©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - OSWAL PUBLICATION

SAMPLE PAPER 3

Question Bank

1. What is the probability of an impossible event?
A. 0
B. -1
C. 1
D. ∞

Answer: A

D Watch Video Solution

2. What is the perimeter of a semi-circle with
radius r ?
A. $2 \pi r$
B. $2 \pi r+1$
C. $\pi r+2 r$
D. $2 \pi r+2 r$

Answer: C

D Watch Video Solution

3. If the circumference and the area of a circle are numerically equal, then diameter of the circle is (a) $\frac{\pi}{2}$ (b) 2π (c) 2 (d) 4
A. 4 units
B. 5 units
C. 2 units
D. $\frac{\pi r}{2} u n i t s$

Answer: A

D Watch Video Solution

4. For a circle having radius r, what is the area of quadrant?
A. $\frac{\pi r}{2}$
B. $\left(\pi r^{2}+2 r\right)$
C. $\frac{1}{4} \pi r^{2}$
D. $\frac{1}{2} \pi r^{2}$

Answer: C

D Watch Video Solution

5. Two positive integers expressed as $p=a b^{2}$
and $q=a^{2} b$, where a and b are prime numbers. Then the LCM of p and q is:
A. b^{2}
B. ab
C. $a^{3} b^{3}$
D. $a^{2} b^{2}$

Answer: D

D Watch Video Solution

6. If $f(x)=x^{2}-p x+q$ is a quadratic polynomial then, the sum of zeroes of the quadratic polynomial is:
A. $-p$
B. p
C. q
D. $-q$

Answer: B

D Watch Video Solution

7. The decimal expansion of the rational number $\frac{43}{2^{4} \times 5^{3}}$ will terminate after how many places of decimals?
A. 4
B. 3
C. 2
D. 6

Answer: A

- Watch Video Solution

8. Write the zeros of the polynomial
$x^{2}-x-6$.
A. $-2,3$
B. 2, 3
C. 2,3
D. $-2,-3$

Answer: A

D Watch Video Solution
9. Degree of a polynomial in one variable in a polynomial in one variable the highest power of the variable is called its degree.
A. Power
B. Degree
C. Zero
D. None of these

Answer: B

D Watch Video Solution
10. If area of quadrant of a circle is $154 \mathrm{~cm}^{2}$,
then find its radius. $\left(u s e \pi=\frac{22}{7}\right)$
A. 7
B. 49
C. 14
D. 28

Answer: C

D Watch Video Solution

11. Two friends were born in the year 2000.

What is the probability that they have the same birthday?
A. $\frac{1}{366}$
B. $\frac{2}{365}$
C. $\frac{1}{365}$
D. None of these

Answer: A

D Watch Video Solution
12. Find the probability of getting a head in a throw of a coin.
A. 1
B. $\frac{1}{2}$
C. 0
D. None of these

Answer: B

D Watch Video Solution
13. What are the value of x and y for the pair of
linear equations $2 x+3 y=2$ and $x-2 y=8$
A. 4,2
B. $-4,2$
C. $4,-2$
D. $-4,-2$

Answer: C

D Watch Video Solution
14. If the quadratic equation $x^{2}-3 x+k=0$ has equal roots, then what is the value of k ?
A. $\frac{-4}{9}$
B. $\frac{-9}{4}$
C. $\frac{9}{4}$
D. $\frac{4}{9}$

Answer: C

- Watch Video Solution

15. If $x=3$ is one root of the quadratic equation
$x^{2}-2 k x-6=0$, then find the value of k
A. 1
B. $-\frac{1}{2}$
C. 2
D. $\frac{1}{2}$

Answer: D

D Watch Video Solution

16. If P is a prime number, then find the LCM of P^{2} and P^{3}.
A. P^{3}
B. P
C. P^{2}
D. P^{4}

Answer: A

- Watch Video Solution

17. Find the coefficient of x^{0} in
$x^{2}+3 x+2=0$.
A. 1
B. 2
C. 0
D. 3

Answer: B

D Watch Video Solution
18. Student was given the assignment to prepare a graph of quadratic polynomial $y=x^{2}+2 x-3$. To draw this graph he takes
six values of y corresponding to different values of x. After plotting the points on the graph paper with suitable scale. He obtain the graph as shown below.

What is the graph of a quadratic polynomial called?
A. Hyperbola
B. Parabola

C. Ellipse

D. None of these

Answer: B

D Watch Video Solution

19. Student of class x are on visit of Sansad

Bhawan. Teacher assign them the activity to
observe and take some pictures to analyses
the seating arrangement between various MP and speaker based on coordinate geometry.

