watch Video Solution

2.

In
the
figure,
$M N\left|\mid B C\right.$ and $A M: M B=1: 3$, then $\frac{\operatorname{ar}(\triangle A M N)}{\operatorname{ar}(\triangle A B C)}=$

- Watch Video Solution

3. In $\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, A C=12 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$.

Then $\angle B$ is
4. Two triangles are similar if their corresponding sides are

- Watch Video Solution

5. A ladder 10 m long reaches a window 8 m above the ground.

Find the distance of the foot of the ladder from base of the wall.

- Watch Video Solution

6. In an equilateral triangle of side 2a, calculate the length of its altitude.

(D) Watch Video Solution

7. The perimeters of tow similar triangles $\triangle A B C$ and $\triangle P Q R$ are 35 cm and 45 cm respectively, then the ratio of the areas of the two triangles is \qquad .

Watch Video Solution
8. The length of an altitude in an equilateral triangle of side 'o' cm is \qquad

(D) Watch Video Solution

9. If areas of two similar triangles are equal, then these triangles are. \qquad
10. A diagonal of a parallelogram divides it into two triangles of equal area.

(D) Watch Video Solution

11. If S is a point on side PQ of a $\triangle P Q R$ such that $\mathrm{PS}=\mathrm{QS}=$ RS, then $P R^{2}+Q R^{2}=$

- Watch Video Solution

Very Short Questions

1. $A B C$ and $B D E$ are two equilateral triangles such that D is the mid-point of $B C$. The ratio of the areas of the triangles $A B C$ and $B D E$ is $2: 1$ (b) $1: 2$ (c) $4: 1$ (d) $1: 4$

- Watch Video Solution

2. It is given that $\Delta D E F \sim \Delta R P Q$. Is it true to say that
$\angle D=\angle R$ and $\angle F=\angle P$? Why?

(D) Watch Video Solution

3. In the given figure, $\triangle A B C$ is an isosceles triangle right angled at C with $A C=4 \mathrm{~cm}$. Find the length of $A B$.

4 cm

Watch Video Solution
4. In the given figure, $D E|\mid B C$. Find the length of side $A D$ given that $A E=1.8 \mathrm{~cm}, B D=7.2 \mathrm{~cm}$ and $C E=5.4 \mathrm{~cm}$.

- Watch Video Solution

5. Is the following statement true? Why? "Two quadrilaterals are similar, if their corresponding angles are equal".

- Watch Video Solution

6. In the figure, if $\angle A C B=\angle C D A, A C=6 \mathrm{~cm}$ and $\mathrm{AD}=3$ cm , then find the length of $A B$

D Watch Video Solution

7. The ratio of the corresponding altitudes of two similar triangles is $\frac{3}{5}$. Is it correct to say that ratio of their areas is $\frac{6}{5}$? Why?
8. In a rhombus $A B C D$, prove that $A C^{2}+B D^{2}=4 A B^{2}$

- Watch Video Solution

9. The area of two similar traingles are 25 sq cm and 121 sq cm .

Find the ration of their corresponding sides

D Watch Video Solution

10. In the given figure, if $\angle D=\angle C$, then it is true that $\triangle A D E \sim \triangle A C B ?$ Why?

- Watch Video Solution

Short Answer Sa I Type Questions

1. A and B are respectively the points on the sides $P Q$ and $P R$ of a $\triangle P Q R$ such that $\mathrm{PQ}=12.5 \mathrm{~cm}, \mathrm{PA}=5 \mathrm{~cm}, \mathrm{BR}=6 \mathrm{~cm}$ and PB $=4 \mathrm{~cm}$. Is $A B \| Q R$? Give reason for your answer.

- Watch Video Solution

2. If $\Delta A B C \sim \Delta D E F$ and their areas be, respectively, $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=15.4 \mathrm{~cm}$. find BC .

