©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - OSWAL PUBLICATION

CONSTRUCTIONS

Example

1. $P Q$ is a line segment of length 6.4 cm .

Geometrically obtain point R on $P Q$ such that
$\frac{Q R}{P Q}=\frac{5}{8}$. In which ratio the line segment PQ is divided?

- Watch Video Solution

2. Construct a pair of tangents to a circle of radius 3 cm which are inclined to each other at an angle of 60°

- Watch Video Solution

Self Assesment 1 Objective Type Questions A Multiple Choice Questions

1. To find a point P on the line segment $A B=6$ cm , such that $\frac{A P}{A B}=\frac{2}{5}$, in which ratio the line segment $A B$ is divided.
A. $2: 5$
B. 2:3
C. 5:2
D. 3:5

Answer:

2. To divide a line segment $A B$ in the ratio 4:7,
a ray AX is drawn first such that $\angle B A X$ is an
acute angle and then points $A_{1}, A_{2}, A_{3}, \ldots$.
are located at equal distance on the ray $A X$ and the point B is joined to
A. A_{12}
B. A_{11}
C. A_{10}
D. A_{9}

Answer:

- Watch Video Solution

Self Assesment 1 Fill In The Blanks

1. A line segment $A B$ is divided at point P such
that $P B: A B=3: 7$, then the ratio of $A P: P B=$

2. From the following figure, point P divides $A B$

 internally in the ratio \qquad

D Watch Video Solution

Self Assesment 1 Very Short Answer Type Questions

1. What is the ratio of division of the line segment $A B$ by the point P from A ?

- Watch Video Solution

Self Assesment 1 li Short Answer Type Questions

1. Draw a line segment of length 5 cm and divide it in the ratio 3:7.

D Watch Video Solution

2. Draw a line segment of length 7 cm . Find a point P on it which divides it in the ratio 3:5.

- Watch Video Solution

1. Draw a line segment of length 8 cm and divides it in the ratio $2: 3$
(Watch Video Solution

Self Assesment 1 Iv Long Answer Type Questions

1. Draw a line segment of length 7.6 cm and divide it in the ratio 5:8. Measure the two parts.
2. Two line-segments $A B$ and $A C$ include an angle of 60°, where $A B=5 \mathrm{~cm}$ and $A C=7 \mathrm{~cm}$.

Locate points P an Q on $A B$ and $A c$ respectively
such that $\mathrm{AP}=\frac{3}{4} A B$ and $A Q=\frac{1}{4} A C$. Join P and Q and measure the length $P Q$.

(Watch Video Solution

Self Assesment 2 Objective Type Questions Multiple Choice Questions

1. To draw a pair of tangents to a circle which

 are inclined to each other at an angle of 50°,it is required to draw tangents at the end points of there two radii of the circle, the angle between two radii is
A. 105°
B. 130°
C. 75°
D. 125°

Answer: B
2. If we draw a tangents to a circle at a given point on it, when the centre of the circle is known, then the angle between the tangent and radius of the circle is
A. 60°
B. 180°
C. 90°
D. 120°

Answer:

- Watch Video Solution

Self Assesment 2 Fill In The Blanks

1. The lengths of tangents drawn from an external point to a circle are \qquad .

- Watch Video Solution

2. The number of tangent/tangents drawn from a point outside to a circle is/are

- Watch Video Solution

3. There is only _____ tangent drawn at a point on the circle.

(D) Watch Video Solution

Self Assesment 2 Very Short Answer Type
Questions

1. What is the angle between the two tangents
drawn from an external point to a circle and
the angle subtended by the line-segment joining the points of the contact at the centre.

- Watch Video Solution

2. How many common tangents can be drawn when two circles touch each other internally.
3. Find the length of tangent drawn to a circle of radius 6 cm , from a point at a distance of 10 cm from the centre.