The staff tour guide explained various facts
related to Math's of Sansad Bhawan to the
students, students were surprised when teacher ask them you need to apply coordinate geometry on the seating arrangement of MP's and speaker.

Refer to the points D and C,
Find the distance between the points C and D, if the coordinates of C is $(2,-2)$ and $D(-2,3)$.
A. $\sqrt{30}$
B. 6.4
C. 5
D. 7

Answer: B

D Watch Video Solution

20. If in $\triangle A B C, \mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=40 \mathrm{~cm}$ and $\mathrm{AC}=$

41 cm then the $\triangle A B C$ is a/an
A. Acute angled triangle
B. Right angled triangle
C. Obtuse angled triangle

D. Isosceles triangle

Answer: B

D Watch Video Solution

21. Find the coordinates of the point which
divides the join of $A(-1,7)$ and $B(4,-3)$
in the ratio $2: 3$.
A. $(1,3)$
B. $(3,1)$
C. $(2,5)$
D. $(4,-3)$

Answer: A

D Watch Video Solution

22. The zeroes of a polynomial $p(x)$ are precisely the x-coordinates of the points, where the graph of $\mathrm{y}=\mathrm{p}(\mathrm{x})$ intersects the:
A. x-axis
B. y-axis
C. origin
D. none of these

Answer: A

- Watch Video Solution

23. What is the ordinate of a point on the y axis?
A. A positive number
B. A negative number
C. Zero
D. All the above

Answer: D

D Watch Video Solution

24. If α and β are the zeroes of the polynomial
$x^{2}-2 \sqrt{3} x+3$, then the value of
$\alpha+\beta-\alpha \beta:$
A. $4 \sqrt{3}-3$
B. $2 \sqrt{3}-3$
C. $4 \sqrt{3}+3$
D. $2 \sqrt{3}+3$

Answer: B

D Watch Video Solution

25. The distance between the points ($m,-n$) and
$(-m, n)$ is
A. $\sqrt{m^{2}+n^{2}}$
B. $m+n$
C. $2 \sqrt{m^{2}+n^{2}}$
D. $\sqrt{2 m^{2}+2 n^{2}}$

Answer: C

D Watch Video Solution
26. The perimeter of a tringle with vertices
$(0,4),(0,0)$ and $(3,0)$ is
A. $7+\sqrt{5}$
B. 5
C. 10
D. 12

Answer: D

- Watch Video Solution

27. The zeroes of the quadratic polynomial
$x^{2}+99 x+127$ are
A. Both positive
B. Both negative
C. One positive one negative
D. Both equal

Answer: B

D Watch Video Solution
28. The distance of the point $(-3,4)$ from x-axis
is
A. 3
B. -3
C. 4
D. 5

Answer: C

D Watch Video Solution

29. Let p be a prime number and a be a positive integer. If p divides a^{2}; then p divides a.
A. $2 k^{2}$
B. k
C. 3k
D. None of these

Answer: B

D Watch Video Solution

30. A real number a is a zero of the polynomial $f(x)$ if:
A. $f(a)>0$
B. $f(a)<0$
C. $f(a)=0$
D. $f(a) \geq 0$

Answer: C

D Watch Video Solution

31. If an event cannot occur, then its
propbability is
A. 1
B. $1 / 2$
C. 3/4
D. 0

Answer: D

D Watch Video Solution

32. If a is a zero of $f(x)$ then,___ is one of the
factors of $f(x)$.
A. $(x-2 a)$
B. $(x-a)$
C. $(x+a)$
D. $(2 x-a)$

Answer: B

D Watch Video Solution

33. If A and B are the points
$(-6,7)$ and $(-1,-5)$ respectively, then
the distance 2 AB is equal to
A. 13
B. 26
C. 169
D. 238

Answer: B

- Watch Video Solution

$$
\text { 34. } \sqrt{7}-3-\sqrt{2} \text { is: }
$$

A . a rational number

B. a natural number

C. equal to zero
D. an irrational number

Answer: D

D Watch Video Solution

35. A man goes 12 m due West and then 9 m due North. How far is he from the starting point?
A. 12 m
B. 15 m
C. 18 m
D. 24 m

