

MATHS

BOOKS - OSWAL PUBLICATION

NTSE 2019 -20

Real Numbers Stage 1

1.

$$\frac{1}{1+x^{b-a}+x^{c-a}} + \frac{1}{1+x^{a-b}+x^{c-b}} + \frac{1}{1+x^{b-c}+x^{a-c}} = 2$$
A. -1
B. 1

C. 0

Watch Video Solution

2. The capacity of two pots are 240 litres and 112 litres respectively. Find the capacity of a container which can exactly measure the contents of the two pots .

A. $9000 cm^3$

B. $12000 cm^3$

C. $16000 cm^3$

D. $8000 cm^{3}$

Answer: C

Real Numbers Stage 2

1. If $m=n^2-n$, where n is an integer , then m^2-2m is divisible by

A. 20

B. 24

C. 30

D. 16

Answer:

1. If $t^2 - 3t + 2$ is a factor of $t^4 - mt^2 + n$, then the value of m and n are :

A. -5, 4

B.-5, -5

C.5, 4

D. 5, -4

Answer:

2. If p,q and r are the roots of the equation $x^3 + 5x^2 - 16x + 48 = 0$ then value of the expression

$$p(qr+q+r)+qr$$
 is :

A. 43

B. - 32

C. - 64

D. 32

Answer:

Watch Video Solution

3. If
$$t+rac{1}{t}=5,\,$$
 then $rac{2t}{3t^2-5t+3}$ is equal to

B.
$$\frac{1}{5}$$

C. 3

Polynomials Stage 2

1. The value of $\sqrt{97 imes 98 imes 99 imes 100 + 1}$ is equal to

A. 9901

B. 9891

C. 9801

D. 9701

Answer: D

2. Let P(x) be a polynomial such that $p(x)-p'(x)=x^n$, where is a positive integer. Then P(0) equals-

A. O
B.
$$\frac{1}{5}$$

C. $-\frac{2}{5}$
D. $\frac{3}{5}$

Answer:

Pair Of Linear Equations In Two Variables Stage 1

1.	If	$a^{x-1}=bc,b^{y-1}=ca,c^{z-1}=ab,$	and
<u>xy</u> -	$+ \frac{yz + zx}{xyz}$	$=k, ext{ then find } K$	
A	A. xyz		
В	3.0		
C	2. 27		
D	$0.\frac{1}{x}+\frac{1}{y}-$	$+\frac{1}{z}$	

Pair Of Linear Equations In Two Variables Stage 2

1. In village madhubani 8 women and 12 girls can paint a large mural in 10 hours . 6 women and 8 girl can paint it in 14 hours

The numbers of hours taken by 7 women and 14 girl to paint the mural is :

A. 10 B. 15 C. 20

D. 35

Answer:

Quadratic Equations Stage 2

1. If α and β are the roots of the equation $3x^2 - 5x + 3 = 0$, then the quadratic equation whose roots are $\alpha^2\beta$ and $\alpha\beta^2$ is :

A.
$$3x^2 - 5x + 3 = 0$$

B. $3x^2 - 8x + 5 = 0$
C. $3x^2 - 8x + 3 = 0$

D.
$$3x^2 - 5x - 3 = 0$$

Watch Video Solution

2. If $y = x^3$ and x increases at the rate of 3 units per sec; then

the rate at which the slope increases when x=3 is.

A.
$$y^2 - 18y + 1 = 0$$

B.
$$y^2 + 18y + 1 = 0$$

C.
$$y^2 - 18y - 1 = 0$$

D.
$$y^2 + 18y - 1 = 0$$

Watch Video Solution

Arithmetic Progressions Stage 1

1. If
$$x_1, x_2, x_3, \dots$$
 are in A.P., then the value of
 $\frac{1}{x_1x_2} + \frac{1}{x_2x_3} + \frac{1}{x_3x_4} + \dots + \frac{1}{x_{n-1}x_n}$ is:
A. $\frac{n-1}{x_1x_n}$
B. $\frac{n-1}{x_2x_{n-1}}$
C. $\frac{n}{x_1x_n}$
D. $\frac{n+1}{x_1x_n}$

2. If the sum of 'n' terms of an arithmetic progression is $S_n=3n+2n^2$ then its common difference is :

A. 9

B. 6

C. 4

D. 3

Answer:

Watch Video Solution

1. The centroid of a triangle is (2,4) and circumcentre is (1,7), then find the orthocentre .

A. (3,1)

- B. (4, -2)
- C.(-2,4)
- D. (-8, 4)

Answer:

Watch Video Solution

2. If $x < 1, y < -1, ext{ then } (x-1, y-3)$ lies in :

A. III quadrant

B. IV quadrant

C. II quadrant

D. I quadrant

Answer:

Watch Video Solution

3. Angles made by the line with the positive direction of X-axis

are given. Find the slope of these lines

 60°

A. Statement (i) and (ii) correct

B. Statement (iii) and (iv) correct

C. Only statement (iii) is wrong

D. All statement are wrong

Answer:

Watch Video Solution

Coordinate Geometry Stage 2

1. A circle passes through the vertices of a triangle ABC. If the vertices are A(-2, 5), B(-2, -3), C(2, -3) then the centre of the circle is :

A. (0, 0)B. (0, 1)C. (-2, 1)D. (0, -3)

Answer: B

Watch Video Solution

Triangles Stage 1

1. D, E and F are respectively the mid -points of the sides BC, CA and AB of a $\triangle ABC$.Show that (i) BDEF is a parallelogram

A. $120^{\,\circ}$

B. $110\,^\circ$

C. 135 $^\circ$

D. $130^{\,\circ}$

Answer:

2. In the given figure , $AB \ II \ ED$ and $BC \ II \ EF$, then the value of

 $\angle ABC + \angle DEF$ is :

A. $90^{\,\circ}$

B. $180^{\,\circ}$

C. 120 $^{\circ}$

D. $360^{\,\circ}$

Watch Video Solution

3. In the given figure , AB = AC , $\angle BAC = 40^{\circ}$, BE and CD are angle bisectors of $\angle B$ and $\angle C$ respectively . If $\angle DOE = x$, the value of x is :

B. 70°

C. 110°

D. 40°

Answer: C

4. ABC is a right angled triangle , right angled at $\angle B$. If side AB is divided into three equal parts by points D and E such that D is nearest to A, then $\frac{AC^2 - EC^2}{DC^2 - BC^2}$ is equal to :

A. 3

B.
$$2\frac{1}{2}$$

C. $2\frac{1}{4}$

Answer: D

Triangles Stage 2

1. Let D be the middle point of the side BC of a triangle ABC. If the triangle ADC is equilateral, then $a^2: b^2: c^2$ is equal to

A. $14 \times 3^{\frac{1}{2}}$ B. $42 \times 3^{\frac{1}{2}}$ C. $14 \times 3^{\frac{3}{4}}$ D. $42 \times 3^{\frac{1}{2}}$

B. 41

C. 53

D. 47

Answer:

2. In the adjoining figure, PQ is a chord of a circle and PT is the tangent at P such that $\angle QPT = 60^\circ$. Find $\angle PRQ$.

A. $105^{\,\circ}$

B. 115°

C. 120°

D. 130°

Answer:

Watch Video Solution

1. Two circle , both of radii a , touch each other and each of them touches internally a circle of radius 2a , then the radiusof the circle which touches all the three circles is :

A.
$$\frac{1}{2}a$$

B. $\frac{2}{3}a$
C. $\frac{3}{4}a$

Answer: B

D. a

Introduction To Trigonometry Stage 1

1. If a $\cos \theta - b \sin \theta = c$, then $a \sin \theta + b \cos \theta$ is equal to

A.
$$\pm \sqrt{a^2 + b^2 + c^2}$$

B. $\pm \sqrt{a^2 + b^2 - c^2}$
C. $\pm \sqrt{a^2 - b^2 + c^2}$
D. $\pm \sqrt{a^2 - b^2 - c^2}$

Answer:

B.
$$\frac{1}{64}$$

C. $\frac{1}{128}$

D. None of these

Answer:

Introduction To Trigonometry Stage 2

1. If
$$an^2 heta=ig(1-e^2ig)$$
 , then $\sec heta+ an^3 heta ext{cosec} heta$ is equal to

A. $\left(1-e^2
ight)^{rac{1}{2}}$ B. $\left(2-e^2
ight)^{rac{1}{2}}$ C. $\left(2-e^2
ight)^{rac{3}{2}}$

D.
$$\left(1-e^2
ight)^{rac{3}{2}}$$

Heights And Distances Stage 1

1. The shadow of a tower , when the angle of elevation of the sum is 30° is found to be 10 metre longer than when it was 60° . The height of the tower will be :

A. $5\sqrt{3}m$ B. $5(\sqrt{3}-1)m$ C. $5(\sqrt{3}+1)m$ D. $3\sqrt{5}m$

Watch Video Solution

Areas Related To Circles Stage 2

1. A circle is inscribed in a right angled triangle of perimeter 7π

. Then the ratio of numerical values of circumference of the circle to the area of the right angled triangle is :

A. 4:7

B. 3:7

C.2:7

D.1:7

Answer: A

Surface Areas And Volumes Stage 2

1. The surface area of a solid sphere is $5544cm^2$. It is cut into two hemispheres. Calculate the radius of the sphere and the total surface area of each hemisphere.

A. 36π

 $\mathrm{B.}~108\pi$

C. 135π

D. 144π

Answer:

2. A solid metallic cylinder of height 10 cm and diameter 14 cm is melted to make two cones in the proportion of their volumes as 3:4, keeping the height 10 cm, what would be the percentage increase in the flat surface area ?

A. 0.09~%

B. 16 %

 $\mathsf{C}.\,50~\%$

D. 200~%

Answer: C

Statistics Stage 1

1. The mean of 25 observations is 36. If the mean of the first 13 observations is 32 and that of the last 13 observations is 39 then the 13^{th} observation is :

A. 32

B. 30

C. 28

D. 23

Answer:

Statistics Stage 2

1. Observe the following data :

Class	0-20	20-40	40-60	60-80	80-100	Total
Frequency	17	f_1	32	f_2	19	120

If the above data has mean = 50, then missing frequencies

 f_1 and f_2 are

A. 24 and 28

B. 28 and 24

C. 28 and 30

D. 30 and 28

Answer: B

Probability Stage 1

In a hostel 60 % of students read Hindi newspapers , 40 % read English and 20 % both . A student is selected at random .
 Find the probability that she reads neither Hindi nor English newspaper .

A.
$$\frac{1}{5}$$

B. 0
C. $\frac{1}{3}$
D. $\frac{1}{2}$

Answer: A

2. Three squares of a class board are selected at random . The probability of getting two squares of one colour and other of a different colour is :

A.
$$\frac{16}{21}$$

B. $\frac{8}{21}$
C. $\frac{3}{32}$
D. $\frac{3}{8}$

Answer: A

Probability Stage 2

1. If two dice are thrown together . Then , the probability that the sum of the numbers appearing on them is a prime number,

is

A.
$$\frac{2}{9}$$

B. $\frac{4}{9}$
C. $\frac{5}{12}$
D. $\frac{17}{36}$

Answer:

