©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - OSWAL PUBLICATION

SAMPLE PAPER 4

Question Bank

1. If one zero of the quadratic polynomial
$x^{2}-5 x-6$ is 6 then find the other zero
A. 0
B. -1
C. 1
D. 2

Answer: B

- Watch Video Solution

2. If two positive integers a and b can be
$a=x^{2} y^{5}$ and $b=x^{3} y^{2}$, wherex,y are prime numbers, then find LCM of a and b.
A. $x^{3} y^{5}$
B. $x^{5} y^{7}$
C. $x^{5} y^{5}$
D. ${ }^{\wedge} x^{\wedge} 3 y^{\wedge} 2$

Answer: A
(Watch Video Solution
3. What are the number of zeroes/zero of the polynomial $\mathrm{y}=\mathrm{f}(\mathrm{x})$, of the graph shown below.

A. 3
B. 4
C. 2
D. 1

Answer: A

D Watch Video Solution

4. If the HCF of $(336,54)=6$, find the $L C M$
$(336,54)$
A. 306
B. 3224
C. 3024
D. 3500

Answer: C

D Watch Video Solution

5. The circumference of a circle is 22 cm . Find
the area of its quadrant.
A. $\frac{77}{8}$
B. $\frac{22}{7}$
C. 78
D. 156

D Watch Video Solution

6. Determine the probability of getting a number which is neither prime nor composite in single throw of a fair dice.
A. $\frac{1}{4}$
B. $\frac{2}{3}$
C. $\frac{1}{6}$
D. $\frac{1}{5}$

Answer: C

D Watch Video Solution

7. A wire is in the shape of a circle of radius 21
cm . It is bent to form a square. The side of the
square is : $\left(\pi=\frac{22}{7}\right)$
A. 33 cm
B. 44 cm
C. 66 cm

D. 100 cm

Answer: A

D Watch Video Solution

8. Find the common difference of an A.P. in
which $a_{10}-a_{8}=12$.
A. 0
B. 1
C. 2
D. 6

Answer: D

D Watch Video Solution

9. If the difference between the circumference
and the radius of a circle is 37 cm , then using
$\pi=\frac{22}{7}$, what would be the radius of the circle (in cm)?
A. 3.5 cm

B. 7 cm

C. 14 cm
D. 21 cm

Answer: B

- Watch Video Solution

10. If $P(E)=0.05 \mathrm{P}(\mathrm{E})=0.05$, what is the probability of not E ?
A. 0.05
B. 0.01
C. 0.9
D. 0.95

Answer: D

D Watch Video Solution

11. For a Math Activity of class X students, teacher show a political map of India on projector screen then ask the student that how many states they have visited in India,
then ask to observe the map carefully and
assign them to locate the coordinates of capital to each state. Based on information given in map. Answer the question given below.

Consider 1 block as 1000 km.

Find the distance between mobile
communication tower in states Bihar and

Gujrat, if these are located at $B(6,4)$ and $D(-6$,
-1) is:
A. 1000 km
B. 13000 km
C. 500 km
D. 2000 km

Answer: B
(Watch Video Solution
12. On a sudden windy night, the electricity of the whole town got crashed. On the next morning, Rahul went out and found some electric wires are hanging, it reminded him of a mathematical shape, which is shown in the figure.

To which shape this wire bends, resembles?
A. Spiral
B. Circle
C. Hyperbola
D. Parabola

Answer: D

D Watch Video Solution

13. If one of the zeroes of the quadratic polynomial $(k-1) x^{2}+k x+1$ is -3 ,then the value of k is
A. $3 / 4$
B. $4 / 3$
C. $3 / 2$
D. $2 / 4$

Answer: B

D Watch Video Solution

14. If $H C F$ of 65 and 117 is expressible in the form $65 m-117$, then the value of m is
A. 4
B. 2
C. 1
D. 3

Answer: B

D Watch Video Solution

15. Write whether

$$
\frac{2 \sqrt{45}+3 \sqrt{20}}{2 \sqrt{5}} \text { on }
$$

simplification gives a rational or an irrational

number.