Answer: B

D Watch Video Solution

36. If $x=a \sin \theta$ and $y=a \cos \theta$ then find
the value of $x^{2}+y^{2}$
A. b
B. b^{2}
C. 1
D. None of these

Answer: B

- Watch Video Solution

37. The point on x-axis which is equidistant from $(-4,0)$ and $(10,0)$ is:
A. $(7,0)$
B. $(5,0)$
C. $(0,0)$
D. $(3,0)$

Answer: D

D Watch Video Solution

38. If H.C.F. $(\mathrm{a}, \mathrm{b})=12$ and $a \times b=1800$, then
L.C.M. $(a, b)=$
A. 120
B. 150
C. 160
D. 200

Answer: B

D Watch Video Solution

39. $A B C D$ is a rectangle whose three vertices
are $B(4,0), C(4,3)$ and $D(0,3)$. The length of
one of its diagonals is
A. 4
B. 5
C. 3
D. 25

Answer: B

D Watch Video Solution

40. Simplest form of $\left(1+\tan ^{2} A\right) /\left(1+{ }^{\wedge} \cot ^{\wedge} 2^{\prime} A\right)$ IS
A. $\sec ^{2} A$
B. $\cot ^{2} A$
C. $\tan ^{2} A$
D. None of these

Answer: C

- Watch Video Solution

41. Case Study-1: A big match of baseball is going to happen. For this a field need to be prepared. The field is somewhat triangular in shape with a semi-circle as shwon in the figure.

The area in which pitch is to be made is APRQ where P and Q are two points on boundary. As
it is an important game, so dimensions need
to be perfect and hence $\frac{A P}{A B}=\frac{A Q}{A C}$. We have $A P=2 x \mathrm{~cm}, A B=x+4 \mathrm{~cm}, P Q=x \mathrm{~cm}$ and $B C=7$ cm.

Answer the following questions:

Which of the two similar Δs will be used to

calculate the dimensions of the field?

A. $\triangle P Q R$ and $\triangle A P Q$
B. $\triangle P Q R$ and $\triangle A B C$
C. $\triangle A P Q$ and $\triangle A B Q$
D. $\triangle A P Q$ and $\triangle A B Q$

Answer: C

D Watch Video Solution

42. Case study-2: There are in total six trignometric ratios, namely sine(sin), cosine (cos), tangent (tan), cosecant (cosec), secant(sec) and cotagent(cot). The
trigonometric fuctions cosecant. Secant and cotagent are simply the reciprocals of the trigonometric fuctions sine, cosine and tangent for the angles of a triangle. The values of these trigonometric ratios gives a certain rational for some values of angle (say, α).

Some such values for the angle of triangle are shown in the table below:

Angle/Ratio	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	not defined
$\operatorname{cosec} \theta$	not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\sec \theta$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	not defined
$\cot \theta$	not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

Answer the following questions:

What is the value of $\sin \alpha+\cos \beta$, when the
values of α and β are respectively 30° and 60°
?
A. 1
B. $1 / 2$
C. 2
D. 0

Answer: A

D Watch Video Solution

43. Case study-2: There are in total six trignometric ratios, namely sine(sin), cosine (cos), tangent (tan), cosecant (cosec), secant(sec) and cotagent(cot). The trigonometric fuctions cosecant. Secant and
cotagent are simply the reciprocals of teh trigonometric fuctions sine, cosine and tangent for the angles of a triangle. The values of these trigonometric ratios gives a certain rational for some values of angle (say, α). Some such values for the angle of triangle are shown in the table below:

Angle/Ratio	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	not defined
$\operatorname{cosec} \theta$	not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\sec \theta$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	not defined
$\cot \theta$	not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

Answer the following questions:
Find the value of $\frac{\left(\sin ^{2} 30^{0}-\sin 0^{0}\right)}{\left(\cos ^{2} 90^{\circ}-\cos ^{2} 60^{\circ}\right)}$.
A. 0
B. -1
C. 1
D. $1 / 2$

Answer: B
44. Case study-2: There are in total six trignometric ratios, namely sine(sin), cosine (cos), tangent (tan), cosecant (cosec), secant(sec) and cotagent(cot). The
trigonometric fuctions cosecant. Secant and cotagent are simply the reciprocals of teh trigonometric fuctions sine, cosine and tangent for the angles of a triangle. The values of these trigonometric ratios gives a certain rational for some values of angle (say, α).

Some such values for the angle of triangle are shown in the table below:

Angle/Ratio	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	not defined
$\operatorname{cosec} \theta$	not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\sec \theta$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	not defined
$\cot \theta$	not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

Answer the following questions:

If $\alpha=90^{\circ}$ and $\beta=60^{\circ}$, determine the value

of $\sin ^{2} \alpha+\sin ^{2} \beta$.
A. $\frac{4}{5}$
B. $\frac{3}{5}$
C. $\frac{7}{4}$
D. $\frac{5}{3}$

Answer: C

D Watch Video Solution

45. Case study-2: There are in total six trignometric ratios, namely sine(sin), cosine (cos), tangent (tan), cosecant (cosec), secant(sec) and cotagent(cot). The
trigonometric fuctions cosecant. Secant and cotagent are simply the reciprocals of ten
trigonometric fuctions sine, cosine and tangent for the angles of a triangle. The values of these trigonometric ratios gives a certain rational for some values of angle (say, α). Some such values for the angle of triangle are shown in the table below:

Angle / Ratio	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	not defined
$\operatorname{cosec} \theta$	not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\sec \theta$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	not defined
$\cot \theta$	not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

Answer the following questions:

If both α and $\beta=60^{\circ}$, find the value of $\sin ^{2} \alpha+\cos ^{2} \beta$.
A. 1
B. 2
C. -1
D. -2

Answer: A
(Watch Video Solution
46. Case study-2: There are in total six trignometric ratios, namely sine(sin), cosine (cos), tangent (tan), cosecant (cosec), secant(sec) and cotagent(cot). The
trigonometric fuctions cosecant. Secant and cotagent are simply the reciprocals of teh trigonometric fuctions sine, cosine and tangent for the angles of a triangle. The values of these trigonometric ratios gives a certain rational for some values of angle (say, α).

Some such values for the angle of triangle are shown in the table below:

Angle/Ratio	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	not defined
$\operatorname{cosec} \theta$	not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\sec \theta$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	not defined
$\cot \theta$	not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

Answer the following questions:

If in the triangle $A B C$ the lengths of sides $A B$

and $B C$ are in the ration of $13: 5$, find the value

of $\operatorname{cosec} \alpha$.

5

A. $\frac{5}{13}$
B. $\frac{8}{13}$
C. $\frac{8}{13}$
D. $\frac{13}{5}$

Answer: D

(D) Watch Video Solution
47. What is the probability of an impossible event?
A. 0
B. -1
C. 1
D. ∞

Answer: A

- Watch Video Solution

48. What is the perimeter of a semi-circle with
radius r ?
A. $2 \pi r$
B. $2 \pi r+1$
C. $\pi r+2 r$
D. $2 \pi r+2 r$

Answer: C

D Watch Video Solution

49. If the perimeter and the area of a circle are numerically equal, then the diameter of the circle is
A. 4 units
B. 5 units
C. 2 units
D. $\frac{\pi r}{2} u n i t s$

Answer: A

D Watch Video Solution
50. For a circle having radius r, what is the area

of quadrant?

A. $\frac{\pi r}{2}$
B. $\left(\pi r^{2}+2 r\right)$
C. $\frac{1}{4} \pi r^{2}$
D. $\frac{1}{2} \pi r^{2}$

Answer: C

D Watch Video Solution

51. If two positive integers p and q can be expressed as $p=a b^{2}$ and $q=a^{3} b$ where a and b are prime numbers, then the LCM (p, q)
A. b^{2}
B. ab
C. $a^{3} b^{3}$
D. $a^{2} b^{2}$

Answer: D

D Watch Video Solution

52. If $f(x)=x^{2}-p x+q$ is a quadratic polynomial then, the sum of zeroes of the quadratic polynomial is:
A. $-p$
B. p
C. q
D. $-q$

Answer: B

D Watch Video Solution

53. The decimal expansion of the rational number $\frac{43}{2^{4} \times 5^{3}}$ will terminate after how many places of decimals?
A. 4
B. 3
C. 2
D. 6

Answer: A

- Watch Video Solution

54. Write the zeros of the polynomial
$x^{2}-x-6$.

$$
\text { A. }-2,3
$$

B. 2, 3
C. 2,3
D. $-2,-3$

Answer: A

D Watch Video Solution

55. Name the highest power of a variable in a polynomial.
A. Power
B. Degree
C. Zero
D. None of these

Answer: B

D Watch Video Solution
56. If area of quadrant of a circle is $154 \mathrm{~cm}^{2}$,
then find its radius. $\left(u s e \pi=\frac{22}{7}\right)$
A. 7
B. 49
C. 14
D. 28

Answer: C

D Watch Video Solution

57. Two friends were born in the year 2000.

What is the probability that they have the same birthday?
A. $\frac{1}{366}$
B. $\frac{2}{365}$
C. $\frac{1}{365}$
D. None of these

Answer: A

D Watch Video Solution

58. Find the probability of getting a head in a throw of a coin .
A. 1
B. $\frac{1}{2}$
C. 0
D. None of these

Answer: B

D Watch Video Solution
59. What are the value of x and y for the pair of linear equations $2 x+3 y=2$ and $x-2 y=8 ?$
A. 4,2
B. $-4,2$
C. $4,-2$
D. $-4,-2$

