©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - OSWAL PUBLICATION

SAMPLE PAPER 1

Question Bank

1. What is the HCF of 16 and 32 ?
A. 4
B. 12
C. 16
D. 20

Answer: C

D Watch Video Solution

2. If the probability of winning a game is 0.3 ,

 what is the probability of loosing it?A. 0.5
B. 0.3
C. 0.7
D. Not defined

Answer: C

- Watch Video Solution

3. A sector is cut from a circle of 21 cm diameter. If the angle is 150° then what will be its area?
(Use $\pi=\frac{22}{7}$)
A. $144.38 \mathrm{~cm}^{2}$
B. $150.21 \mathrm{~cm}^{2}$
C. $121.82 \mathrm{~cm}^{2}$
D. $151.27 \mathrm{~cm}^{2}$

Answer: A

D Watch Video Solution

4. Give the polynomial of degree 2 with sum and product of its zeros as $-\frac{1}{2}$ and -3 respectively:
A. $\left(x^{2}-x+6\right)=0$
B. $\left(2 x^{2}+x-6\right)=0$
C. $\left(x^{2}+x-3\right)=0$
D. $\left(x^{2}-2 x+3\right)=0$

Answer: B

D Watch Video Solution

5. Graphically, the pair of equations
$6 x-3 y+10=0$
$2 x-y+9=0$
represents two lines which are
A. Intersecting lines
B. Coincident lines
C. Parallel lines
D. Can't decide

Answer: C
(Watch Video Solution
6. What should be the factors of denominator,
so that a rational number can be expressed, as
teminating decimal?
A. 2 or 5
B. only 2
C. only 5
D. 2 and 5

Answer: A

D Watch Video Solution
7. If the circumference of a circle is eqaul to
the perimeter of a square, then what will be
the ratio of their areas ? (Where $\pi=\frac{22}{7}$)
A. 14: 11
B. $21: 1$
C. 11: 4
D. 5:7

Answer: A

- Watch Video Solution

8. Has the rational number $\frac{441}{2^{2} \times 5^{7} \times 7^{2}}$ a terminating or a non-terminating decimal representation?
A. Terminating
B. Non-terminating
C. Neither
D. Not

Answer: A

9. Find the coefficient of x^{0} in $x^{2}+3 x+2=0$.

A. 3
B. -3
C. 2
D. -2

Answer: C

D Watch Video Solution
10. What is the HCF of the smallest composite number and the smallest prime number?
A. 2
B. 1
C. 3
D. 4

Answer: A

- Watch Video Solution

11. If the HCF of $(336,54)=6$, find the $L C M$ $(336,54)$
A. 336
B. 54
C. 3024
D. 6

Answer: C
(D) Watch Video Solution
12. Find the distance of the point $A(8,-6)$ from the origin.
A. 12
B. 86
C. 8
D. 10

Answer: D

D Watch Video Solution
13. Find the roots of $x+\frac{1}{x}=2$
A. $14: 11$
B. $1: 1$
C. 11: 4
D. 5:7

Answer: B
14. Calculate the value of c for which pair of
linear equations $c x-y=2$ and $6 x-2 y=4$ will have infinitely many solutions.
A. 5
B. 6
C. 3
D. None of these

Answer: C

D Watch Video Solution
15. The radii of two concentric circles are 4 cm
and 5 cm . The difference in the areas of these two circles is :
A. 9π
B. 16π
C. 25π
D. 32π

Answer: A

D Watch Video Solution
16. If $x+y=2500$ and $x-y=2500$ then
the value of x is:
A. 2500
B. 5000
C. 3000
D. 4000

Answer: A

D Watch Video Solution
17. Which triogonometric ratio related the adjacent side and opposite side of the rightangled triangle?
A. $\sin \theta$
B. $\cos \theta$
C. $\tan \theta$
D. $\sec \theta$

Answer: C

$$
\text { 18. If } x=\frac{\text { V }}{2 \times 3}
$$

$$
\frac{8 \pm \sqrt{(-8)^{2}-4 \times 3 \times 2}}{2 \times 2} \text { then }
$$

the required polynomial is:
A. $3 x^{2}-8 x+2=0$
B. $2 x^{2}-8 x-2=0$
C. $3 x^{2}+8 x-2=0$
D. $3 x^{2}+8 x+2=0$