A. Rational number
B. Irrational number
C. Both (a) and (b)

D. None of these

Answer: A
16. Out of the following, the incorrect statement for a quadratic polynomial is:
A. no real zeroes
B. two equal real zeroes
C. two distinct zeroes
D. three real zeroes

Answer: A
(Watch Video Solution
17. Solve the following pair of linear equations
by \quad substitution metho
$x+2 y=2, x-3 y=7$ find the value of x.
A. 2
B. 1
C. 4
D. 0

Answer: C

18. If the points $A(x, 2), B(-3,-4)$ and $C(7,-5)$ are

collinear then the value of x is ?

A. -63
B. 63
C. -60
D. 60

Answer: A

- Watch Video Solution

19. If the HCF of two numbers is 2 and their

LCM is 27 , what is the product of the two numbers?
A. 54
B. 27
C. 45
D. 82

Answer: A

D Watch Video Solution
20. The perimeter of the triangle with vertices
$(0,4),(0,0)$ and $(3,0)$ is
A. 3
B. 5
C. 10
D. 12

Answer: D

D Watch Video Solution
21. What is the y coordinate of the mid-point of $A(-1,3)$ and $B(1,-1)$?
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

22. The roots of the equation
$a x^{2}+b x+c=0$ will be reciprocal of each
other if
A. $a=c$
B. $a=b$
C. $b=c$
D. $a+c=0$

Answer: A

D Watch Video Solution
23. In a right angled triangle $A B C$, right angled
at $B, A B=3, B C=x+2$ and $A C=x+3$. Then find the
value of x :
A. 4
B. 2
C. 1
D. 3

Answer: B

D Watch Video Solution
24. The area of the triangle in the given figure
(in sq. units) is:

A. 15
B. 10
C. 7.5
D. 2.5

Answer: C

D Watch Video Solution

25. One card is drawn from a well-shuffled deck
of 52 cards. What is the probability of getting
a king card?
A. $1 / 13$
B. $1 / 3$
C. $1 / 3$
D. $1 / 2$

- Watch Video Solution

26. If a be any composite number then \sqrt{a} is always:
A. Rational
B. Irrational
C. Both a and B
D. None of these

Answer: C

D Watch Video Solution

27. The probability that number selected at random from the numbers $1,2,3, \ldots, 15$ is a multiple of 4 , is
A. $1 / 5$
B. $1 / 3$
C. 1/4
D. $1 / 2$

- Watch Video Solution

28. If HCF of two numbers is 1 , the number are
called relatively or
A. Composite
B. relatively prime or co-prime
C. perfect
D. irrational numbers

Answer: B

D Watch Video Solution

29. The area of the circle that can be inscribed

in a square of side 6 cm is
A. $2 \pi c m^{2}$
B. $3 \pi \mathrm{~cm}^{2}$
C. $9 \pi \mathrm{~cm}^{2}$
D. $4 \pi \mathrm{~cm}^{2}$

Answer: C

D Watch Video Solution

30. If -4 is a zero of the polynomial $x^{2}-x-(2 k+2)$, then find the value of k .
A. 3
B. 9
C. 6
D. -9

Answer: B

D Watch Video Solution

31. If the point $C(k, 4)$ divides the join of $A(2,6)$
and $B(5,1)$ in the ratio $2: 3$ then find the value of k.
A. 16
B. $\frac{28}{5}$
C. $\frac{16}{5}$
D. $\frac{8}{5}$

Answer: C

D Watch Video Solution

32. The distance of the point $(-3,4)$ from x-axis is
A. 3
B. -3
C. 4
D. 5

D Watch Video Solution

33. Someone is asked to take number from 1 to
34. The probablity that it is a prime, is
A. $1 / 5$
B. $6 / 25$
C. 1/4
D. $13 / 50$