Answer: C

D Watch Video Solution
60. If the quadratic equation $x^{2}-3 x+k=0$
has equal roots, then what is the value of k ?
A. $\frac{-4}{9}$
B. $\frac{-9}{4}$
C. $\frac{9}{4}$
D. $\frac{-4}{9}$

Answer: C

- Watch Video Solution

61. If $x=3$ is one root of the quadratic equation
$x^{2}-2 k x-6=0$, then find the value of k
A. 1
B. $-\frac{1}{2}$
C. 2
D. $\frac{1}{2}$

Answer: D

D Watch Video Solution

62. If P is a prime number, then find the LCM of
P^{2} and P^{3}.
A. P^{3}
B. P
C. P^{2}
D. P^{4}

Answer: A

- Watch Video Solution

63. Find the coefficient of x^{0} in
$x^{2}+3 x+2=0$.
A. 1
B. 2
C. 0
D. 3

Answer: B

D Watch Video Solution

64. Student was given the assignment to prepare a graph of quadratic polynomial $y=x^{2}+2 x-3$. To draw this graph he takes
six values of y corresponding to different values of x. After plotting the points on the graph paper with suitable scale. He obtain the graph as shown below.

What is the graph of a quadratic polynomial called?
A. Hyperbola
B. Parabola

C. Ellipse

D. None of these

Answer: B

D Watch Video Solution

65. Student of class x are on visit of Sansad

Bhawan. Teacher assign them the activity to
observe and take some pictures to analyses
the seating arrangement between various MP and speaker based on coordinate geometry.

The staff tour guide explained various facts
related to Math's of Sansad Bhawan to the
students, students were surprised when teacher ask them you need to apply coordinate geometry on the seating arrangement of MP's and speaker.

Refer to the points D and C,
Find the distance between the points C and D, if the coordinates of C is $(2,-2)$ and $D(-2,3)$.
A. $\sqrt{30}$
B. 6.4
C. 5
D. 7

Answer: B

D Watch Video Solution

66. If in $\triangle A B C, \mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=40 \mathrm{~cm}$ and $\mathrm{AC}=$

41 cm then the $\Delta A B C$ is a/an
A. Acute angled triangle
B. Right angled triangle
C. Obtuse angled triangle

D. Isosceles triangle

Answer: B

D Watch Video Solution

67. Find the coordinates of the point which
divides the join of $A(-1,7)$ and $B(4,-3)$
in the ratio 2:3.
A. $(1,3)$
B. $(3,1)$
C. $(2,5)$
D. $(4,-3)$

Answer: A

D Watch Video Solution

68. The zeroes of a polynomial $p(x)$ are precisely the x-coordinates of the points, where the graph of $\mathrm{y}=\mathrm{p}(\mathrm{x})$ intersects the:
A. x-axis
B. y-axis
C. origin
D. none of these

Answer: A

D Watch Video Solution

69. What is the ordinate of a point on the y axis?
A. A positive number
B. A negative number
C. Zero
D. All the above

Answer: D

D Watch Video Solution

70. If α and β are the zeroes of the polynomial
$x^{2}-2 \sqrt{3}+3, \quad$ then the value of
$\alpha+\beta-\alpha \beta:$
A. $4 \sqrt{3}-3$
B. $2 \sqrt{3}-3$
C. $4 \sqrt{3}+3$
D. $2 \sqrt{3}+3$

Answer: B

D Watch Video Solution

71. The distance between the points ($m,-n$) and
$(-m, n)$ is
A. $\sqrt{m^{2}+n^{2}}$
B. $m+n$
C. $2 \sqrt{m^{2}+n^{2}}$
D. $\sqrt{2 m^{2}+2 n^{2}}$

Answer: C

D Watch Video Solution

72. The perimeter of a tringle with vertices
$(0,4),(0,0)$ and $(3,0)$ is
A. $7+\sqrt{5}$
B. 5
C. 10
D. 12

Answer: D

- Watch Video Solution

73. The zeroes of the quadratic polynomial $x^{2}+99 x+127$ are:
A. Both positive
B. Both negative
C. One positive one negative
D. Both equal

Answer: B

D Watch Video Solution
74. The distance of the point $(-3,4)$ from x-axis is
A. 3
B. -3
C. 4
D. 5

Answer: C

D Watch Video Solution

75. Theorem 1.3 : Let p be a prime number. If p divides $a 2$, then p divides a, where a is a positive integer.
A. $2 k^{2}$
B. k
C. 3k
D. None of these

Answer: B

D Watch Video Solution

76. A real number a is a zero of the polynomial $f(x)$ if:
A. $f(a)>0$
B. $f(a)<0$
C. $f(a)=0$
D. $f(a) \geq 0$

Answer: C

- Watch Video Solution

77. If an event cannot occur, then its
propbability is
A. 1
B. $1 / 2$
C. 3/4
D. 0

Answer: D

- Watch Video Solution

78. If a is a zero of $f(x)$ then, ____ is one of the
factors of $f(x)$.
A. $(x-2 a)$
B. $(x-a)$
C. $(x+a)$
D. $(2 x-a)$

Answer: B

D Watch Video Solution

79. If A and B are the points
$(-6,7)$ and $(-1,-5)$ respectively, then
the distance $2 A B$ is equal to
A. 13
B. 26
C. 169
D. 238

Answer: B

- Watch Video Solution

80. $\sqrt{7}-3-\sqrt{2}$ is:

A . a rational number

B. a natural number

C. equal to zero
D. an irrational number

Answer: D

D Watch Video Solution

81. A man goes 12 m due West and then 9 m
due North. How far is he from the starting point?
A. 12 m
B. 15 m
C. 18 m
D. 24 m

Answer: B

- Watch Video Solution

82. If $x=a \sin \theta$ and $y=a \cos \theta$ then find
the value of $x^{2}+y^{2}$
A. b
B. b^{2}
C. 1
D. None of these

Answer: B

- Watch Video Solution

83. The point on x-axis whichis equidistant from $(-4,0)$ and $(10,0)$ is:
A. $(7,0)$
B. $(5,0)$
C. $(0,0)$
D. $(3,0)$

Answer: D

D Watch Video Solution

84. If H.C.F. $(\mathrm{a}, \mathrm{b})=12$ and $a \times b=1800$, then
L.C.M. $(a, b)=$
A. 120
B. 150
C. 160
D. 200

Answer: B

D Watch Video Solution

85. $A B C D$ is a rectangle whose vertices are $B(4,0), C(4,3)$ and $D(0,3)$. The length of one of
its diagonals is:
A. 4
B. 5
C. 3
D. 25

Answer: B

- Watch Video Solution

86. $\frac{\left(1+\tan ^{2} A\right)}{\left(1+\cot ^{2} A\right)}=$?
A. $\sec ^{2} A$
B. $\cot ^{2} A$
C. $\tan ^{2} A$
D. None of these

Answer: C

- Watch Video Solution

87. Case Study-1: A big match of baseball is going to happen. For this a field need to be prepared. The field is somewhat triangular in shape with a semi-circle as shwon in the figure.

The area in which pitch is to be made is APRQ where P and Q are two points on boundary. As
it is an important game, so dimensions need
to be perfect and hence $\frac{A P}{A B}=\frac{A Q}{A C}$. We have $A P=2 x \mathrm{~cm}, A B=x+4 \mathrm{~cm}, P Q=x \mathrm{~cm}$ and $B C=7$ cm.

Answer the following questions:

Which of the two similar Δs will be used to

calculate the dimensions of the field?

A. $\triangle P Q R$ and $\triangle A P Q$
B. $\triangle P Q R$ and $\triangle A B C$
C. $\triangle A P Q$ and $\triangle A B Q$
D. $\triangle A P Q$ and $\triangle A B Q$

Answer: B

D Watch Video Solution

88. Case Study-1: A big match of baseball is
going to happen. For this a field need to be prepared. The field is somewhat triangular in shape with a semi-circle as shwon in the figure.

The area in which pitch is to be made is APRQ where P and Q are two points on boundary. As
it is an important game, so dimensions need to be perfect and hence $\frac{A P}{A B}=\frac{A Q}{A C}$. We
have $A P=2 x \mathrm{~cm}, A B=x+4 \mathrm{~cm}, P Q=x \mathrm{~cm}$ and $B C=7$
cm.

Answer the following questions:
Which criteria of similarity is used for the above Δs ?
A. SSS
B. AA
C. RHS
D. SAS

Answer: B
89. Case Study-1: A big match of baseball is going to happen. For this a field need to be prepared. The field is somewhat triangular in shape with a semi-circle as shwon in the figure.

The area in which pitch is to be made is APRQ where P and Q are two points on boundary. As
it is an important game, so dimensions need
to be perfect and hence $\frac{A P}{A B}=\frac{A Q}{A C}$. We have $A P=2 x \mathrm{~cm}, A B=x+4 \mathrm{~cm}, P Q=x \mathrm{~cm}$ and $B C=7$ cm.