Answer: A

- Watch Video Solution

19. The distance between the points
$A\left(-\frac{8}{5}, 2\right)$ and $B\left(\frac{2}{5}, 2\right)$ is:
A. 5 units
B. $-5 u n i t s$
C. 2 units
D. 7 units

Answer: C

- Watch Video Solution

20. The values of x and y in $2 x+3 y=2$ and

$$
x-2 y=8 \text { are: }
$$

A. $-4,2$
B. $-4,-2$
C. $4,-2$
D. 4,2

Answer: C
(Watch Video Solution
21. If the value of θ is 45°, then what is the value of sec 45° ?
A. 0
B. $\frac{2}{\sqrt{3}}$
C. $\sqrt{2}$
D. 1

Answer: C

- Watch Video Solution

22. The distance of the point $(-12,5)$ from the origin is
A. 17 units
B. 7 units
C. 13 units
D. 15 units

Answer: C

D Watch Video Solution
23. Find the coefficient of x^{0} in $x^{2}+3 x+2=0$.
A. 3
B. -3
C. 2
D. -2

Answer: C

- Watch Video Solution

24. Which of the following statement is false?

A. All isosceles triangles are similar.
B. All square are similar.
C. All circles are similar

D. None of these

Answer: A
25. Which among the following ratio, is not opposite of each other?
A. $\sin \theta$ and $\cos \theta$
B. $\cos \theta$ and $\sec \theta$
C. $\tan \theta$ and $\cot \theta$
D. $\operatorname{cosec} \theta$ and $\sin \theta$

Answer: A

- Watch Video Solution

26. The LCM of two co-prime numbers is their .
A. product of numbers
B. sum of numbers
C. difference of numbers
D. None of these

Answer: A
(Watch Video Solution
27. Suppose angle of depression from top of
the tower to point A is 45° and height of tower is 26 m . What is the distance of point A from the building?
A. 25 m
B. 26 m
C. 31 m
D. 18 m

Answer: B
28. The values of x and y in $3 x+2 y=4$ and
$2 x-3 y=7$ are:
A. $2,-1$
B. 2, 1
C. $-2,-1$
D. $-2,1$

Answer: A

- Watch Video Solution

29. A ladder 10 m long reaches a window 8 m
above the ground. Find the distance of the foot of the ladder from the base of the wall.
A. 8
B. 2
C. 6
D. 4

Answer: C

30. Complete this identity : $\sec ^{2} \theta-1=$
A. $\cos ^{2} \theta$
B. $\sin ^{2} \theta$
C. $\tan ^{2} \theta$
D. $\cos e c^{2} \theta$

Answer: C

D Watch Video Solution

31. A die is thrown twice. Find the probability
that:

5 will not come up either time
A. $\frac{23}{36}$
B. $\frac{25}{36}$
C. $\frac{13}{36}$
D. $\frac{11}{36}$

Answer: B

D Watch Video Solution

32. Equation $a x^{2}+b x+c=0$ represents a quadratic equation if and only if

A. $a \neq 0$

B. $a=b$
C. $a=c$
D. $a=0$

Answer: A
(Watch Video Solution
33. If the end points of a line segment $A B$ are $A(6,8)$ and $(-2,-2)$ then its mid-point is:
A. $(2,3)$
B. $(3,2)$
C. $(4,6)$
D. None of these

Answer: A
(Watch Video Solution

34. If $\sec A+\tan A=x$, then $\tan A$:

> A. $\frac{2}{x}$
> B. $\frac{1}{2} x$
> C. $\frac{x^{2}-1}{2 x}$
> D. $\frac{2 x}{x^{2}-1}$

Answer: C
(Watch Video Solution

35. The values of x and y in $x-y+1=0$ and

 $3 x+2 y-12=0$ are:A. $2,-3$
B. $-2,3$
C. $-2,-3$
D. 2,3

Answer: D

D Watch Video Solution
36. Two different dice are tossed together.