(D) Watch Video Solution

3. In the adjoining figure, $D E$ is parallel to $B C$ and $A D=1 \mathrm{~cm}, B D=2 \mathrm{~cm}$. What is the ratio of the area of $A B C$ to the area of $A D E$?
4. Is the triangle with sides $25 \mathrm{~cm}, 5 \mathrm{~cm}$ and 24 cm a right triangle? Give reason for your answer.

(D) Watch Video Solution

5. The perimeters of two similar triangles are 30 cm and 20 cm respectively. If one side of the first triangle is 12 cm , determine the corresponding side of the second triangle.

- Watch Video Solution

6. $P Q R$ is a triangle right angled at P and M is a point on $Q R$ such that $P M \perp Q R$. Show that $P M^{2}=Q M \dot{M} R$.
7. In figure, $B D$ an $C E$ interesct each other at point P. is `triangle PBC - triangle PDE? Why?

- Watch Video Solution

8. In and $\triangle P Q R$ a $\quad \triangle M S T$,
$\angle P=55^{\circ}, \angle Q=25^{\circ}, \angle M=100^{\circ}$ and $\angle S=25^{\circ}$.
$\Delta Q P R \sim \Delta T S M ?$ Why ?

- Watch Video Solution

9. In figure $A B C$ and DBC are two triangles on the same base

BC . If AD intersects BC at O , show that $\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(D B C)}=\frac{A O}{D O}$.

(D) Watch Video Solution

10. See the given figure. In $\triangle A B C, \quad \operatorname{seg} A D \perp \operatorname{seg} B C$. Prove that: $A B^{2}+C D^{2}=B D^{2}+A C^{2}$

D Watch Video Solution

11. Two sides and the perimeter of one triangle are respectively three times the corresponding sides and the perimeter of the other triangle. Are the two triangles similar?

Why?
12. If in two right triangles, one of the acute angles of one triangle is equal to an acute angle of the other triangle. Can you say that two triangles will be similar? Why?

- Watch Video Solution

13. D is a point on side QR of $\triangle P Q R$ such that $\mathrm{PD} \perp \mathrm{QR}$. Will it be correct to say that $\Delta P Q D \sim \Delta R P D$? Why?

(D) Watch Video Solution

14. In Figure $D E A C$ and $D C a p$. Prove that $\frac{B E}{E C}=\frac{B C}{C P}$

(Watch Video Solution

15. Is it true to say that, if in two triangles, an angle of one triangle is equal to an angle of another triangle and two sides of one triangle are proportional to the two sides of the other triangle, then the triangles are similar? Give reason for your answer.

- Watch Video Solution

16. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

D Watch Video Solution

17. $P E=4 m, Q E=4.5 m, P F=8 m$ and $R F=9 m$.

Is $E F|\mid Q R$? Justify your answer.

- Watch Video Solution

18. Given that $\mathrm{PQ}=16 \mathrm{~m}, \mathrm{~KB}=16 \mathrm{~m}$,
$\mathrm{PH}=35 \mathrm{~m}$ and $\mathrm{QK}=20 \mathrm{~m}$, Find:

Find $B Q$.

- Watch Video Solution

19. Given that $P Q=16 \mathrm{~m}, \mathrm{~KB}=16 \mathrm{~m}$,
$\mathrm{PH}=35 \mathrm{~m}$ and $\mathrm{QK}=20 \mathrm{~m}$, Find HK

(D) Watch Video Solution

20.

$\triangle A B C-\triangle D E F$
such
that
$D E=3 \mathrm{~cm}, E F=2 \mathrm{~cm}, D F=2.5 \mathrm{~cm}$ and $B C=4 \mathrm{~cm}$.
Find perimeter of $\triangle A B C$.
21. P and Q are the points on the sides DE and DF of a triangle DEF such that $D P=5 \mathrm{~cm}, \mathrm{DE}=15 \mathrm{~cm}, \mathrm{DQ}=6 \mathrm{~cm}$ and $\mathrm{QF}=18 \mathrm{~cm}$. Is PQ||EF? Give reasons for your answer

D Watch Video Solution

22. In the given figure, OC.OD = OA.OB

Show that: $\angle A=\angle D$ and $\angle C=\angle B$.