Answer: C

D Watch Video Solution

34. If $3^{x-6}=9$ and $3^{x+y}=81$, then value of y
is:
A. -4
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

35. In the given figure $P(5,-3)$ and $Q(3, y)$ are
the points of trisection of the line segment
joining $A(4,7)$ and $B(1,-5)$. Then y equals:

A. 2
B. 4
C. -4

$$
\text { D. }-\frac{5}{2}
$$

Answer: C

D Watch Video Solution

36. If θ is an acute angle and $6+4 \sin \theta=8$,
then the value of θ :
A. 90°
B. 30°
C. 45°

D. 60°

Answer: B

D Watch Video Solution

37. If the coordinates of one end of a diameter of a circle are $(2,3)$ and the coordinates of its centre are $(-2,5)$, then the coordinates of the other end of the diameter are
A. $(-6,7)$
B. $(6,-7)$
C. $(6,7)$
D. $(-6,-7)$

Answer: A

- Watch Video Solution

38. Graphically $x-3=0$ represents a line:
A. parallel to x-axis at a distance 3 units from x-axis
B. parallel to y-axis at a distance 3 units
from y-axis
C. parallel to x-axis at a distance 3 units
from y-axis
D. parallel to y-axis at a distance 3 units
from x-axis

Answer: B

39. The coordinates of the point P dividing the
line segment joining the points $A(1,3)$ and $B(4$,
6) in the ratio $2: 1$ is
A. $(2,4)$
B. $(3,5)$
C. $(4,2)$
D. $(5,3)$

Answer: B

D Watch Video Solution
40. A pair of linear equations is said to be inconsistent if it has:
A. only one solution
B. no solution
C. infinitely many solutions

D. both a and c

Answer: B
41. Case Study-1: Consider a right triangle, where a and b are its length, and base and c is its hypotenuse as shown below. When we observe and apply the trigonometric functions to make a relationship between angles and sides of the right triangle. We can obtain the results as per the calculations and the table depicted below.

If the right angle of the right triangle $A B C$ is at
the point C, then the sine (\sin), cosine (cos)
and tangent (tan) of the angles α (at the point
A) and β (at the point B). It should be noted that $\sin \alpha \cos \beta$ are the equal and same goes
for $\sin \alpha$ and $\cos \beta$. So, to find sine of the angle, we divided the side that is opposite of that angle and the hypotenuse. To find the
cosine of the angle, we divide the side that
makes that angle (adjacent side) by the hypotenuse.

Thus,

$$
\begin{array}{cc}
\sin \alpha=a / c & \sin \beta=b / c \\
\cos \alpha=b / c & \cos \beta=a / c \\
\tan \alpha=a / b & \tan \beta=b / a
\end{array}
$$

Answer the following questions:

If sides a and b of a right triangle are 3 cm and
4 cm , respectively, find the value of cosine of α.
A. $4 / 5$
B. $3 / 5$
C. $4 / 3$

D. 3/4

Answer: A

D Watch Video Solution

42. Case Study-1: Consider a right triangle,
where a and b are its length, and base and c is
its hypotenuse as shown below. When we observe and apply the trigonometric functions to make a relationship between angles and sides of the right triangle. We can obtain the
results as per the calculations and the table depicted below.

If the right angle of the right triangle $A B C$ is at
the point C, then the sine (sin), cosine (cos) and tangent (tan) of the angles α (at the point
A) and β (at the point \mathbf{B}). It should be noted that $\sin \alpha \cos \beta$ are the equal and same goes for $\sin \alpha$ and $\cos \beta$. So, to find sine of the
angle, we divided the side that is opposite of
that angle and the hypotenuse. To find the cosine of the angle, we divide the side that makes that angle (adjacent side) by the hypotenuse.

Thus,

$$
\begin{array}{lc}
\sin \alpha=a / c & \sin \beta=b / c \\
\cos \alpha=b / c & \cos \beta=a / c \\
\tan \alpha=a / b & \tan \beta=b / a
\end{array}
$$

Answer the following questions :

Find the tangent of the angle α of a right triangle, if a is 3 and b is 4.
A. 1/4
B. 5/3
C. $4 / 3$
D. 3/4

Answer: D

D Watch Video Solution

43. Case Study-1: Consider a right triangle,
where a and b are its length, and base and c is
its hypotenuse as shown below. When we observe and apply the trigonometric functions
to make a relationship between angles and
sides of the right triangle. We can obtain the results as per the calculations and the table depicted below.