Find the probability :
of getting sum 10 , of the number on the two
dice.
A. $\frac{1}{6}$
B. $\frac{5}{6}$
C. $\frac{1}{12}$
D. $\frac{2}{3}$

Answer: C

D Watch Video Solution
37. If $x=2 \sin ^{2} \theta$ and $y=2 \cos ^{2} \theta+1$ then the value of $x+y$ is
A. 3
B. 4
C. 5
D. 6

Answer: A

- Watch Video Solution

38. For which value of p will the equation
$\left(p^{2}-1\right) x^{2}+p x+q=0$ not be a quadratic equation?
A. $p=1$
B. $p=-1$
C. Both (i) and (ii)
D. $p=0$

Answer: C

D Watch Video Solution
39. What is the probability that a non-leap
year has 53 Sundays? $\frac{6}{7}$ (b) $\frac{1}{7}$ (c) $\frac{5}{7}$ (d) None of these
A. $\frac{6}{7}$
B. $\frac{1}{7}$
C. $\frac{2}{7}$
D. $\frac{3}{7}$

Answer: B

- Watch Video Solution

40. If the difference between the circumference and the radius of a circle is 37 cm , then using $\pi=\frac{22}{7}$, the radius of the circel (in cm) is:
A. 154
B. 44
C. 14
D. 7

Answer: D

41. Case Study-1: Some friends of class X goes
to picnic at waterpark. There were slides i.e.
water coaster, aqua loop and launch chamber slide.

The graph below shows the position of these 3 slides by point P, Q and R.

Consider ' O ' as origin, answer the below questions :

Find the coordinates of the point ' Q ' which
divides the line segment $P R$ in th ratio $1: 2$
internally:
A. $\left(4, \frac{13}{3}\right)$
B. $\left(\frac{13}{3}, \frac{11}{3}\right)$
C. $\left(\frac{10}{3}, \frac{13}{3}\right)$
D. $\left(\frac{13}{3}, 4\right)$

Answer: A

D Watch Video Solution
42. Case Study-1: Some friends of class X goes
to picnic at waterpark. There were slides i.e.
water coaster, aqua loop and launch chamber slide.

The graph below shows the position of these 3
slides by point P, Q and R .

Consider ' O ' as origin, answer the below questions :

Find the distance between the point's P and R :
A. $2 \sqrt{10}$
B. $\sqrt{36}$
C. $\sqrt{38}$
D. $\sqrt{20}$

Answer: A

- Watch Video Solution

43. Case Study-1: Some friends of class X goes
to picnic at waterpark. There were slides i.e.
water coaster, aqua loop and launch chamber
slide.

The graph below shows the position of these 3

slides by point P, Q and R .

Consider ' O ' as origin, answer the below questions :

Find the coordinates of point on X -axis which is at equal distance from P and Q :
A. $\left(\frac{11}{9}, 0\right)$
B. $(3,0)$
C. $\left(\frac{3}{4}, 0\right)$
D. $(1,3)$

Answer: C

D Watch Video Solution

44. Case Study-1: Some friends of class X goes
to picnic at waterpark. There were slides i.e.
water coaster, aqua loop and launch chamber slide.

The graph below shows the position of these 3
slides by point P, Q and R .

Consider ' O ' as origin, answer the below questions :

Find the length of P and Q.
A. $\sqrt{3}$
B. $\sqrt{4}$
C. $\sqrt{5}$
D. $\sqrt{6}$

Answer: C

45. Case Study-1: Some friends of class X goes
to picnic at waterpark. There were slides i.e.
water coaster, aqua loop and launch chamber slide.

The graph below shows the position of these 3
slides by point P, Q and R .

Consider ' O ' as origin, answer the below questions :

If we shift the origin ' O ' by 2 units towards
right and 1 unit towards. North. Then find the coordinate of point R :
A. $(10,4)$
B. $(6,2)$
C. $(6,3)$
D. $(8,3)$

Answer: B

D Watch Video Solution

46. Case Study-2 : Herman has a single storey
house. He decided to construct a new second storey in his house. For the construction he
gave contract to a building contractor. After few days of construction he observed that there is a defect in staircase construction, like few stairs are big, few are small, all steps are not of same size. Here is teh staircase as shown in fig., connecting points A and B. Measurements of each steps are marked in the figure.

Based on the above information answer the following questions.

By using which property/theorem we can
determine the straight line distance between end points of the stair case?
A. Thales theorem
B. Similarity property
C. Pythagoras theorem

D. Area of triangle

Answer: C

D Watch Video Solution

47. Case Study-2 : Herman has a single storey
house. He decided to construct a new second
storey in his house. For the construction he
gave contract to a building contractor. After
few days of construction he observed that
there is a defect in staircase construction, like
few stairs are big, few are small, all steps are not of same size. Here is teh staircase as
shown in fig., connecting points A and B.
Measurements of each steps are marked in the
figure.