Answer the following questions:
To help the pitchmaker, transform the relation
$\frac{A P}{A B}=\frac{P Q}{B C}$, into a quadratic equation in x .
A. $x^{2}-10 x=0$
B. $x^{2}-14 x+2=0$
C. $x^{2}+14 x-2=0$
D. None of these

Answer: A

(Watch Video Solution

90. Case Study-1: A big match of baseball is going to happen. For this a field need to be prepared. The field is somewhat triangular in shape with a semi-circle as shwon in the figure.

The area in which pitch is to be made is APRQ
where P and Q are two points on boundary. As
it is an important game, so dimensions need
to be perfect and hence $\frac{A P}{A B}=\frac{A Q}{A C}$. We have $A P=2 x \mathrm{~cm}, A B=x+4 \mathrm{~cm}, P Q=x \mathrm{~cm}$ and $B C=7$
cm.

Answer the following questions:

Find the value of the ' x ' in the equation
$x_{2}-10 x=0$.
A. 8
B. 10
C. 7
D. 4

Answer: B

D View Text Solution

91. Case Study-1: A big match of baseball is
going to happen. For this a field need to be
prepared. The field is somewhat triangular in shape with a semi-circle as shwon in the figure.

The area in which pitch is to be made is APRQ where P and Q are two points on boundary. As
it is an important game, so dimensions need
to be perfect and hence $\frac{A P}{A B}=\frac{A Q}{A C}$. We have $A P=2 x \mathrm{~cm}, A B=x+4 \mathrm{~cm}, P Q=x \mathrm{~cm}$ and $B C=7$ cm.

Answer the following questions:
What will be length of the side AP?
A. 10 cm
B. 20 cm
C. 5 cm
D. 8 cm

Answer: B

D Watch Video Solution

92. Case study-2: There are in total six trignometric ratios, namely sine(sin), cosine
(cos), tangent (tan), cosecant (cosec),
secant(sec) and cotagent(cot). The
trigonometric fuctions cosecant. Secant and cotagent are simply the reciprocals of teh trigonometric fuctions sine, cosine and tangent for the angles of a triangle. The values of these trigonometric ratios gives a certain rational for some values of angle (say, α).

Some such values for the angle of triangle are shown in the table below:

Angle /Ratio	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	not defined
$\operatorname{cosec} \theta$	not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\sec \theta$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	not defined
$\cot \theta$	not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

Answer the following questions:

What is the value of $\sin \alpha+\cos \beta$, when the values of α and β are respectively 30° and 60°

?

A. 1
B. $1 / 2$
C. 2
D. 0

- Watch Video Solution

93. Case study-2: There are in total six trignometric ratios, namely sine(sin), cosine (cos), tangent (tan), cosecant (cosec), secant(sec) and cotagent(cot). The
trigonometric fuctions cosecant. Secant and cotagent are simply the reciprocals of th trigonometric fuctions sine, cosine and tangent for the angles of a triangle. The values of these trigonometric ratios gives a certain rational for some values of angle (say, α).

Some such values for the angle of triangle are

shown in the table below:

Angle/Ratio	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	not defined
$\operatorname{cosec} \theta$	not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\sec \theta$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	not defined
$\cot \theta$	not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

Answer the following questions:

Find the value of

$$
\left(\sin ^{2} 30^{0}-\sin 0^{0}\right)
$$

$$
\left(\cos ^{2} 90^{\circ}-\cos ^{2} 60^{\circ}\right) .
$$

A. 0
B. -1
C. 1

D. $1 / 2$

Answer: B

D Watch Video Solution

94. Case study-2: There are in total six trignometric ratios, namely sine(sin), cosine (cos), tangent (tan), cosecant (cosec), secant(sec) and cotagent(cot). The trigonometric fuctions cosecant. Secant and
cotagent are simply the reciprocals of teh trigonometric fuctions sine, cosine and tangent for the angles of a triangle. The values of these trigonometric ratios gives a certain rational for some values of angle (say, α). Some such values for the angle of triangle are shown in the table below:

Angle/Ratio	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	not defined
$\operatorname{cosec} \theta$	not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\sec \theta$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	not defined
$\cot \theta$	not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

Answer the following questions:

If $\alpha=90^{\circ}$ and $\beta=60^{\circ}$, determine the value of $\sin ^{2} \alpha+\sin ^{2} \beta$.
A. $\frac{4}{5}$
B. $\frac{3}{5}$
C. $\frac{7}{4}$
D. $\frac{5}{3}$