If the right angle of the right triangle $A B C$ is at the point C, then the sine (\sin), cosine (cos) and tangent (tan) of the angles α (at the point
A) and β (at the point B). It should be noted that $\sin \alpha \cos \beta$ are the equal and same goes
for $\sin \alpha$ and $\cos \beta$. So, to find sine of the angle, we divided the side that is opposite of that angle and the hypotenuse. To find the cosine of the angle, we divide the side that makes that angle (adjacent side) by the hypotenuse.

Thus,

$$
\begin{array}{cc}
\sin \alpha=a / c & \sin \beta=b / c \\
\cos \alpha=b / c & \cos \beta=a / c \\
\tan \alpha=a / b & \tan \beta=b / a
\end{array}
$$

Answer the following questions :

Find the value of $\sin \alpha+\sin \beta$.
A. $25 / 12$
B. $5 / 3$
C. $7 / 5$
D. $3 / 20$

Answer: C

D Watch Video Solution

44. Case Study-1: Consider a right triangle, where a and b are its length, and base and c is
its hypotenuse as shown below. When we observe and apply the trigonometric functions
to make a relationship between angles and
sides of the right triangle. We can obtain the results as per the calculations and the table depicted below.

If the right angle of the right triangle $A B C$ is at the point C, then the sine (\sin), cosine (cos) and tangent (tan) of the angles α (at the point
A) and β (at the point B). It should be noted that $\sin \alpha \cos \beta$ are the equal and same goes
for $\sin \alpha$ and $\cos \beta$. So, to find sine of the angle, we divided the side that is opposite of that angle and the hypotenuse. To find the cosine of the angle, we divide the side that makes that angle (adjacent side) by the hypotenuse.

Thus,

$$
\begin{array}{cc}
\sin \alpha=a / c & \sin \beta=b / c \\
\cos \alpha=b / c & \cos \beta=a / c \\
\tan \alpha=a / b & \tan \beta=b / a
\end{array}
$$

Answer the following questions :

Calculate $\tan \alpha+\tan \beta$.
A. $25 / 12$
B. $12 / 25$
C. $7 / 12$
D. $12 / 7$

Answer: A

D Watch Video Solution

45. Case Study-1: Consider a right triangle, where a and b are its length, and base and c is
its hypotenuse as shown below. When we observe and apply the trigonometric functions
to make a relationship between angles and
sides of the right triangle. We can obtain the results as per the calculations and the table depicted below.

If the right angle of the right triangle $A B C$ is at the point C, then the sine (\sin), cosine (cos) and tangent (tan) of the angles α (at the point
A) and β (at the point B). It should be noted that $\sin \alpha \cos \beta$ are the equal and same goes
for $\sin \alpha$ and $\cos \beta$. So, to find sine of the angle, we divided the side that is opposite of that angle and the hypotenuse. To find the cosine of the angle, we divide the side that makes that angle (adjacent side) by the hypotenuse.

Thus,

$$
\begin{array}{cc}
\sin \alpha=a / c & \sin \beta=b / c \\
\cos \alpha=b / c & \cos \beta=a / c \\
\tan \alpha=a / b & \tan \beta=b / a
\end{array}
$$

Answer the following questions :

Find the sum of $\cos \alpha+\cos \beta$ of right angled triangle, if the lengths a and b are increased twice of their original values.
A. 5/7
B. 5/6
C. $3 / 5$
D. $7 / 5$

Answer: C

D Watch Video Solution

46. Case Study-2: Two spotlight, in a locality are mounted on a vertical pole as shown in the figure.

Here P and Q are the light, mounted on a
vertical pole $A B$ as shown. Light beams from P and Q shine to two points on a ground, H and K respectively.