Based on the above information answer the following questions.

Find the length of the straight line A and B.

A. 10 units

B. 12 units

C. 6 units

D. 8 units

Answer: A
48. Case Study-2 : Herman has a single storey
house. He decided to construct a new second storey in his house. For the construction he gave contract to a building contractor. After few days of construction he observed that there is a defect in staircase construction, like few stairs are big, few are small, all steps are not of same size. Here is teh staircase as shown in fig., connecting points A and B. Measurements of each steps are marked in the figure.

Based on the above information answer the following questions.

Which of the following is incorrect with respect to Pythagoras theorem?
A. It is applicable to right angled triangle.
B. It is also known as Baudhayan theorem.
C. The square of hypotenuse is equal to the
sum of square of other two sides.
D. It is applicable to all type of triangle.

Answer: D

- Watch Video Solution

49. Case Study-2 : Herman has a single storey
house. He decided to construct a new second
storey in his house. For the construction he
gave contract to a building contractor. After few days of construction he observed that there is a defect in staircase construction, like few stairs are big, few are small, all steps are not of same size. Here is teh staircase as
shown in fig., connecting points A and B.

Measurements of each steps are marked in the
figure.

Based on the above information answer the following questions.

Keeping the distance of points $A C, A B$ and $B C$ same, what can be the possible height of each stair case?
A. 1.5 units
B. 1.4 units
C. 1.3 units
D. 1.6 units

Answer: A

D Watch Video Solution

50. Case Study-2 : Herman has a single storey
house. He decided to construct a new second
storey in his house. For the construction he gave contract to a building contractor. After few days of construction he observed that
there is a defect in staircase construction, like
few stairs are big, few are small, all steps are not of same size. Here is teh staircase as shown in fig., connecting points A and B.

Measurements of each steps are marked in the figure.

Based on the above information answer the following questions.

If he wants length and breadth of each stair to
be same i.e., 2 units. Then what is the new distance between points A and B ?
A. $8 \sqrt{2}$ units
B. 8 units
C. 9 units
D. 10 units

Answer: A

- Watch Video Solution

51. What is the HCF of 16 and 32 ?
A. 4
B. 12
C. 16
D. 20

Answer: C

- Watch Video Solution

52. If the probability of winning a game is 0.3 , what is the probability of loosing it?
A. 0.5
B. 0.3
C. 0.7
D. Not defined

Answer: C

D Watch Video Solution

53. A sector is cut from a circle of 21 cm diameter. If the angle is 150° then what will be its area?
(Use $\pi=\frac{22}{7}$)
A. $144.38 \mathrm{~cm}^{2}$
B. $150.21 \mathrm{~cm}^{2}$
C. $121.82 \mathrm{~cm}^{2}$
D. $151.27 \mathrm{~cm}^{2}$

Answer: A

D Watch Video Solution

54. Give the polynomial of degree 2 with sum and product of its zeros as $-\frac{1}{2}$ and -3 respectively:
A. $k\left(x^{2}-x+6\right)$
B. $k\left(2 x^{2}+x-6\right)$
C. $k\left(x^{2}+x-3\right)$
D. $k\left(x^{2}-2 x+3\right)$

Answer: B

D Watch Video Solution

55. Graphically, the pair of equations
$6 x-3 y+10=0$
$2 x-y+9=0$
represents two lines which are
A. Intersecting lines
B. Coincident lines
C. Parallel lines
D. Can't decide

Answer: C
(Watch Video Solution
56. What should be the factors of denominator, so that a rational number can be expressed, as teminating decimal?
A. 2 or 5
B. only 2
C. only 5
D. 2 and 5

Answer: A

D Watch Video Solution
57. If the circumference of a circle and the perimeter of a square are equal, then
A. 14: 11
B. $21: 1$
C. 11: 4
D. 5:7

Answer: A

D Watch Video Solution

441

58. Has the rational number $\frac{441}{2^{2.5 \wedge} 7.7^{2}}$ a terminating or a non-terminatin decimal representation ?
A. Terminating
B. Non-terminating
C. Neither
D. Not

