

India's Number 1 Education App

MATHS

BOOKS - OSWAL PUBLICATION

INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES

Stand Alone Mcqs

1. If
$$\cos A = \frac{4}{5}$$
, then the value of $\tan A$ is

A.
$$\frac{3}{5}$$

$$\mathsf{B.}\;\frac{3}{4}$$

$$\mathsf{C.}\,\frac{4}{3}$$

D.
$$\frac{5}{3}$$

Answer: B

2. If
$$\sin\theta = \frac{a}{b}$$
, then $\cos\theta$ is equal to

A.
$$\frac{b}{\sqrt{b^2-a^2}}$$

B.
$$\frac{b}{a}$$
 C. $\frac{\sqrt{b^2-a^2}}{b}$

D.
$$\dfrac{a}{\sqrt{b^2-a^2}}$$

Answer: C

3. If
$$\cos 9lpha = \sin lpha$$
 and $9lpha < 90^\circ$, then the value of $\tan 5lpha$ is

A.
$$\frac{1}{\sqrt{3}}$$

B.
$$\sqrt{3}$$

Answer: C

Watch Video Solution

- **4.** If ΔABC is right angled at C, then the value of $\cos(A+B)$ is
 - A. 0
 - B. 1
 - $\operatorname{C.}\frac{1}{2}$
 - D. $\frac{\sqrt{3}}{2}$

Answer: A

Watch Video Solution

5. If $\sin \alpha = \frac{1}{2}$ and $\cos \beta = \frac{1}{2}$, then the value of $(\alpha + \beta)$ is

A. 0°

B. 30°

C. 60°

D. 90°

Answer: D

Watch Video Solution

- **6.** If 4 $\tan\theta$ =3, then $\left(\frac{4\sin\theta-\cos\theta}{4\sin\theta-\cos\theta}\right)$ is equal to
 - A. $\frac{2}{3}$
 - $\mathsf{B.}\;\frac{1}{3}$
 - $\mathsf{C.}\,\frac{1}{2}$
 - D. $\frac{3}{4}$

Answer: C

7. If $\sin \theta - \cos \theta = 0$,then the value of $\sin^4 \theta + \cos^4 \theta$ is

- A. 1
- $\operatorname{B.}\frac{3}{4}$
- $\mathsf{C.}\ \frac{1}{2}$
- D. $\frac{1}{4}$

Answer: C

Watch Video Solution

8. v20

A. $\tan 90^{\circ}$

B. 1

C. $\sin 45^{\circ}$

\mathbf{D}	
υ.	L

Answer: D

Watch Video Solution

- **9.** $9 \sec^2 A 9 \tan^2 A =$
 - A. 1
 - B. 9
 - C. 8
 - D. 0

Answer: B

10. The value of $[(\sec A + \tan A)(1-\sin A)]$ is equal to $\tan^2 A(b) \sin^2 A$ (c) $\cos A$ (d) $\sin A$

A. sec A

B. sin A

C. cosec A

D. cos A

Answer: D

Watch Video Solution

11. Write the value of $(1-\sin^2\theta)\sec^2\theta$.

A. 1

B. 0

C. 2

D. 3

Answer: A

Watch Video Solution

- **12.** If $\cos A + \cos^2 A = 1$, then $\sin^2 A + \sin^4 A$ is equal to
 - A. 2
 - B. 1
 - C. 3
 - D. 4

Answer: B

Watch Video Solution

13. The value of $({
m cosec} heta - {
m cot} \, heta)^2$ is

14. Evaluate:
$$\sqrt{rac{1-\sin heta}{1+\sin heta}}$$
.

A. $\frac{1+\cos\theta}{1-\cos\theta}$

B. $\frac{1+\sin\theta}{1-\sin\theta}$

 $\mathsf{C.}\,\frac{1-\cos\theta}{1+\cos\theta}$

Answer: C

D. None of these

$$\int \frac{1-\sin\theta}{1+\sin\theta}$$
.

A.
$$\sec \theta - \tan \theta$$

Watch Video Solution

C.
$$\csc \theta - \cot \theta$$

 $B. \sec \theta + \tan \theta$

D.
$$\csc \theta + \cot \theta$$

Answer: A

watch video Solution

15. Prove that

$$\sqrt{\sec^2 \theta + \csc^2 \theta} = \tan \theta + \cot \theta.$$

A.
$$an heta-\cot heta$$

B.
$$\tan \theta + \cot \theta$$

$$\mathsf{C.}\sec\theta + \csc\theta$$

D. None of these

Answer: B

Watch Video Solution

Assertion And Reason Based Mcqs

1. Assertion (A): In figure given below ,AC = 5 cm

Reason (R) :
$$\sin 60^\circ = \frac{\sqrt{3}}{2}$$

- A. Both A and R are true and R is the correct explanation of A.
- B. Both A and R are true and R is NOT the correct explanation of A.
- C. A is true but R is false
- D. A is false but R is true

Answer: B

Watch Video Solution

- **2.** Assertion (A): $\sin 0^{\circ} = 0$ and $\sin 90^{\circ} = 1$
- Reason (R): The value of sin A can exceed 1
 - A. Both A and R are true and R is the correct explanation of A.
 - B. Both A and R are true and R is NOT the correct explanation of A.
 - C. A is true but R is false
 - D. A is false but R is true

Answer: C

cos B.

Watch Video Solution

3. Assertion (A) : In ΔABC , right angled at C and $\angle A=\angle B$ then \cos A =

Reason (R): In a triangle , equal opposite sides have equal opposite angles .

A. Both A and R are true and R is the correct explanation of A.

B. Both A and R are true and R is NOT the correct explanation of A.

C. A is true but R is false

D. A is false but R is true

Answer: A

Watch Video Solution

4. Assertion (A) : Value of $\sec^2 10^\circ - \cot^2 80^\circ$ is 1

Reason (R) : Value of $\sin 30^\circ = rac{1}{2}$

A. Both A and R are true and R is the correct explanation of A.

B. Both A and R are true and R is NOT the correct explanation of A.

C. A is true but R is false

D. A is false but R is true

Answer: B

Watch Video Solution

- **5.** If $\cos A + \cos^2 A = 1$, then prove that $\sin^2 A + \sin^4 A = 1$.
 - A. Both A and R are true and R is the correct explanation of A.
 - B. Both A and R are true and R is NOT the correct explanation of A.
 - C. A is true but R is false
 - D. A is false but R is true

Answer: D

6. Assertion (A) : $\sin^2 67^\circ + \cos^2 67^\circ = 1$

Reason (R) : For any value of $heta, \sin^2 heta + \cos^2 heta = 1$

A. Both A and R are true and R is the correct explanation of A.

B. Both A and R are true and R is NOT the correct explanation of A.

C. A is true but R is false

D. A is false but R is true

Answer: A

Watch Video Solution

7. Assertion (A) :
$$\left(\frac{1+\cos\theta}{\sin\theta}\right)^2 = \frac{1+\cos\theta}{1-\cos\theta}$$

Reason (R) : $\sin^2 \theta = \cos^2 \theta - 1$

A. Both A and R are true and R is the correct explanation of A.

B. Both A and R are true and R is NOT the correct explanation of A.

C. A is true but R is false

D. A is false but R is true

Answer: C

Watch Video Solution

Case Based Mcqs I

1. An electrician has to repair an electric fault on a pole of height 5 m. She needs to reach a point 1.3m below the top of the pole to undertake the repair work. What should be the length of the ladder that she should use which, when inclined at

 $\mathrm{A.}~3.7~\mathrm{m}$

B. 5 m

 $\mathsf{C.}\ 6.3\ \mathsf{m}$

 $\mathrm{D.}\ 1.3\ \mathrm{m}$

Answer: A

2. An electrician has to repair an electric fault on a pole of height 5 m. She needs to reach a point 1.3m below the top of the pole to undertake the repair work. What should be the length of the ladder that she should use which, when inclined at

- A. 18 m
- B. 8 m
- C. $\frac{13}{5}$ m
- D. 12 m

Answer: D

Watch Video Solution

3. An electrician has to repair an electric fault on a pole of height 5 m. She needs to reach a point 1.3m below the top of the pole to undertake the

repair work. What should be the length of the ladder that she should use which, when inclined at

- A. $\frac{\text{Base}}{\text{Hypptenuse}}$
- $B. \frac{\text{Perpendicular}}{\text{Hypotenuse}}$
- C. $(Hypote \nu se)/(Base)$
- $D. \frac{\text{Perpendicular}}{\text{Base}}$

Answer: B

- **4.** An electrician has to repair an electric fault on a pole of height 5 m. She needs to reach a point 1.3m below the top of the pole to undertake the repair work. What should be the length of the ladder that she should use which, when inclined at
 - A. 0
 - B. 1

C.
$$\frac{1}{2}$$
D. $\frac{\sqrt{3}}{2}$

Answer: D

Watch Video Solution

5. An electrician has to repair an electric fault on a pole of height 5 m. She needs to reach a point 1.3m below the top of the pole to undertake the repair work. What should be the length of the ladder that she should use which, when inclined at

A.
$$\frac{1}{\sqrt{2}}$$

B. 1

$$\mathsf{C.} \; \frac{1}{\sqrt{3}}$$

D. $\sqrt{3}$

Answer: D

Case Based Mcqs Ii

1. Suppose a girl is sitting on the balcony of her house located on the bank of river. She is looking down at a flower pot placed on a stair of a temple situated nearly on other bank of the river. A right triangle is imagined to be made in this situation as shown in figure.

If height of her house is 12 m , and the distance between her house and the river is 5 m , then what will be value of $\sin\theta$?

Α. 12

- B. $\frac{5}{13}$
- c. $\frac{12}{5}$
- D. $\frac{13}{12}$

Answer: A

Watch Video Solution

2. Suppose a girl is sitting on the balcony of her house located on the bank of river. She is looking down at a flower pot placed on a stair of a temple situated nearly on other bank of the river. A right triangle is imagined to be made in this situation as shown in figure.

If width of the river is 15 m , and angle of depression of flower pot from balcony is $60\,^\circ$, then what will be height of the building ?

- A. $15\sqrt{3}$ m
- B. $15\sqrt{2}$ m
- C. $10\sqrt{2}$ m
- D. $10\sqrt{3}$ m

Answer: A

Watch Video Solution

3. Suppose a girl is sitting on the balcony of her house located on the bank of river. She is looking down at a flower pot placed on a stair of a temple situated nearly on other bank of the river. A right triangle is imagined to be made in this situation as shown in figure.

The angle between foot of the building and river is

A. 60°

B. 45°

C. 30°

D. 90°

Answer: D

Watch Video Solution

4. Suppose a girl is stitting on the balocny of her house located on the bank of river. She is looking down at a flower pot placed on a stair of a temple situated nearly on other bank of the river. A right triangle is

imagined to be made in this situation as shown in figure.

Value of $\sin 60^{\circ}$ is

A.
$$\frac{1}{\sqrt{2}}$$

B. 1

C. 0

$$\text{D.}\ \frac{\sqrt{3}}{2}$$

Answer: D

5. Suppose a girl is stitting on the balocny of her house located on the bank of river. She is looking down at a flower pot placed on a stair of a temple situated nearly on other bank of the river. A right triangle is imagined to be made in this situation as shown in figure.

Write the value of sin 30°

- A. $\frac{1}{2}$
- В. О
- C. 1
- D. $\frac{\sqrt{3}}{2}$

Answer: A

Case Based Mcqs Iii

1. If
$$\cot \theta = \frac{7}{8}$$

Find the Value of $\cot^2 heta$

A.
$$\frac{7}{8}$$

$$\mathsf{B.}\;\frac{49}{64}$$

c.
$$\frac{56}{78}$$

D.
$$\sqrt{\frac{7}{8}}$$

Answer: B

Watch Video Solution

2. If
$$\cot \theta = \frac{7}{8}$$

Find the value of $\sin heta$

C.
$$\frac{8}{\sqrt{113}}$$
D. $\frac{6}{\sqrt{113}}$

Answer: C

A. $\frac{8}{113}$

B. $\frac{7}{\sqrt{113}}$

 $\mathsf{C.}\ \frac{8}{\sqrt{113}}$

D. $\frac{6}{\sqrt{113}}$

A.
$$\frac{8}{113}$$

B.
$$\frac{7}{\sqrt{113}}$$
C. $\frac{8}{\sqrt{113}}$

4. If
$$\cot \theta = \frac{7}{8}$$
 then find the value $\frac{(1-\sin \theta)(1+\sin \theta)}{(1-\cos \theta)(1+\cos \theta)}$

$$\mathsf{A.}\ \frac{64}{49}$$

$$\mathsf{C.}\ \frac{49}{64}$$

D. none of these

Answer: C

Watch Video Solution

5. If $\cot \theta = \frac{7}{8}$

Find the value of $\sin^2 \theta + \cos^2 \theta$.

A. 1

B. 0

Answer: A

Watch Video Solution

Example

1. Evaluate :
$$\dfrac{5\cos^2 60^\circ + 4\cos^2 30^\circ - \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 60^\circ}$$

- 2. Prove the following trigonometric identities: $\cot \theta - \tan \theta = \frac{2\cos^2 \theta - 1}{\sin \theta \cos \theta}$
 - Watch Video Solution

Self Assessment 1 I Objective Type Questions A Multiple Choice Questions

1. If triangle ABC is right angled at C, then the value of sec (A+B) is

A. 0

B. 1

C. $2\sqrt{3}$

D. not defined

Answer:

- **2.** If $\sin \theta + \cos \theta = \sqrt{2} \cos \theta, (\theta \neq 90^\circ)$ then value of $\tan \theta$ is
 - A. $\sqrt{2}-1$
 - B. $\sqrt{2} + 1$
 - C. $\sqrt{2}$

D.
$$-\sqrt{2}$$

Answer:

Watch Video Solution

- **3.** Given that $\sin lpha = \frac{\sqrt{3}}{2} \ \ {
 m and} \ \ \cos eta = 0$, then the value of eta lpha is
 - A. 0°
 - B. 90°
 - $\mathsf{C.}\,60^\circ$
 - D. 30°

Answer:

Watch Video Solution

Self Assessment 1 I Objective Type Questions B Fill In The Blanks

- **1.** Value of $\cos 0^{\circ}$. $\cos 30^{\circ}$. $\cos 45^{\circ}$. $\cos 60^{\circ}$. $\cos 90^{\circ}$ is ______.
 - Watch Video Solution

- **2.** Value of $(\sin 30^\circ + \cos 30^\circ) (\sin 60^\circ + \cos 60^\circ)$ is ____
 - Watch Video Solution

Self Assessment 1 I Objective Type Questions C Very Short Answer Type Questions

- **1.** If $\sin \theta = \cos \theta$, then find the value of 2 $\tan \theta + \cos^2 \theta$.
 - Watch Video Solution

- **2.** If $an(3x+30^\circ)=1$ then find the value of x
 - Watch Video Solution

3. If $\sec \theta$. $\sin \theta = 0$, then find the value of θ .

Watch Video Solution

Self Assessment 1 li Short Answer Type Questions I

1. In the given figure, AOB is a diameter of a circle with centre O. Find tan A tan B.

Self Assessment 1 lii Short Answer Type Questions li

1. Find acute angles AandB, if

$$\sin(A+2B)=rac{\sqrt{3}}{2} and \cos(A+4B)=0, A>B$$
 .

- 2. If in a triangle ABC right angled at B, AB = 6 units and BC = 8 units, then find the value of sin A. cos C + cos A. sin C.
 - Watch Video Solution

- **3.** If 4 an heta=3, evaluate $\left(rac{4\sin heta-2\cos heta+3}{4\sin heta+2\cos heta-5}
 ight)$
 - Watch Video Solution

Self Assessment 1 Iv Long Answer Type Questions

1.

Evaluate

 $\tan^2 30^\circ \sin^2 30^\circ + \cos 60^\circ \sin^2 90^\circ \tan^2 60^\circ - 2 tan \, 45^\circ \cos^2 0^\circ \sin 90^\circ$

Watch Video Solution

2. **Evaluate** $\sin^2 30^\circ \cos^2 45^\circ + 4 \tan^2 30^\circ + \frac{1}{2} \sin^2 90^\circ - 2 \cos^2 90^\circ + \frac{1}{24}$

Watch Video Solution

3. What is the value of $4 \left(\sin^4 30^\circ + \cos^4 60^\circ \right) - 3 \left(\cos^2 45^\circ - \sin^2 90^\circ \right)$?

Self Assessment 2 I Objective Type Questions A Multiple Choice Questions

1. Find the value of
$$\dfrac{\sin^4 \theta + \cos^4 \theta}{1 - 2 \sin^2 \theta \cos^2 \theta}$$

A. 1

B. - 1

 $\mathsf{C.}-2$

D. 2

Answer:

Watch Video Solution

2.
$$\sqrt{rac{1-\cos A}{1+\cos A}}=$$

A. $\csc A + \cot A$

B. $\csc A - \cot A$

 $\mathsf{C}.\operatorname{cosec} A\operatorname{cot} A$

 $D. - \csc A. \cot A$

Answer:

Watch Video Solution

3.
$$\sqrt{(1-\cos^2\theta)\sec^2\theta} \left[\ \therefore \sin^2\theta + \cos^2\theta = 1 \right]$$

$$=\sqrt{\sin^2 hetarac{.1}{\cos^2 heta}}=\sqrt{ an^2 heta}= an heta$$

$$\left[: \sec \theta = \frac{1}{\cos \theta}, \tan \theta = \frac{\sin \theta}{\cos \theta} \right]$$

 $\mathsf{A.}\sec\theta$

 $\mathtt{B.}\tan\theta$

 $\mathsf{C}.\sin\theta$

D. $\sec^2 \theta$

Answer:

1. Prove that :
$$1+rac{\cot^2 lpha}{1+{
m cosec}lpha}={
m cesec}lpha$$

2. If
$$\sin A = \frac{\sqrt{3}}{2}$$
 then the value $2\cot^2 A - 1$ is _____

3. If
$$heta$$
 be an acute angle and $5\mathrm{cosec} heta=7$, then value of $\sin heta+\cos^2 heta$ - 1 =

1. Write the value of
$$\cot^2 heta - rac{1}{\sin^2 heta}$$
 .

2. If
$$\cos A = \frac{2}{5}$$
, find the value of $4 + 4 \tan^2 A$.

3. If $k+1=\left(\sec^2 heta\right)(1+\sin heta)(1-\sin heta)$, then find the value of k

Questions I

1. Express the trigonometric ratio of sec A and tan A in terms of sin A.

Self Assessment 2 I Objective Type Questions Ii Short Answer Type

2. $\sqrt{rac{1+\sin A}{1-\sin A}}=\sec A+\tan A$

Self Assessment 2 I Objective Type Questions Iii Short Answer Type

1. Prove that :
$$\dfrac{ an A + \sin A}{ an A - \sin A} = \dfrac{\sec A + 1}{\sec A - 1}$$

Questions li

Watch Video Solution

2. Prove that : $rac{\cos A}{1+\tan A} - rac{\sin A}{1+\cot A} = \cos A - \sin A$

Self Assessment 2 I Objective Type Questions Iv Long Answer Type Questions Ii

1. Prove that
$$\dfrac{ an^2A}{ an^2A-1}+\cos ec^2\dfrac{A}{\sec^2A-\cos ec^2A}=\dfrac{1}{1-2\cos^2A}$$

2. Prove that :
$$\sqrt{rac{\sec heta - 1}{\sec heta + 1}} + \sqrt{rac{\sec heta + 1}{\sec heta - 1}} = 2 \mathrm{cosec} heta$$

- **3.** If $\cos ec\theta + \cot \theta = p$, then $\cos \theta =$
 - **Watch Video Solution**

1.

 ΔABC is a right triangle, right angled at B. $\angle C$ is a given acute angle. So side BC is base, a side AB is altitude and side AC is hypotenuse for given acute angle C.

Find the ratio of sin C.

- A. $\frac{\text{Altitude}}{\text{Hypotenuse}}$
- B. $\frac{\text{Hypotenuse}}{\text{Altitude}}$
- C. $\frac{\text{Base}}{\text{Altitude}}$
- D. $\frac{\text{Hypotenuse}}{\text{Base}}$

Answer: A

Watch Vidaa Calutian

Water video Solution

2.

 ΔABC is a right triangle, right angled at B. $\angle C$ is a given acute angle. So side BC is base, a side AB is altitude and side AC is hypotenuse for given acute angle C.

Find the ratio of secant of $\angle C$

- A. $\frac{\text{Altitude}}{\text{Hypotenuse}}$
- B. $\frac{\text{Base}}{\text{Hypotenuse}}$
- C. $\frac{\text{Hypotenuse}}{\text{Base}}$
- D. $\frac{\text{Base}}{\text{Altitude}}$

Watch Video Solution

 ΔABC is a right triangle, right angled at B. $\angle C$ is a given acute angle. So side BC is base, a side AB is altitude and side AC is hypotenuse for given acute angle C.

 $\frac{Base}{Altitude}$ is equal to _____

A. tan C

B. cot C

C. sin C

D. cosec C

Answer: B

Watch Video Solution

 ΔABC is a right triangle, right angled at B. $\angle C$ is a given acute angle. So side BC is base, a side AB is altitude and side AC is hypotenuse for given

acute angle C.

 $\frac{\text{Hypotenuse}}{\text{Altitude}}$ is equal to _____

- A. tan C
- B. sin C
- C. sec C
- D. cosec C

Answer: D

Watch Video Solution

 \triangle ABC is a right triangle, right angled at B. $\angle C$ is a given acute angle.

So side BC is base, a side AB is altitude and side AC is hypotenuse for given acute angle C. The ratio $\frac{BC}{AC}$ is equal to _____ A. cos C

B. tan C

C. cosec C

D. sin C

Answer: A

6.

 ΔABC is a right triangle , right angle at B . Given the ratio of altitude and base $an A=rac{4}{3}$. Find the value of AC

A. 3 K

B. 5 K

C. 4 K

D. 6 K

Answer: B

7.

riangle ABC is a right triangle , right angle at B . Given the ratio of altitude and base $an A=rac{4}{3}.$ Find the ratio of sin A

- $\mathrm{A.}\ \frac{4}{5}$
- $\mathsf{B.}\;\frac{5}{3}$
- $\mathsf{C.}\ \frac{3}{5}$
- D. $\frac{5}{4}$

Answer: A

 ΔABC is a right triangle , right angle at B . Given the ratio of altitude and base $an A = rac{4}{3}$.Find the value of $\sin A imes an A$

A.
$$\frac{4}{15}$$

$$\mathsf{B.}\;\frac{15}{16}$$

$$\mathsf{C.}\ \frac{16}{25}$$

$$\mathsf{D.}\;\frac{16}{15}$$

Answer: D

9.

 \triangle ABC is a right triangle , right angle at B . Given the ratio of altitude and base $an A = rac{4}{3}$. Find the value of $\left(1 + an^2 A
ight)$

- A. $\frac{25}{9}$
- $\mathsf{B.}\,\frac{9}{25}$
- $\mathsf{C.}\ \frac{16}{25}$
- D. $\frac{25}{16}$

Answer:

10.

riangle ABC is a right triangle , right angle at B . Given the ratio of altitude and base $an A=rac{4}{3}.$ Find the value of cot A .