23. Given that $\triangle P Q R$ is similar to $\triangle B A R$, find the value of x :

- Watch Video Solution

24. $\triangle P Q R$ is similar to $\triangle B A R$, find:
the value of y :

- Watch Video Solution

25. In the given figure, find the value of x in terms of a, b and c.

- Watch Video Solution

26. R and S are points on the sides DE and EF respectively fo a
$\triangle D E F$ such that $\mathrm{ER}=5 \mathrm{~cm}$,
$R D=2.5 \mathrm{~cm}, S E=1.5 \mathrm{~cm}$ and $F S=3.5 \mathrm{~cm}$.
Find

Whether $R S|\mid D F$ or not.
27. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

D Watch Video Solution

28. The areas of two similar triangles are $36 \mathrm{~cm}^{2}$ and $100 \mathrm{~cm}^{2}$.

If the length of a side of the smaller triangle in 3 cm , find the length of the corresponding side of the larger triangle.

- Watch Video Solution

29. If $\Delta A B C \sim \Delta D E F, \mathrm{AB}=4 \mathrm{~cm}, \mathrm{DE}=6, \mathrm{EF}=9 \mathrm{~cm}$ and $\mathrm{FD}=12 \mathrm{~cm}$, then find the perimeter of $\Delta A B C$.
30. In Fig. 7 .27, if $\triangle A B C \sim \triangle D E F$ and their sides are oflengths (in cm) as marked along them, then find the lengths of the sides of each triangle.

- Watch Video Solution

Short Answer Sa li Type Questions

1. In the given figure, figure, if
$\angle 1=\angle 2$ and $\triangle N S Q \cong \triangle M T R$, then prove that
$\triangle P T S \sim \triangle P R Q$.

- Watch Video Solution

2. Three $30^{\circ}-60^{\circ}-90^{\circ}$ set squares are set together as shown in th diagram.

Find the value of P

- Watch Video Solution

3. Three $30^{\circ}-60^{\circ}-90^{\circ}$ set squares are set together as shown in th diagram.

Find the value of length $A B$

(D) Watch Video Solution

4. In the figure, $\angle D=\angle E$ and $\frac{A D}{D B}=\frac{A E}{E C}$, prove that $B A C$ is an isosceles triangle.

- Watch Video Solution

5. In a triangle $A B C, B=90^{\circ}$ and D is the mid-point of $B C$ then prove that $A C^{2}=A D^{2}+3 C D^{2}$

- Watch Video Solution

6. Diagonals of a trapezium PQRS intersect each other at the point $0, P Q| | R S$ and $P Q=3$ RS. Find the ratio of the areas of $\triangle P O Q$ and $\triangle R O S$.

- Watch Video Solution

7. In figure, if $A B \| D C$ and AC, PQ intersect each other at the point O. Prove that OA.CQ=OC.AP.

8. $B L$ and $C M$ are medians of a triangle $A B C$ right angled at A. Prove that $4\left(B L^{2}+C M^{2}\right)=5 B C^{2}$

- Watch Video Solution

9. In the given figure, if $D E|\mid B C$, then find the ratio of area of $(\triangle A D E)$ and $(\square D E C B)$.

- Watch Video Solution

10. $A B C D$ is a trapezium in which $A B \| D C$ and P, Q are points on
$A D$ and $B C$ respectively, such that $P Q|\mid D C$, if $P D=18 \mathrm{~cm}, B Q=35$ cm and $\mathrm{QC=}=15 \mathrm{~cm}$. Find $A D$.

- Watch Video Solution

11. Two triangles $B A C a n d B D C$, right angled at AandD respectively, are drawn on the same base $B C$ and on the same side of $B C$. If $A C$ and $D B$ intersect at P, prove that $A P x P C=D P x P B$.