- Watch Video Solution

2. Let $A B C$ be a right triangle in which $A B=6$
$\mathrm{cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\angle B=90^{\circ} . \mathrm{BD}$ is the $=$ perpendicular from B on $A C$. The circle
through B, C, D is drawn. Construct the tangents from A to this circle.

D Watch Video Solution

3. Draw a line segment $A B$ of length 7 cm .

Taking A as centre, draw a circle of radius 3 cm and taking B as centre, draw another circle of radius 2 cm . Construct tangents to each circle from the centre of the circle.

D Watch Video Solution

1. Draw a circle of radius 4 cm . From the point

7 cm away from its centre, construct the pair of tangents to the circle.

- Watch Video Solution

Self Assesment 2 Iv Long Answer Type Questions

1. Construct a tangent to a circle of radius 4
cm from a point on the concentric circle of
radius 6 cm and measure its length. Also verify the measurement by actual calculation

D Watch Video Solution

2. Draw a circle of radius 3 cm . Take two points
P and Q on one of its extended diameter each
at a distance of 7 cm from its centre. Draw
tangents to the circle from these two points P and Q .

D Watch Video Solution

3. Draw two concentric circles of radii 2 cm and

5 cm . Take a point P on the outer circle and construct a pair of tangents PA and PB to the smaller circle. Measure PA.

D Watch Video Solution

4. Draw a circle of radius 4 cm . Draw two
tangents to the circle inclined at an angle of 60° to each other.
5. Draw a line segment $A B$ of length 8 cm .

Taking A as centre, draw a circle of radius 4 cm
and taking B as centre, draw another circle of radius 3 cm . Construct tangents to each circle from the centre of the other circle.

- Watch Video Solution

Self Assesment 2 Care Study Based Questions

$A B$ is a line segment of lengh 10 cm which is internally divided in the ratio $3: 2$.

Find the length of AP
A. 6 cm
B. 4 cm
C. 5 cm
D. 2 cm

Answer:

D Watch Video Solution

$A B$ is a line segment of lengh 10 cm which is
internally divided in the ratio $3: 2$.

Find the length of BP
A. 5 cm
B. 2 cm
C. 6 cm
D. 4 cm

Answer:
(Watch Video Solution

$A B$ is a line segment of lengh 10 cm which is
internally divided in the ratio $3: 2$.
$\angle B A X$ is a angle.
A. right
B. acute
C. straight

D. obtuse

Answer:

D Watch Video Solution

4.

$A B$ is a line segment of lengh 10 cm which is
internally divided in the ratio $3: 2$.

Two lines $P A_{3}$ and $B A_{5}$ areto each other.
A. equal
B. Perpendicular
C. Parallel

D. None of these

Answer:

D Watch Video Solution

$A B$ is a line segment of lengh 10 cm which is internally divided in the ratio $3: 2$.
$\angle B A_{5} A$ isto $\angle A A_{3} P$.
A. equal
B. unequal
C. five times
D. two times

Answer:

- Watch Video Solution

6.

In the given figure, there are two concentrci circle of radius 4 cm and $6 \mathrm{~cm} . C$ is the centre of the circle whose diameter is $O B . B P$ and $B Q$
are the two tangents drawn from the larger circle of radius 6 cm to the smaller circle of radius 4 cm . Find the length of tangent BQ
A. $3 \sqrt{5} \mathrm{~cm}$
B. $4 \sqrt{5} \mathrm{~cm}$
C. $2 \sqrt{5} \mathrm{~cm}$
D. $5 \sqrt{5} \mathrm{~cm}$

Answer:

- Watch Video Solution

7.

$\angle P B Q$ and $\angle P O Q$ are angles.