Answer: B

- Watch Video Solution

59. Find the coefficient of x^{0} in
$x^{2}+3 x+2=0$.
A. 3
B. -3
C. 2
D. -2

Answer: C
60. What is the HCF of the smallest composite number and the smallest prime number?
A. 2
B. 1
C. 3
D. 4

Answer: A
(D) Watch Video Solution
61. If the HCF of $(336,54)=6$, find the $L C M$
$(336,54)$
A. 336
B. 54
C. 3024
D. 6

Answer: C

- Watch Video Solution

62. The distance of the point $P(-6,8)$ from the origin is
A. 12
B. 86
C. 8
D. 10

Answer: D

D Watch Video Solution
63. Find the roots of $x+\frac{1}{x}=2$
A. 14: 11
B. $1: 1$
C. 11: 4
D. 5:7

Answer: B

- Watch Video Solution

64. Find the value of k for which the system of
equations $\quad k x-y=2,6 x-2 y=4 \quad$ has
infinitely many solutions
A. 5
B. 6
C. 3
D. None of these

Answer: C

D Watch Video Solution
65. The radii of two concentric circles are 4 cm
and 5 cm . The difference in the areas of these two circles is :
A. 9π
B. 16π
C. 25π
D. 32π

Answer: A

D Watch Video Solution
66. If $x+y=2500$ and $x-y=2500$ then
the value of x is:
A. 2500
B. 5000
C. 3000
D. 4000

Answer: A

D Watch Video Solution
67. Which triogonometric ratio related the adjacent side and opposite side of the rightangled triangle?
A. $\sin \theta$
B. $\cos \theta$
C. $\tan \theta$
D. $\sec \theta$

Answer: C

$$
\text { 68. If } x=\frac{8 \pm \sqrt{(-8)^{2}-4 \times 3 \times 2}}{2 \times 3} \text { then }
$$ the required polynomial is:

A. $3 x^{2}-8 x+2=0$
B. $2 x^{2}-8 x-2=0$
C. $3 x^{2}+8 x-2=0$
D. $3 x^{2}+8 x+2=0$

Answer: A

D Watch Video Solution
69. The distance between the points
$A\left(-\frac{8}{5}, 2\right)$ and $B\left(\frac{2}{5}, 2\right)$ is:
A. 5 units
B. $-5 u n i t s$
C. 2 units
D. 7 units

Answer: C

D Watch Video Solution
70. The values of x and y in $2 x+3 y=2$ and $x-2 y=8$ are:
A. $-4,2$
B. $-4,-2$
C. $4,-2$
D. 4,2

Answer: C
(Watch Video Solution
71. If the value of θ is 45°, then what is the value of sec 45° ?
A. 0
B. $\frac{2}{\sqrt{3}}$
C. $\sqrt{2}$
D. 1

Answer: C

- Watch Video Solution

72. The distance of the point $A(12,5)$ from the

 origin is:A. 17 units
B. 7 units
C. 13 units
D. 15 units

Answer: C

D Watch Video Solution
73. Find the coefficient of x^{0} in $x^{2}+3 x+2=0$.
A. 3
B. -3
C. 2
D. -2

Answer: C

D Watch Video Solution

74. Which of the following statement is false?

A. All isosceles triangles are similar.
B. All square are similar.
C. All circles are similar

D. None of these

Answer: A
75. Which among the following ratio, is not opposite of each other?
A. $\sin \theta$ and $\cos \theta$
B. $\cos \theta$ and $\sec \theta$
C. $\tan \theta$ and $\cot \theta$
D. $\operatorname{cosec} \theta$ and $\sin \theta$

Answer: A
(Watch Video Solution
76. The LCM of two co-prime numbers is their .
A. product of numbers
B. sum of numbers
C. difference of numbers
D. None of these

Answer: A

D Watch Video Solution

77. If the distance of a point from the base of a

 building is 15 m and angle of elevation to its top from that point is 60°. then what is the height of building?A. 25 m
B. 26 m
C. 31 m
D. 18 m

Answer: B
78. The values of x and y in $3 x+2 y=4$ and
$2 x-3 y=7$ are:
A. $2,-1$
B. 2, 1
C. $-2,-1$
D. $-2,1$

Answer: A

- Watch Video Solution

79. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from the base of the wall.
A. 8
B. 2
C. 6
D. 4