- $\mathsf{A.}\ \frac{4}{3}$
- $\mathsf{B.}\,\frac{3}{4}$
- $\mathsf{C.}\ \frac{4}{5}$
- D. $\frac{3}{5}$

Answer:

11. In PQR , right-angled at $Q,\;PQ=3cm$ and PR=6cm . Determine $\angle P$ and $\angle R$.

A. 30°

B. 60°

C. 45°

D. 90°

Answer:

Watch Video Solution

12. In PQR , right-angled at $Q,\ PQ=3cm$ and PR=6cm . Determine

 $\angle P$ and $\angle R$.

A. 30°

B. 45°

C. 60°

D. $90\,^\circ$

Answer:

Watch Video Solution

13. In ΔPQR right angled at Q , PQ = 3 cm and PR = 6 cm .

Determine side QR.

A. $\sqrt{3}$ cm

B. $2\sqrt{3}$ cm

C. 6 cm

D. $3\sqrt{3}$ cm

Answer:

14. In ΔABC , $\angle A$ is right - angled . If AB= 1 cm , AC =3 cm and BC = $\sqrt{10}$

cm, then find the values of cos B and sin C.

A. 0

B.
$$\frac{\sqrt{3}}{2}$$

C. 1

$$\mathrm{D.}\,\frac{1}{4}$$

Answer:

Watch Video Solution

15. The value of $\frac{2\tan 30^{\circ}}{1-\tan^2 30^{\circ}}$ is :

A.
$$2\sqrt{3}$$

$$\mathsf{B.}\;\frac{2}{\sqrt{3}}$$

C.
$$\sqrt{3}$$

$$\text{D.}\ \frac{1}{\sqrt{3}}$$

Answer:

Ncert Corner Textbook Questions Exercise 8 1

1. In ΔABC , right - angled at B , AB = 24 cm , BC = 7 cm .

 $\sin A, \cos A$

Watch Video Solution

2. In ΔABC , right - angled at B , AB = 24 cm , BC = 7 cm .

 $\sin C$, $\cos C$

3. In given figure , find $\tan P - \cot R$.

- **4.** If $s \in A = rac{3}{4}$, calculate \cos A and \tan A.
 - Watch Video Solution

5. Given $15 \cot A = 8$, find $\sin A$ and $\sec A$.

Watch Video Solution

6. Given $\sec \theta = \frac{13}{12}$, calculate all other trigonometric ratios.

7. If $\angle A$ and $\angle B$ are acute angles such that $\cos A = \cos B$, then show then show that $\angle A = \angle B$.

8. If $\cot \theta = \frac{7}{8}$, evaluate:(i) $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$ (ii) $\cot^2 \theta$

$$\cot^2$$

9. If $\cot \theta = \frac{7}{8}$, evaluate : $\cot^2 \theta$

Watch Video Solution

10. If $3 \cot A = 4$, check whether $\frac{1 - \tan^2 A}{1 + \tan^2 A} = \cos^2 A - \sin^2 A$ or not.

11. In triangle ABC, right-angled at B. if $\tan A = \frac{1}{\sqrt{3}}$, find the value of: $\sin A \cos C + \cos A \sin C$

- **12.** In triangle ABC, right-angled at B. if $\tan A = \frac{1}{\sqrt{3}}$, find the value of: $\sin A \cos C + \cos A \sin C$
 - **Watch Video Solution**

13. In ΔPQR , right - angled at Q , PR +QR = 25 cm and PQ = 5cm .

Determine the values of sin P, cos P and tan P.

14. State whether the following are true or false. Justify your Solution.

The value of tan A is always less than 1.

15. State whether the following are true or false. Justify your Solution.

 $\sec = \frac{12}{5}$ for some value of angle A.

16. State whether the following are true or false. Justify your Solution. cos A is the abbreviation used for the cosecant of angle A.

17. State whether the following are true or false. Justify your Solution. cot A is the product of cot and A.

18. State whether the following are true or false. Justify your Solution. $\sin\theta = \frac{4}{3} \text{ for some angle } \theta \, .$

1. Evalulate the following:

 $\sin 60^{\circ} \cos 30^{\circ} + \sin 30^{\circ} \cos 60^{\circ}$

2. Find the value of 2 $an^2 45^\circ + \cos^2 30^\circ - \sin^2 60^\circ$.

3. Evaluate : $\frac{\cos 45^{\circ}}{\sec 30^{\circ} + \csc 30^{\circ}}$

4. Evaulate : $4-\frac{\sin 30^\circ + \tan 45^\circ - \csc 60^\circ}{\sec 30^\circ + \cos 60^\circ + \cos 45^\circ}$

5. Evaluate : $\frac{5\cos^2 60^\circ + 4\sec^2 30^\circ}{} - \tan^2 45^\circ$ $\sin^2 30^{\circ} + \cos^2 30^{\circ}$

Watch Video Solution

 $2 \tan 30o$ **6.** Choose the correct option and justify your choice : (i) — $1 + \tan^2 30o$

 $(d) \setminus s \in \setminus 30o$

 $(a) \setminus s \in \ \ 60o(b) \setminus \cos \ \ 60o(c) \setminus tan \setminus 60o(c)$

B. $\cos 60^{\circ}$

A. $\sin 60^{\circ}$

- C. $\tan 60^{\circ}$
- D. $\sin 30^{\circ}$

Answer: A

7. v20

A. $an 90^{\circ}$

B. 1

C. $\sin 45^{\circ}$

D. 0

Answer: D

Watch Video Solution

 $\sin 2A = 2\sin A$ is true when A =

8. Choose the correct option and justify your choice.

- A. 0°
 - B. 30°
 - C. 45°

D. 60°

Answer: A

Watch Video Solution

- **9.** Choose the correct option and justify your choice : (i) $\frac{2 \tan 30o}{1 + \tan^2 30o} =$
- $(a)\setminus s\in \setminus 60o(b)\setminus \cos\setminus 60o(c)\setminus tan\setminus 60o$ $(d)\setminus s\in \setminus 30o$
- - A. $\cos 60^\circ$
 - B. $\sin 60^\circ$
 - C. $an 60^\circ$
 - D. $\sin 30^\circ$

Answer: C

$$\tan(A+B)=\sqrt{3}$$

and

 $an(A-B) = rac{1}{\sqrt{3}}, 0^\circ < A+B \leq 90^\circ, A>B$, find A and B .