A. Complementary

B. Supplementary
C. acute
D. right

Answer:

- Watch Video Solution

If $\angle P O Q$ is 70°, then find the value of $\angle P B Q$.
A. 100°
B. 90°
C. 40°
D. 110°

Answer:

- Watch Video Solution

In the given figure, there are two concentrci circle of radius 4 cm and $6 \mathrm{~cm} . \mathrm{C}$ is the centre of the circle whose diameter is OB . BP and BQ are the two tangents drawn from the larger circle of radius 6 cm to the smaller circle of radius 4 cm . If $\angle P O Q$ is 90°, then find the length of chord PQ .
A. 5 cm
B. $4 \sqrt{2} \mathrm{~cm}$
C. $2 \sqrt{2} \mathrm{~cm}$
D. $3 \sqrt{2} \mathrm{~cm}$

Answer:

- Watch Video Solution

Ncert Corner Exercise li 1

1. Draw a line segment of length 7.6 cm and divide it in the ratio 5:8. Measure the two parts.

D Watch Video Solution

2. Construct a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and

6 cm and then a triangle similar to it whose
sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.
3. Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm and then another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.

- Watch Video Solution

4. Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose sides are $1 \frac{1}{2}$ times the corresponding sides of the isosceles triangle.

- Watch Video Solution

5. Draw a triangle $A B C$ with side $B C=6 \mathrm{~cm}, A B=$

5 cm and $\angle A B C=60^{\circ}$. Then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the triangle $A B C$.

D Watch Video Solution

6. Draw a triangle $A B C$ with side $B C=7 \mathrm{~cm}$,
$\angle B=45^{\circ}, \angle A=105^{\circ}$. Then, construct a
triangle whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle \mathrm{ABC}$.

- Watch Video Solution

7. Draw a right triangle in which the sides
(other than hypotenuse) are of lengths 4 cm
and 3 cm . Then construct another triangle 5
whose sides are $\frac{5}{3}$ times the corresponding sides of the given triangle.

- Watch Video Solution

Ncert Corner Exercise li 2

1. Draw a circle of radius 6 cm . From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.

- Watch Video Solution

2. Construct a tangent to a circle of radius 4
cm from a point on the concentric circle of
radius 6 cm and measure its length. Also verify the measurement by actual calculation

D Watch Video Solution

3. Draw a circle of radius 3 cm . Take two points
P and Q on one of its extended diameter each
at a distance of 7 cm from its centre. Draw
tangents to the circle from these two points P and Q .

D Watch Video Solution

4. Draw a pair of tangent to a circle of radius 5 cm which are inclined to each other at an angle of 60°. Give steps of construction.

D Watch Video Solution

5. Draw a line segment $A B$ of length 8 cm .

Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm . Construct tangents to each circle from the centre of the other circle.
6. Let $A B C$ be a right triangle in which $A B=6$ $\mathrm{cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\angle B=90^{\circ} . \mathrm{BD}$ is the $=$ perpendicular from B on $A C$. The circle through B, C, D is drawn. Construct the tangents from A to this circle.

- Watch Video Solution

7. Draw a circle with the help of a bangle. Take
a point outside the circle. Construct the pair
of tangents from this point to the circle.

- Watch Video Solution

Ncert Corner Exercise 101

1. To divide a line segment $A B$ in the ratio 5:7,
first a ray AX is drawn, so that $\angle B A X$ is an acute angle and then at equal distances point are marked on the ray $A X$ such that the minimum number of these points is
A. 8
B. 10
C. 11
D. 12

Answer: D

D Watch Video Solution

2. To divide a line segment $A B$ in the ratio 4:7,
a ray AX is drawn first such that $\angle B A X$ is an acute angle and then points $A_{1}, A_{2}, A_{3}, \ldots$.
are located at equal distance on the ray $A X$ and the point B is joined to
A. A_{12}
B. A_{11}
C. A_{10}
D. A_{9}

Answer: B
(Watch Video Solution
3. To divide a line segment $A B$ in the ratio 5:6, draw a ray AX such that $\angle B A X$ is an acute angle, the draw a ray BY parallel to AX and the points
$A_{1}, A_{2}, A_{3}, \ldots$. and $B_{1}, B_{2}, B_{3}, \ldots$ are located to equal distances on ray AX and BY , respectively. Then, the points joined are
A. A_{5} and B_{6}
B. A_{6} and B_{5}
C. A_{4} and B_{5}