D Watch Video Solution

12. Diagonals of a trapezium PQRS intersect each other at the point $0, P Q| | R S$ and $P Q=3$ RS. Find the ratio of the areas of $\triangle P O Q$ and $\triangle R O S$.
13. In given figure, if $\angle A C B=\angle C D A, A C=8 \mathrm{~cm}$ and $A D=3 \mathrm{~cm}, \quad$ then \quad find $\quad \mathrm{BD}$.

- Watch Video Solution

14. A 15 high tower casts a sshadow 24 long at a certain time at the same time, a telephone pole casts a shadow 16 long.

Find the height of the telephone pole.

- Watch Video Solution

15. P and Q are points on the sides $C A$ and $C B$ respectively of $A B C$, right angled at C. Prove that $A Q^{2}+B P^{2}=A B^{2}+P Q^{2}$.

- Watch Video Solution

16. If the areas of two similar triangles are equal, prove that they are congruent.

- Watch Video Solution

17.

Find the length of $P Q$ and $P R$,

- Watch Video Solution

If six trees are to be planted along each tangential line
segments at equal distances, find the distance between any two consecutive trees.

- Watch Video Solution

19. In $\triangle A B C, D, E, F$ are respectively the mid points of the sides AB, BC and AC . Find ratio of the area of $\triangle D E F$ and area of $\triangle A B C$.

- Watch Video Solution

20. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.
21. A flag pole 18 m high casts a shadow 9.6 m long. Find the distance of the top of the pole from the far end of the shadow.

- Watch Video Solution

Long Answer Type Questions

1. 'If a line is drawn to one side of a triangle to intersect the other two sides in distinct points, prove that the other two sides are divided in the same ratio.

(D) Watch Video Solution

2. In the given figures, if PQRS is a parallelogram and $A B \| P S$, then prove that $O C \| S R$.

(D) Watch Video Solution

3. If $\angle B$ of $\operatorname{Delat} A B C$ is an acute angle and $A D \perp B C ;$ provet $^{\wedge}(\mathrm{AC})^{\wedge} 2=(\mathrm{AB})^{\wedge} 2+(\mathrm{BC})^{\wedge} 2-2 \mathrm{BC} . \mathrm{CD}^{\wedge}$

- Watch Video Solution

4. Prove that is a right angle triangle, the square of the hypotenuse is equal the sum of the squares of other two sides.
5. For going to a city B from city A there is a route via city C such that $A C \perp C B, \mathrm{AC}=2 \mathrm{x} \mathrm{km}$ and $\mathrm{CB}=2(\mathrm{x}+7) \mathrm{km}$. It is proposed to construct a 26 km highway which directly connects the two cities A and B. Find how much distance will be saved in reaching city B from city A after the construction of the highway.

- Watch Video Solution

6. li $\triangle P Q R, \mathrm{PD} \perp \mathrm{QR}$ such that D lies on QR , if $P Q=a, P R=b, Q D=c$ and $D R=d$, then prove that $(a+b)(a-b)=(c+d)(c-$ d).
7. In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $B D=\frac{1}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$.

D Watch Video Solution

8. In given figure, $\| \mid m$ and liner segments $A B, C D$ and $E F$ are concurrent at point P. Prove that $\frac{A E}{B F}=\frac{A C}{B D}=\frac{C E}{F D}$

(Watch Video Solution

9. 14 In Fig. 6.21, PA, QB Rc and SD are all perpendiculars to a line $I, A B 6 \mathrm{~cm}, \mathrm{Bc} 9 \mathrm{~cm}, \mathrm{CD} \mathrm{g} \mathrm{cm}$ and SP 36 om Find PO, QR an RS. Fig. 6.21

D Watch Video Solution

10. Prove that the area of the semicircle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the semicircles drawn on the other two sides of the triangle