Answer: C

95. Case study-2: There are in total six trignometric ratios, namely sine(sin), cosine (cos), tangent (tan), cosecant (cosec), secant(sec) and cotagent(cot). The trigonometric fuctions cosecant. Secant and cotagent are simply the reciprocals of teh
trigonometric fuctions sine, cosine and tangent for the angles of a triangle. The values
of these trigonometric ratios gives a certain rational for some values of angle (say, α). Some such values for the angle of triangle are

shown in the table below:

Angle /Ratio	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	not defined
$\operatorname{cosec} \theta$	not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\sec \theta$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	not defined
$\cot \theta$	not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

Answer the following questions:

If both α and $\beta=60^{\circ}$, find the value of $\sin ^{2} \alpha+\cos ^{2} \beta$.
A. 1
B. 2
C. -1
D. -2

Answer: A

D Watch Video Solution

96. Case study-2: There are in total six trignometric ratios, namely sine(sin), cosine (cos), tangent (tan), cosecant (cosec), secant(sec) and cotagent(cot). The trigonometric fuctions cosecant. Secant and
cotagent are simply the reciprocals of teh trigonometric fuctions sine, cosine and tangent for the angles of a triangle. The values of these trigonometric ratios gives a certain rational for some values of angle (say, α). Some such values for the angle of triangle are shown in the table below:

Angle/Ratio	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	not defined
$\operatorname{cosec} \theta$	not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\sec \theta$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	not defined
$\cot \theta$	not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

Answer the following questions:

If in the triangle $A B C$ the lengths of sides $A B$ and $B C$ are in the ration of $13: 5$, find the value of $\operatorname{cosec} \alpha$.

$$
\begin{aligned}
& \text { A. } \frac{5}{13} \\
& \text { B. } \frac{8}{13} \\
& \text { C. } \frac{13}{8} \\
& \text { D. } \frac{13}{5}
\end{aligned}
$$

- Watch Video Solution

Section A

1. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

D Watch Video Solution

2. For what value of p are $2 p+1,13,5 p-3$ are three consecutive terms of an A.P.?
3. $a b x^{2}+\left(b^{2}-a c\right) x-b c=0$

- Watch Video Solution

4. Two types of water tankers are available in a shop. One is in a cubic form of dimensions
$1 m \times 1 m \times 1 m$ and another is in the cylindrical form of height 1 m and diameter 1 m . Calculate the volume of both the containers. (Use $\pi=3.14$)

- Watch Video Solution

5. Find the mode of the following frequency distribution:

Chass Interyal	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency	2	8	10	5	4	3

- Watch Video Solution

6. Find the number of natural numbers
between 101 and 999 which are divisible by both 2 and 5.

Watch Video Solution

Section B

1. Find the mean and median for the following data:

Chass	$0-4$	$4-8$	$8-12$	$12-16$	$16-20$

D Watch Video Solution

2. The angle of depression of a car standing on
the ground from the top of a 75 m high tower
is 30°. Find the distance of the car from the base of the tower (in m).

D Watch Video Solution

Section C

1. The horizontal distance between two poles
is 15 m . The angle of depression of the top of
the first pole as seen from the top of the second pole is 30°. If the height of the second
pole is 24 m , find the height of the first pole.
[Use $\sqrt{3}=1.732$]

D Watch Video Solution

2. Amit was playing a number card game. In the game, some number cards (having both
+ve or -ve numbers) are arranged in a row
such that they are following an arithmetic progression. On his first turn, Amit picks up

6th and 14th card and finds their sum to be
-76. On the second turn he picks up 8th and

16th card and finds their sum to be -96 .

Based on the above information, answer the
following questions.
What is the difference between the numbers

on any two consecutive cards?

3. Amit was playing a number card game. In the game, some number cards (having both
+ve or -ve numbers) are arranged in a row
such that they are following an arithmetic progression. On his first turn, Amit picks up

6th and 14th card and finds their sum to be
-76. On the second turn he picks up 8th and
16th card and finds their sum to be -96 .
Based on the above information, answer the following questions.

What is the sum of $9^{t h}$ and $15^{\text {th }}$ card ?

D Watch Video Solution
4. For class of 10 students, a teacher planned a
game for the revision of chapter circles with
some questions written on the board, which
are to be answered by the students. For each
correct answer, a student will get a reward.

Some of the questions are given below.

In the given figure, $x+y=$

D Watch Video Solution

5. For class of 10 students, a teacher planned a game for the revision of chapter circles with some questions written on the board, which are to be answered by the students. For each correct answer, a student will get a reward.

Some of the questions are given below.

If PA and PB are two tangents drawn to a circle with centre O from P such that $\angle A P B=50^{\circ}$, then $\angle O A B=$