D. A_{5} and B_{4}

Answer: A

D Watch Video Solution

4. To construct a triangle similar to a given $\Delta A B C$ with its sides $\frac{3}{7}$ of the corresponding sides of $\triangle A B C$, first draw a ray BX such that
$\angle C B X$ is an acute angle and X lies on the opposite side of A with respect to $B C$. Then,
locate points $B_{1}, B_{2}, B_{3}, \ldots$. on BX at equal distances and next step is to join
A. B_{10} to C
B. B_{3} to C
C. B_{7} to C
D. B_{4} to C

Answer: C

- Watch Video Solution

5. To construct a triangle similar to a given $\triangle A B C$ with its sides $\frac{8}{5}$ of the corresponding sides of $\triangle A B C$ draw a ray BX such that
$\angle C B X$ is an acute angle and x is on the opposite side of A with respect of $B C$. The minimum number of points to be located at equal distances on the ray $B X$ is
A. 5
B. 8
C. 13
D. 3

Answer: B

D Watch Video Solution

6. To draw a pair of tangents to a circle which are inclined to each other at an angle of 60°,
it is required to draw tangents at end points of those two radii of the circle, the angle between them should be

$$
\text { A. } 135^{\circ}
$$

B. 90°
C. 60°
D. 120°

Answer: D

D Watch Video Solution

Ncert Corner Exercise 102 True Or False

1. By geometrical construction, it is possible to
divide a line segment in the ratio $\sqrt{3}: \frac{1}{\sqrt{3}}$.

- Watch Video Solution

2. To constuct a triangle similar to a given
$\triangle A B C$ with its sides $\frac{7}{3}$ of the corresponding side of $\triangle A B C$, draw a ray BX making acute angle with $B C$ and X lies on the opposite side of A with respect of $B C$. The points
$B_{1}, B_{2}, \ldots ., B_{7}$ are located at equal distances on BX, B_{3} is joined to C and then a line segment $B_{6} C^{\prime}$ is drawn parallel to $B_{3} C$, where C^{\prime} lines on $B C$ produced. Finally line segment $\mathrm{A}^{\prime} \mathrm{C}^{\prime}$ is drawn parallel to AC .
3. A pair of tangents can be constructed from a point P to a circle of radius 3.5 cm situated at a distance of 3 cm from the centre.

- Watch Video Solution

4. A pair of tangents can be constructed to a circle inclined at an angle of 170°

Ncert Corner Exercise 103

1. Draw a line segment of length 7 cm . Find a point P on it which divides it in the ratio 3:5.

- Watch Video Solution

2. Draw a right $\triangle A B C$ in which $\mathrm{BC}=12 \mathrm{~cm}$,
$\mathrm{AB}=5 \mathrm{~cm}$, and $\angle B=90^{\circ}$. Construct a triangle
similar to it and of scale factor $\frac{2}{3}$. Is the new triangle also a right triangle ?
3. Draw a $\triangle A B C$ in which $\mathrm{BC}=6 \mathrm{~cm}, \mathrm{CA}=5 \mathrm{~cm}$ and $A B=4 \mathrm{~cm}$. Construct a triangle similar to
it and of scale factor $\frac{5}{3}$.

- Watch Video Solution

4. Construct a tangent to a circle of radius

4 cm from a point which is at a distance of 6 cm from its centre.

Watch Video Solution

Ncert Corner Exercise 104

1. Draw a parallelogram $A B C D$ in which $B C=5$
$\mathrm{cm}, \mathrm{AB}=3 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$. Divide it
into triangles $B C D$ and $A B D$, by diagonal $B D$.
Construct the triangle $\mathrm{BD}^{\prime} \mathrm{C}^{\prime}$ similar to $\triangle B D C$
with scale factor $\frac{4}{3}$. Draw the line segment $D^{\prime} A^{\prime}$ parallel to DA, where A^{\prime} lies on extended side $B A$ Is $A^{\prime} B C^{\prime} D^{\prime}$ a parallelogram ?
2. Draw two concentric circle of radii 3 cm and

5 cm . Taking a point on outer circle construct the pair of tangents to the other. Measure the length of a tangent and verify it by actual calculation.