Answer: C

80. Prove that-

$\sec ^{2} \theta-1-\tan ^{2} \theta=0$
A. $\cos ^{2} \theta$
B. $\sin ^{2} \theta$
C. $\tan ^{2} \theta$
D. $\cos e c^{2} \theta$

Answer: C
81. A die is thrown twice. Find the probability
that:

5 will not come up either time

$$
\begin{aligned}
& \text { A. } \frac{23}{36} \\
& \text { B. } \frac{25}{36} \\
& \text { C. } \frac{13}{36} \\
& \text { D. } \frac{11}{36}
\end{aligned}
$$

Answer: B

D Watch Video Solution
82. Equation $a x^{2}+b x+c=0$ represents a quadratic equation if and only if
A. $a \neq 0$
B. $a=b$
C. $a=c$
D. $a=0$

Answer: A

D Watch Video Solution
83. If the end points of a line segment $A B$ are $A(6,8)$ and $(-2,-2)$ then its mid-point is:
A. $(2,3)$
B. $(3,2)$
C. $(4,6)$
D. None of these

Answer: A

D Watch Video Solution
84. If $\sec \theta+\tan \theta=x$, then $\tan \theta=$ $\frac{x^{2}+1}{x}$ (b) $\frac{x^{2}-1}{x}$ (c) $\frac{x^{2}+1}{2 x}$ (d) $\frac{x^{2}-1}{2 x}$
A. $\frac{2}{x}$
B. $\frac{1}{2} x$
C. $\frac{x^{2}-1}{2 x}$
D. $\frac{2 x}{x^{2}-1}$

Answer: C

D Watch Video Solution
85. The values of x and y in $x-y+1=0$ and
$3 x+2 y-12=0$ are:
A. $2,-3$
B. $-2,3$
C. $-2,-3$
D. 2, 3

Answer: D

D Watch Video Solution

86. Two different dice are tossed together.

Find the probability :
of getting sum 10 , of the number on the two dice.

> A. $\frac{1}{6}$
> B. $\frac{5}{6}$
> C. $\frac{1}{12}$
> D. $\frac{2}{3}$

Answer: C

87. If $x=2 \sin ^{2} \theta$ and $y=2 \cos ^{2} \theta+1$ then
the value of $x+y$ is
A. 3
B. 4
C. 5
D. 6

Answer: A
88. For which value of p will the equation
$\left(p^{2}-1\right) x^{2}+p x+q=0$ not be a quadratic equation?
A. $p=1$
B. $p=-1$
C. Both (i) and (ii)
D. $p=0$

Answer: C

89. What is the probability that a non-leap
year has 53 Sundays? $\frac{6}{7}$ (b) $\frac{1}{7}$ (c) $\frac{5}{7}$ (d) None of these
A. $\frac{6}{7}$
B. $\frac{1}{7}$
C. $\frac{2}{7}$
D. $\frac{3}{7}$

Answer: B
90. If the difference between the
circumference and the radius of a circle is 37
cm , then using $\pi=\frac{22}{7}$, the radius of the circel (in cm) is:
A. 154
B. 44
C. 14
D. 7

Answer: D

- Watch Video Solution

91. Case Study-1: Some friends of class X goes
to picnic at waterpark. There were slides i.e.
water coaster, aqua loop and launch chamber slide.

The graph below shows the position of these 3
slides by point P, Q and R.

Find the coordinates of the point ' Q ' which
divides the line segment $P R$ in th ratio $1: 2$
internally:

$$
\begin{aligned}
& \text { A. }\left(4, \frac{13}{3}\right) \\
& \text { В. }\left(\frac{13}{3}, \frac{11}{3}\right) \\
& \text { C. }\left(\frac{10}{3}, \frac{13}{3}\right) \\
& \text { D. }\left(\frac{13}{3}, 4\right)
\end{aligned}
$$

Answer: A

- Watch Video Solution

92. Case Study-1: Some friends of class X goes to picnic at waterpark. There were slides i.e.
water coaster, aqua loop and launch chamber slide.

The graph below shows the position of these 3
slides by point P, Q and R .

Find the distance between the point's P and R :
A. $2 \sqrt{10}$
B. $\sqrt{36}$
C. $\sqrt{38}$
D. $\sqrt{20}$

Answer: A

- Watch Video Solution

93. Case Study-1: Some friends of class X goes
to picnic at waterpark. There were slides i.e.
water coaster, aqua loop and launch chamber slide.