Watch Video Solution

11. State whether the following are true or false. Justify your answer. (i) $s\in (A+B)=\sin A+s\in B$. (ii) The value of $\sin \theta$ increases as θ increases. (iii) The value of $\cos \theta$ increases as θ increases. (iv) $\sin \theta=\cos \theta$ for all v

Watch Video Solution

12. State whether the following are true or false. Justify your answer. (i) $s\in (A+B)=\sin A+s\in B$. (ii) The value of $\sin \theta$ increases as θ increases. (iii) The value of $\cos \theta$ increases as θ increases. (iv) $\sin \theta=\cos \theta$ for all v

13. State whether the following are true or false. Justify your answer. (i) $s\in (A+B)=\sin A+s\in B \ . \ \text{(ii)} \ \ \text{The value of} \ \sin \theta \ \ \text{increases} \ \text{as} \ \theta$ increases. (iii) The value of $\cos \theta$ increases as θ increases. (iv) $\sin \theta=\cos \theta$ for all v

14. state True or false and jastify $\sin \theta = \cos \theta$ for all values of θ .

15. State whether the following are true or false. Justify your answer. (i) $s\in (A+B)=\sin A+s\in B \ . \ \text{(ii)} \ \ \text{The value of} \ \sin \theta \ \ \text{increases} \ \text{as} \ \theta$ increases. (iii) The value of $\cos \theta$ increases as θ increases. (iv) $\sin \theta=\cos \theta$ for all v

Ncert Corner Textbook Questions Exercise 8 3

1. Evaluate:

 $\sin 18^{\circ}$ $\cos 72^{\circ}$

Watch Video Solution

2. Evaluate:

 $\tan 26^{\circ}$ $\overline{\cot 64^\circ}$

Watch Video Solution

3. Evaluate:

 $\cos 48^{\circ} - \sin 42^{\circ}$

4. Evaluate:

 $\csc 31^{\circ} - \sec 59^{\circ}$

Watch Video Solution

5. Show that $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ} = 1$.

Watch Video Solution

6. Evaluate: $\cos 38^{\circ} \cos 52^{\circ} - \sin 38^{\circ} \sin 52^{\circ}$.

Watch Video Solution

7. If tan A $= \cot(A - 18^{\circ})$ where 2A is an acute angle , find the value of

A.

8. If tan A = cot B , prove that A + B = 90° .

Watch Video Solution

9. If sec 4A = cosec $(A-20^{\circ})$, where 4A is an acute angle, find the value of A.

Watch Video Solution

10. If A, B and C are interior angles of a triangle ABC, then show that $\sin\!\left(\frac{B+C}{2}\right) = \frac{\cos A}{2}.$

Watch Video Solution

11. Express $s \in 67 \oplus \cos 75o$ in terms of trigonometric ratios of angles between 00 and 450.

Ncert Corner Textbook Questions Exercise 8 4

1. Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.

2. Write all the other trigonometric ratios of $\angle A$ in terms of sec A.

$$s \in 25o \setminus \cos 65 \oplus \cos \setminus 25os \in \setminus 65o$$

$$sos \in ackslash 65o$$

(i)

3.

Watch Video Solution

Evaluate:

4. Evaluate: $\sin 25^{\circ} \cos 65^{\circ} + \cos 25^{\circ} \sin 65^{\circ}$.

$$9\sec^2 A - 9\tan^2 A =$$

Answer: B

Watch Video Solution

6. $(1+\tan\theta+\sec\theta)(1+\cot\theta-\csc^{-}\theta)$ is equal to :

C.	2

$$D. - 1$$

Answer: C

Watch Video Solution

7. Choose the correct optioin . Justify your choice.

$$(\sec A + \tan A)(1 - \sin A) =$$

A. sec A

B. sin A

C. cosec C

D. cos A

Answer: D

8. Choose the correct optioin . Justify your choice.

$$\frac{1+\tan^2 A}{1+\cot^2 A} =$$

A. $\sec^2 A$

B.-1

 $\mathsf{C}.\cot^2 A$

 $\operatorname{D.} \tan^2 A$

Answer: D

Watch Video Solution

9. Prove the following identity, where the angles involved are acute angles

for which the expressions are defined. (i)

$$(\operatorname{cosec} \setminus \theta \cot \theta)^2 = \frac{1 - \cos \theta}{1 + \cos \theta}$$

10. Prove the following identity, where the angles involved are acute angles for which the expressions are defined.(ii)

$$rac{\cos A}{1+\sin A}+rac{1+\sin A}{\cos A}=2\sec A$$

Watch Video Solution

11. Prove the following identity, where the angles involved are acute angles for which the expressions are defined. (iii) $\tan \theta$ $\cot \theta$

$$rac{ an heta}{1-\cot heta}+rac{\cot heta}{1- an heta}=1+\sec hetaackslash\operatorname{cosec}ackslash$$

12. Prove the following identity, where the angles involved are acute angles for which the expressions are defined.(iv) $1+\sec A \qquad \sin^2 A$

$$\frac{1+\sec A}{\sec A} = \frac{\sin^2 A}{1-\cos A}$$

13. Prove that

$$\frac{\cot\theta + \csc\theta - 1}{\cot\theta - \csc\theta + 1} = \frac{1 + \cos\theta}{\sin\theta}.$$

Watch Video Solution

14. Prove the following identity, where the angles involved are acute

angles for which the expressions are defined.(vi)
$$\sqrt{\frac{1+\sin A}{1-\sin A}} = \sec A + \tan A$$

Watch Video Solution

15. Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$$rac{\sin heta - 2 \sin^3 heta}{2 \cos^3 heta - \cos heta} = an heta$$

16. Prove the following identity, where the angles involved are acute for which the expressions are defined.(viii) angles $(\sin A + \cos ecA)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A$

Watch Video Solution

17. Prove the following identity, where the angles involved are acute for which the expressions are defined.(ix) angles $(cosec\ A\ \sin A)(\sec A - \cos A) = rac{1}{ an\ A + \cot\ A}$ [Hint: Simplify LHS and RHS separately]

Watch Video Solution

18. Prove the following identity, where the angles involved are acute angles for which the expressions are defined.(x) $\left(rac{1+ an^2A}{1+\cot^2A}
ight)=\left(rac{1- an A}{1-\cot A}
ight)^2= an^2A$

Ncert Exemplar Exercise 8 1 Choose The Correct Answer From The Given Four Options

1. If
$$\cos A = \frac{4}{5}$$
, then the value of $\tan A$ is

A.
$$\frac{3}{5}$$

$$\mathsf{B.}\;\frac{3}{4}$$

$$\mathsf{C.}\ \frac{4}{3}$$

$$\mathsf{D.}\,\frac{5}{3}$$

Answer: B

2. if
$$\sin A = \frac{1}{2}$$
, then the value of $\cot A$

A.
$$\sqrt{3}$$

B. $\frac{1}{\sqrt{3}}$ C. $\frac{\sqrt{3}}{2}$

Watch Video Solution

value of the expression

 $(75^\circ + heta) - \sec(15^\circ) - heta) - \tan(55^\circ + heta) + \cot(35^\circ - heta)$ is

cosec

3.

A. -1

The

D.
$$\frac{3}{2}$$

Answer: B

Match Vi

4. If
$$\sin\theta = \frac{a}{b}$$
, then $\cos\theta$ is equal to

A.
$$\dfrac{b}{\sqrt{b^2-a^2}}$$

B.
$$\frac{b}{a}$$

C.
$$\frac{\sqrt{b^2-a^2}}{b}$$

D.
$$\frac{a}{\sqrt{b^2-a}}$$

Answer: C

Watch Video Solution

5. If $\cos(lpha+eta)=0$, then $\sin(lpha-eta)$ can be reduced to

A.
$$\cos \beta$$

B.
$$\cos 2\beta$$

C.
$$\sin \alpha$$

D.
$$\sin 2\alpha$$

Answer: B

Watch Video Solution

- **6.** Value of $(\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} ... \tan 89^{\circ})$ is :
 - A. 0
 - B. 1
 - C. 2
 - $\mathsf{D.}\,\frac{1}{2}$

Answer: B

- **7.** If $\cos 9 lpha = \sin lpha$ and $9 lpha < 90^\circ$, then the value of $\tan 5 lpha$ is
 - A. $\frac{1}{\sqrt{3}}$

B. $\sqrt{3}$

C. 1

D. 0

Answer: C

Watch Video Solution

8. If ΔABC is right angled at C, then the value of cos(A+B) is

A. 0

B. 1

C. $\frac{1}{2}$ D. $\frac{\sqrt{3}}{2}$

Answer: A

9. If $\sin A + \sin^2 A = 1$, then the value of the expression $(\cos^2 A + \cos^4 A)$ is

B. $\frac{1}{2}$

C. 2

D. 3

Answer: A

Watch Video Solution

10. If $\sin \alpha = \frac{1}{2}$ and $\cos \beta = \frac{1}{2}$, then the value of $(\alpha + \beta)$ is

A. 0°

B. 30°

C. 60°

D. 90°

Answer: D

Watch Video Solution

11. Find the value of

$$\left[\frac{\sin^{2}22^{\circ} + \sin^{2}68^{\circ}}{\cos^{2}22^{\circ} + \cos^{2}68^{\circ}} + \sin^{2}63^{\circ} + \cos63^{\circ}\sin27^{\circ}\right]$$

- A. 3
- B. 2
- C. 1
- D. 0

Answer: B

Watch Video Solution

12. If 4 an heta=3, then $\left(rac{4\sin heta - \cos heta}{4\sin heta - \cos heta}
ight)$ is equal to

C.
$$\frac{1}{2}$$
D. $\frac{1}{4}$

A. 1

 $\mathsf{B.}\;\frac{3}{4}$

Answer: C

 $\mathsf{B.}\;\frac{1}{3}$

 $\mathsf{C.}\,\frac{1}{2}$

D. $\frac{3}{4}$

Answer: C

Watch Video Solution

13. if $\sin \theta - \cos \theta = 0$, then the value of $\left(\sin^4 \theta + \cos^4 \theta \right)$ is

14. The value of $\sin(45^{\circ}+\theta)-\cos(45^{\circ}-\theta)$ is

A. $2\cos\theta$

B. 0

C. $2\sin\theta$

D. 1

Answer: B

Watch Video Solution

Ncert Exemplar Exercise 8 2 True Or False

1. value of $\frac{ an 47^{\circ}}{\cot 43^{\circ}} =$

2. The value of the expression $\left(\cos^2 23^\circ - \sin^2 67^\circ
ight)$ is

3. The value of the expression $(\sin 80^{\circ} - \cos 80^{\circ})$ is negative.

$$\mathbf{4.} \sqrt{(1-\cos^2\theta)\sec^2\theta} \left[:: \sin^2\theta + \cos^2\theta = 1 \right]$$

$$= \sqrt{\sin^2\theta \frac{.1}{\cos^2\theta}} = \sqrt{\tan^2\theta} = \tan\theta$$

$$\left[:: \sec\theta = \frac{1}{\cos\theta}, \tan\theta = \frac{\sin\theta}{\cos\theta} \right]$$

5. If $\cos A + \cos^2 A = 1$, then $\sin^2 A + \sin^4 A$ is equal to

6. $(an heta+2)(2 an heta+1)=5 an heta+\sec^2 heta$. Write 'True' or 'False' and justify your Solution.