- Watch Video Solution

3. Draw an isosceles triangle $A B C$ in which $A B=$ $A C=6 \mathrm{~cm}$ and $B C=5 \mathrm{~cm}$. Construct a triangle
$P Q R$ similar to $\triangle A B C$ in which $P Q=8 \mathrm{~cm}$. Also
justify the construction

- Watch Video Solution

4. Draw a $\triangle A B C$ in which $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$
and $\angle A B C=60^{\circ}$. Construct a triangle similar to $\triangle A B C$ with scale factor $\frac{5}{7}$. Justify the construction.

D Watch Video Solution

5. Draw a circle of radius 4 cm . Construct a pair of tangents to it, the angle between which is 60°. Also justify the construction. Measure the distance between the centre of the circle and the point of intersection of tangents.

- Watch Video Solution

6. Draw a $\triangle A B C$ in which $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=6$ cm , and $\mathrm{AC}=9 \mathrm{~cm}$. Construct a triangle similar to $\triangle A B C$ with scale factor $\frac{3}{2}$. Justify the
construction. Are the two triangle congruence
? Note that, all the three angles and two sides
of the two triangles are equal.

D Watch Video Solution

Board Corner Short Answer Type Questions

1. Draw a line segment of length 8 cm and divide it internally in the ratio 4:5.
2. Draw a line segment of length 7 cm and divide it internally in the ratio 2:3.

D Watch Video Solution

Board Corner Long Answer Type Questions

1. Construct a $\Delta A B C$ in which $\mathrm{CA}=6 \mathrm{~cm}, \mathrm{AB}=$

5 cm and $\angle B A C=45^{\circ}$. Then construct a
triangle whose sides are $\frac{3}{5}$ of the corresponding sides of $\triangle A B C$.
2. Draw a triangle $A B C$ with side $B C=7 \mathrm{~cm}$,
$\angle B=45^{\circ}, \angle A=105^{\circ}$. Then, construct a triangle whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle A B C$.

- Watch Video Solution

3. Construct an equilateral $\triangle A B C$ with each side 5 cm . Then construct another triangle
whose sides are $\frac{2}{3}$ times the corresponding sides of $\triangle A B C$.

D Watch Video Solution

4. Draw two concentric circles of radii 2 cm and 5 cm . Take a point P on the outer circle and construct a pair of tangents PA and PB to the smaller circle. Measure PA.
5. Draw a triangle $A B C$ with side $B C=6 \mathrm{~cm}, A B=$

5 cm and $\angle A B C=60^{\circ}$. Then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the triangle $A B C$.

D Watch Video Solution

6. Construct an isosceles triangle whose base
is 8 cm and altitude 4 cm and then another triangle whose sides are $1 \frac{1}{2}$ times the corresponding sides of the isosceles triangle.
7. Draw a right triangle in which the sides
(other than hypotenuse) are of lengths 4 cm and 3 cm . Then construct another triangle whose sides are $\frac{5}{3}$ times the corresponding sides of the given triangle.