The graph below shows the position of these 3
slides by point P, Q and R .

Find the coordinates of point on X -axis which
is at equal distance from P and Q :
A. $\left(\frac{11}{9}, 0\right)$
B. $(3,0)$
C. $\left(\frac{3}{4}, 0\right)$
D. $(1,3)$

Answer: C

- Watch Video Solution

94. Case Study-1: Some friends of class X goes to picnic at waterpark. There were slides i.e. water coaster, aqua loop and launch chamber

slide.

The graph below shows the position of these 3 slides by point P, Q and R .

Find the length of P and Q .
A. $\sqrt{3}$
B. $\sqrt{4}$
C. $\sqrt{5}$
D. $\sqrt{6}$

Answer: C

D Watch Video Solution

95. Case Study-1: Some friends of class X goes
to picnic at waterpark. There were slides i.e.
water coaster, aqua loop and launch chamber
slide.

The graph below shows the position of these 3
slides by point P, Q and R .

If we shift the origin ' O ' by 2 units towards right and 1 unit towards. North. Then find the coordinate of point R :
A. $(10,4)$
B. $(6,2)$
C. $(6,3)$

D. $(8,3)$

Answer: B

D Watch Video Solution

96. Case Study-2 : Herman has a single storey
house. He decided to construct a new second
storey in his house. For the construction he gave contract to a building contractor. After few days of construction he observed that there is a defect in staircase construction, like
few stairs are big, few are small, all steps are not of same size. Here is teh staircase as shown in fig., connecting points A and B. Measurements of each steps are marked in the figure.

Based on the above information answer the following questions.

By using which property/theorem we can determine the straight line distance between end points of the stair case?

A. Thales theorem

B. Similarity property
C. Pythagoras theorem
D. Area of triangle

Answer: C

D Watch Video Solution

97. Case Study-2 : Herman has a single storey
house. He decided to construct a new second
storey in his house. For the construction he gave contract to a building contractor. After
few days of construction he observed that
there is a defect in staircase construction, like
few stairs are big, few are small, all steps are not of same size. Here is teh staircase as shown in fig., connecting points A and B.

Measurements of each steps are marked in the
figure.

Based on the above information answer the following questions.

Find the length of the straight line A and B.
A. 10 units
B. 12 units
C. 6 units
D. 8 units

Answer: A

D Watch Video Solution

98. Case Study-2 : Herman has a single storey
house. He decided to construct a new second
storey in his house. For the construction he gave contract to a building contractor. After
few days of construction he observed that there is a defect in staircase construction, like
few stairs are big, few are small, all steps are not of same size. Here is teh staircase as shown in fig., connecting points A and B.

Measurements of each steps are marked in the figure.

Based on the above information answer the following questions.

Which of the following is incorrect with respect to Pythagoras theorem?
A. It is applicable to right angled triangle.
B. It is also known as Baudhayan theorem.
C. The square of hypotenuse is equal to the sum of square of other two sides.
D. It is applicable to all type of triangle.

Answer: D

- Watch Video Solution

99. Case Study-2 : Herman has a single storey
house. He decided to construct a new second
storey in his house. For the construction he
gave contract to a building contractor. After
few days of construction he observed that
there is a defect in staircase construction, like
few stairs are big, few are small, all steps are not of same size. Here is teh staircase as
shown in fig., connecting points A and B.

Measurements of each steps are marked in the
figure.

Based on the above information answer the following questions.

Keeping the distance of points $A C, A B$ and $B C$ same, what can be the possible height of each stair case?
A. 1.5 units
B. 1.4 units
C. 1.3 units
D. 1.6 units

Answer: A

D Watch Video Solution

100. Case Study-2 : Herman has a single storey
house. He decided to construct a new second
storey in his house. For the construction he
gave contract to a building contractor. After
few days of construction he observed that
there is a defect in staircase construction, like
few stairs are big, few are small, all steps are
not of same size. Here is teh staircase as
shown in fig., connecting points A and B.

Measurements of each steps are marked in the

figure.

Based on the above information answer the following questions.

If he wants length and breadth of each stair to be same i.e., 2 units. Then what is the new distance between points A and B ?
A. $8 \sqrt{2}$ units
B. 8 units

C. 9 units

D. 10 units

Answer: A
(D) Watch Video Solution