7. The value of $2\sin\theta$ can be $a+\frac{1}{a}$, where a is a positive number and $a\neq 1$.

8. $\cos \theta = \frac{a^2 + b^2}{2ab}$, where a and b are two distinct numbers such that ab > 0.

1. Prove that :
$$rac{\sin heta}{1+\cos heta}+rac{1+\cos heta}{\sin heta}=2\mathrm{cosec} heta$$

Watch Video Solution

2. Prove the following

$$\frac{\tan A}{1 + \sec A} - \frac{\tan A}{1 - \sec A} = 2\csc A$$

Watch Video Solution

3. If $\tan A = \frac{3}{4}$, then $\sin A \cos A = .$

- **4.** Prove that $(\sin \alpha + \cos \alpha)(\tan \alpha + \cot \alpha) = \sec \alpha + \csc \alpha$
 - Watch Video Solution

5. Prove that
$$\left(\sqrt{3}+1\right)\left(3-\cot30^{\circ}\right)=\tan^{3}\left(60\right)^{\circ}-2\sin60^{\circ}$$

6. Prove that
$$:1+rac{\cot^2 lpha}{1+\mathrm{cosec}lpha}=\mathrm{cesec}lpha$$

7. $\tan \theta + \tan(90^{\circ} - \theta) = \sec \theta \times \sec(90^{\circ} - \theta)$

8. If $\sqrt{3} \tan \theta = 1$ then find value of $\sin^2 \theta - \cos^2 \theta$

10. If
$$2\sin^2 \theta - \cos^2 \theta, = 2$$
 then find the vlaue of θ

11. What is
$$\dfrac{\cos^2(45^\circ+\theta)+\cos^2(45^\circ-\theta)}{\tan(60^\circ+\theta)\tan(30^\circ-\theta)}$$
 equal to ?

12. Prove that :

$$\tan^4 \theta + \tan^2 \theta = \sec^4 \theta - \sec^2 \theta$$

1. If $\cos ec\theta + \cot \theta = p$, then $\cos \theta =$

Watch Video Solution

2. Prove that

$$\sqrt{\sec^2 \theta + \csc^2 \theta} = \tan \theta + \cot \theta.$$

3. If $1+\sin^2\theta=3\sin\theta\cos\theta$, then prove that $\tan\theta=1$ or $\frac{1}{2}$.

4. If $\sin \theta + 2\cos \theta = 1$, then $2\sin \theta - \cos \theta =$

5. if
$$an heta + \sec heta = l$$
 then prove that $\sec heta = rac{l^2+1}{2l}$

- **6.** If $\sin \theta + \cos \theta = p$ and $\sec \theta + \csc \theta = q$ then prove that $q(p^2-1)=2p.$
 - Watch Video Solution

- 7. If $a\sin\theta+b\cos\theta=c$ then prove that $a\cos\theta-b\sin\theta=\sqrt{a^2+b^2-c^2}$
 - Watch Video Solution

- **8.** prove that $rac{\sec heta an heta 1}{\sec heta + an heta 1} = an heta \sec heta$
 - Watch Video Solution

Board Corner Very Short Answer Type Questions

- **1.** Find A , if $an 2A = \cot(A 24^\circ)$
 - Watch Video Solution

- **2.** Find the value of $\left(\sin^2 33^\circ + \sin^2 57^\circ
 ight)$
 - Watch Video Solution

- **3.** Evaluate : $\sin^2 60^\circ\,+\,2 an 45^\circ\,-\,\cos^2 30^\circ$
 - Watch Video Solution

- **4.** If $\sin A = \frac{3}{4}$ calculate sec A.
 - Watch Video Solution

5. What is the value of $(\cos^2 67^\circ - \sin^2 23^\circ)$?

Board Corner Short Answer Type Questions

1. Prove that

$$(\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2 = (7 + \tan^2 \theta + \cot^2 \theta).$$

2. Prove that

$$(1 + \cot \theta - \csc \theta)(1 + \tan \theta + \sec \theta) = 2.$$

3. Evaluate the

$$\left(\frac{3 \text{cos } 43^\circ}{\sin 47^\circ}\right)^2 - \frac{\cos 37^\circ \text{cosec} 53^\circ}{\tan 5^\circ \tan 25^\circ \tan 45^\circ \tan 65^\circ \tan 85^\circ}$$

4. Find acute angles A and B, if $\sin(A+2B)=rac{\sqrt{3}}{2} and \cos(A+4B)=0, A>B$.

5. If
$$4 an heta=3$$
, evaluate $\left(rac{4\sin heta-2\cos heta+3}{4\sin heta+2\cos heta-5}
ight)$

6. If tan A $= \cot(A-18^\circ)$ where 2A is an acute angle , find the value of

A.

Board Corner Long Solution Type Questions

1. Prove that
$$rac{\sin A - \cos A + 1}{\sin A + \cos A - 1} = rac{1}{\sec A - \tan A}$$

$$rac{ an^2 heta}{ an^2 heta-1}+rac{\mathrm{cosec}^2 heta}{\mathrm{sec}^2 heta-\mathrm{cosec}^2 heta}=rac{1}{\sin^2 heta-\cos^2 heta}.$$

- **3.** If sec $\theta = x + \frac{1}{4x}$, the value of sec θ + tan θ is equal to
 - Watch Video Solution

5. Prove each of the following identities:

$$rac{ an heta}{(1-\cot heta)}+rac{\cot heta}{(1- an heta)}=(1+\sec heta \csc heta)$$

Watch Video Solution

6. Prove each of the following identities:

$$rac{\sin heta}{(\cot heta+\mathrm{cosec} heta)}-rac{\sin heta}{(\cot heta-\mathrm{cosec} heta)}=2$$