D Watch Video Solution

Stand Alone Mcqs

1. To divide a line segment $A B$ in the ratio 5:7,
first a ray AX is drawn, so that $\angle B A X$ is an acute angle and then at equal distances point are marked on the ray $A X$ such that the minimum number of these points is
A. 8
B. 10
C. 11
D. 12
2. To divide a line segment $A B$ in the ratio 4:7, a ray AX is drawn first such that $\angle B A X$ is an acute angle and then points $A_{1}, A_{2}, A_{3}, \ldots$. are located at equal distance on the ray $A X$ and the point B is joined to
A. A_{12}
B. A_{11}
C. A_{10}
D. A_{9}

Answer: B

D Watch Video Solution

3. To divide a line segment $A B$ in the ratio 5:6, draw a ray AX such that $\angle B A X$ is an acute angle, the draw a ray $B Y$ parallel to $A X$ and the points
$A_{1}, A_{2}, A_{3}, \ldots$ and $B_{1}, B_{2}, B_{3}, \ldots$ are
located to equal distances on ray $A X$ and $B Y$, respectively. Then, the points joined are
A. A_{5} and B_{6}
B. A_{6} and B_{5}
C. A_{4} and B_{5}
D. A_{5} and B_{4}

Answer: A
(Watch Video Solution
4. To draw a pair of tangents to a circle which are inclined to each other at an angle of 60°,
it is required to draw tangents at end points
of those two radii of the circle, the angle between them should be
A. 135°
B. 90°
C. 60°
D. 120°

Assertion And Peason Based Mcqs

1. A school conducted Annual Sports Day on a triangular playground . On the ground , parallel lines have been drawn with chalk powder at a distance of 1 m .7 flower pots have been placed at a disatnce of 1 m from each other along DM as shown in the figure .

$P D_{3}$ is parallel to :
A. PD
B. PE
C. $E D_{7}$
D. None of these
2. A school conducted Annual Sports Day on a triangular playground . On the ground , parallel lines have been drawn with chalk powder at a distance of 1 m .7 flower pots have been placed at a disatnce of 1 m from each other along DM as shown in the figure .

If $\angle P D_{3} D=82^{\circ}$, then the measure of
$\angle E D_{7} D$ is :
A. 98°
B. 82°
C. 90°
D. 45°

Answer: B

- Watch Video Solution

3. A school conducted Annual Sports Day on a triangular playground . On the ground , parallel lines have been drawn with chalk powder at a distance of 1 m .7 flower pots have been placed at a disatnce of 1 m from each other along DM as shown in the figure .

The ratio in which P divides $D E$, is
A. $3: 4$
B. 7:3
C. 3:7
D. 2:5

Answer: A

D Watch Video Solution

4. A school conducted Annual Sports Day on a triangular playground . On the ground, parallel lines have been drawn with chalk
powder at a distance of 1 m .7 flower pots have been placed at a disatnce of 1 m from each other along DM as shown in the figure .

The ratio of $D E$ to $D P$ will be :
A. $2: 5$
B. 3: 4
C. $3: 7$

D. $7: 3$

Answer: D

D Watch Video Solution

5. A school conducted Annual Sports Day on a triangular playground . On the ground, parallel lines have been drawn with chalk powder at a distance of 1 m .7 flower pots have been placed at a disatnce of 1 m from each other along DM as shown in the figure .

The total distance used for putting 7 flower pots is :
A. 6 m
B. 7 m
C. 5 m
D. 8 m

Multiple Choice Questions

1. Which of the following angle can be constructed with the help of a ruler and a pair of compasses?
A. 35°
B. 37.5°
C. 40°

D. 50°

Answer: B

D View Text Solution

2. Which of the following can be the length of

$B C$ required to construct the triangle $A B C$ such
that $\mathrm{AC}=7.4 \mathrm{~cm}$ and $A B=5 \mathrm{~cm}$?
A. 3 cm
B. 1 cm
C. 2.1 cm
D. 13.2 cm

Answer: A

D View Text Solution

3. The construction of a triangle $\triangle A B C$ in which $B C=6 \mathrm{~cm}, \angle A=50^{\circ}$ is not possible, when difference of $B C$ and $A C$ is equal to
A. 2.5 cm
B. 4 cm
C. 5.6 cm
D. 6.4 cm

Answer: D

D View Text Solution

4. The construction of the triangle $A B C$ is possible if it is given that $B C=4 \mathrm{~cm}$, $\angle C=60^{\circ}$ and the difference of $A B$ and $A C$ is
A. 3 cm
B. 4.5 cm
C. 7 cm
D. 5 cm

Answer: A

D View Text Solution

5. Which of the following set of lengths can be

the sides of a triangle ?
A. $5.5 \mathrm{~cm}, 6.5 \mathrm{~cm}, 8.9 \mathrm{~cm}$
B. $1.6 \mathrm{~cm}, 5.3 \mathrm{~cm}, 3.7 \mathrm{~cm}$
C. $2 \mathrm{~cm}, 4 \mathrm{~cm}, 1.9 \mathrm{~cm}$
D. All of the above

Answer: A

D View Text Solution
6. Which of the following sets of angles can be
the angles of a triangle ?
A. $50^{\circ}, 30^{\circ}, 100^{\circ}$
B. $30^{\circ}, 60^{\circ}, 80^{\circ}$
C. Both (a) and (b)
D. None of these

Answer: A

D View Text Solution
7. If the construction of a $\triangle A B C$ in which
$\mathrm{AB}=6 \mathrm{~cm}, \angle A=70^{\circ}$ and $\angle B=40^{\circ}$ is possible
then find the measure of $\angle C$.
A. 30°
B. 40°
C. 60°
D. 70°

Answer: D

D View Text Solution

8. With the help of a ruler and compasses, which of the following angle is not possible to be constructed?
A. 30°
B. 45°
C. 60°
D. 70°

Answer: D

D View Text Solution

9. With the help of a ruler and compasses, which of the following angle is not possible to be constructed?
A. 22.5°
B. 60°
C. 140°
D. 180°

Answer: C

D View Text Solution

10. If a, b and c are the lengths of the three sides of a triangle, then which of the following
is true?
A. $A+B<C$
B. $A-B<C$
C. Both are true
D. None of these

Answer: B

D View Text Solution
11. Identify the incorrect statement
A. All circles are similar
B. All squares are similar
C. All equilateral triangles are similar
D. All similar figures are congruent

Answer: D

D View Text Solution

12. To draw a pair of tangents to a circle which are inclined to each other at an angle of 35°,
it is required to draw tangents at the end
points of those two radii of the circle, the angle between which is
A. 180°
B. 145°
C. 150°
D. 140°

Answer: B

D View Text Solution
13. To divide a line segment $A B$ in the ratio 3 :

4, first, a ray AX is drawn so that $\angle B A X$ is an acute angle and then at equal distances points are marked on the ray $A X$ such that the minimum number of these points is
A. 5
B. 7
C. 9
D. 11
14. To divide a line segment $A B$ of length
7.6 cm in the ratio $5: 8$, a ray AX is drawn first
such that $\angle B A X$ froms an acute angle and
then points A_{1}, A_{2}, A_{3},........are located at equal distances on the ray AX and the point B is joined to
A. A_{5}
B. A_{6}
C. A_{10}

D. A_{13}

Answer: D

D View Text Solution

15. To construct a pair of tangents to a circle at an angle of 60° to each other, it is needed to draw tangents at end points to those two radii of the circle, the angle between them should be :
A. 100°
B. 90°
C. 180°
D. 120°

Answer: D

D View Text Solution

16. To divide a line segment $P Q$ in the ratio m :
n , where m and n are two positive integers,
draw a ray PX so that $\angle P Q X$ is an acute angle
and then marks points on ray $P X$ at equal
distances such that the minimum number of
these points is
A. $m+n$
B. $m-n$
C. $m+n-1$
D. Greater of m and n

Answer: A

D View Text Solution
17. To draw a pair of tangents to a circle which are inclined to each other at an angle of 45°,
it is required to draw tangents at the endpoints of those two radii of the circle , the angle between which is
A. 135°
B. 155°
C. 160°
D. 120°

18. A pair of tangents can be constructed from

a point P to a circle of radius 3.5 cm situated at a distance offrom the circle.
A. 3.5 cm
B. 2.5 cm
C. 5 cm
D. 2 cm

- View Text Solution

19. To divide a line segment $A B$ in the ratio $5: 6$
, draw a ray AX such that $\angle B A X$ is an acute
angle, then draw a ray BY parallel to AX and the points $A_{1}, A_{2}, A_{3}, \ldots \ldots \ldots a n d B_{1}, B_{2}, B_{3}$,.........are located at equal distances on ray AX and BY , respectively. Then the points joined are
A. A_{5} and B_{6}
B. A_{6} and B_{5}
C. A_{4} and B_{5}

D. A_{5} and B_{4}

Answer: A

D View Text Solution

20. In the division of a line segment $A B$, any ray
$A X$ making angle with $A B$ is
A. an acute angle
B. a right angle
C. an obtuse angle

D. reflex angle

Answer: A

D View Text Solution

21. A point P is at a distance of 8 cm from the
centre of a circle of radius 5 cm . How many
tangents can be drawn from point P to the circle ?
A. 0
B. 1
C. 2
D. Infinite

Answer: C

D View Text Solution

22. To divide a line segment $A B$ in the ratio $p: q$,
first a ray AX is drawn so that $\angle B A X$ is an acute angle and then at equal distances points are marked on the ray $A X$ such that the
minimum number of these points is 9 . Here, the possible ratio of $p: q$ is :
A. $3: 5$
B. $4: 7$
C. 2: 9
D. 5: 4

Answer: D

D View Text Solution
23. If the line segment is divided in the ratio
$3: 7$, then how many parts does it contain while constructing the point of division?
A. 3
B. 7
C. 4
D. 10

Answer: D

D View Text Solution
24. To divide a line segments $A B$ in the ratio
$5: 7$, first a ray AX is drawn such that $\angle B A X$ is
an acute angle and then at equal distances, points are marked on the ray $A X$ such that the minimum number of these points is
A. 8
B. 10
C. 11
D. 12
25. To divide a line segment $A B$ in the ratio $4: 7$
, a ray AX is drawn first such that $\angle B A X$ is an
acute angle and then points A_{1}, A_{2}, A_{3},.......are located at equal distances on the ray AX and the points B is joined to
A. A_{12}
B. A_{11}
C. A_{10}
D. A_{9}

Answer: B

D View Text Solution

26. To draw a pair of tangents to a circle which are inclined to each other at an angle of 60°,
it is required to draw tangents at end points of those two radii of the circle, the angle between them should be :
A. 135°
B. 90°
C. 60°
D. 120°

Answer: D

D View Text Solution

27. To divide a line segment $A B$ in the ratio p :
q (p, q are positive integers), draw a ray $A X$
such that $\angle B A X$ is an acute angle and then
mark points on ray $A X$ at equal distance such
that the minimum number of these points is
A. greater of p and q
B. $p+q$
C. $p+q-1$
D. pq

Answer: B

- View Text Solution

1. Assertion : By geometrical construction, it is possible to divide a line segment in the ratio of $\sqrt{3}: \frac{1}{\sqrt{3}}$.

Reason : A line segment can be divided internally in a given ratio M : N, where both M and N are positive integers.
A. Both the Assertion and the Reason are
correct and Reason is the correct
explanation of the Assertion.
B. Both the Assertion and the Reason are correct but Reason is not the correct explanation of the Assertion.
C. Assertion is true but Reason is false
D. Both Assertion and Reason are false.

Answer: A

D View Text Solution

2. Assertion : A pair of tangents can be constructed to a circle inclined at an angle of 170°.

Reason: A pair of tangents can be constructed
from a point P to a circle of radius 3.5 cm situated at a distance.
A. Both the Assertion and the Reason are
correct and Reason is the correct explanation of the Assertion.
B. Both the Assertion and the Reason are
correct but Reason is not the correct explanation of the Assertion.
C. Assertion is true but Reason is false
D. Both Assertion and Reason are false.

Answer: C

D View Text Solution