Here, $P Q=16 \mathrm{~cm}, \mathrm{~KB}=16 \mathrm{~cm}, \mathrm{PH}=35 \mathrm{~cm}$ and QK=20 cm.

Answer the following questions:

The height at which spotlight Q is mounted from the ground?
A. 12 cm
B. 14 cm
C. 16 cm
D. 18 cm

Answer: A
(Watch Video Solution
47. Case Study-2: Two spotlight, in a locality are mounted on a vertical pole as shown in the figure.

Here P and Q are the light, mounted on a
vertical pole $A B$ as shown. Light beams from P
and Q shine to two points on a ground, H and

K respectively.

Here, $P Q=16 \mathrm{~cm}, \mathrm{~KB}=16 \mathrm{~cm}, \mathrm{PH}=35 \mathrm{~cm}$ and

QK=20 cm.

Answer the following questions:

The height at which spotlight P is mounted on the pole from the ground?
A. 28 cm
B. 29 cm
C. 30 cm
D. 31 cm

Answer: A
48. Case Study-2: Two spotlight, in a locality are mounted on a vertical pole as shown in the figure.

Here P and Q are the light, mounted on a vertical pole $A B$ as shown. Light beams from P and Q shine to two points on a ground, H and K respectively.

Here, $P Q=16 \mathrm{~cm}, \mathrm{~KB}=16 \mathrm{~cm}, \mathrm{PH}=35 \mathrm{~cm}$ and

QK=20 cm.

Answer the following questions:

Calculate the distance on the ground, from
the pole where the projection made by the spotlight P.
A. 21 cm
B. 38 cm
C. 18 cm
D. 12 cm

- Watch Video Solution

49. Two spotlights, P and Q are mounted on a vertical pole $A B$ as shown.

Light beams from P and Q shine to two points on the ground, H and K , respectively. Given that $\mathrm{PQ}=16 \mathrm{~m}, \mathrm{~KB}=16 \mathrm{~m}, \mathrm{PH}=35 \mathrm{~m}$ and $\mathrm{QK}=$ 20m, Find:

HK, the distance between the projections of the light beams.
A. 5 cm
B. 4 cm
C. 2 cm
D. 1 cm

Answer: A

- Watch Video Solution

50. Case Study-2: Two spotlight, in a locality are mounted on a vertical pole as shown in the figure.

Here P and Q are the light, mounted on a
vertical pole $A B$ as shown. Light beams from P and Q shine to two points on a ground, H and K respectively.

Here, $P Q=16 \mathrm{~cm}, \mathrm{~KB}=16 \mathrm{~cm}, \mathrm{PH}=35 \mathrm{~cm}$ and QK=20 cm.

Answer the following questions:

Are the $\triangle K B Q$ and HBP similar, is so by which property?
A. Similar, RHS
B. Similar, SAS
C. Similar, AAA

D. Not similar

Answer: D

D Watch Video Solution

51. If one zero of the quadratic polynomial $x^{2}-5 x-6$ is 6 then find the other zero
A. 0
B. -1
C. 1
D. 2

Answer: B

D Watch Video Solution
52. If two positive integers a and b can be expressed as
$a=x^{2} y^{5}$ and $b=x^{3} y^{2}$, wherex, y are prime numbers, then find LCM of a and b.
A. $x^{3} y^{5}$
B. $x^{5} y^{7}$
C. $x^{5} y^{5}$
D. ${ }^{\wedge} x^{\wedge} 3 y^{\wedge} 2$

Answer: A
53. What are the number of zeroes/zero of the polynomial $y=f(x)$, of the graph shown below.

A. 3
B. 4
C. 2
D. 1

Answer: A

D Watch Video Solution

54. If the HCF of $(336,54)=6$, find the $L C M$ $(336,54)$
A. 306
B. 3224
C. 3024
D. 3500

Answer: C

D Watch Video Solution

55. The circumference of a circle is 22 cm . Find
the area of its quadrant (in cm^{2}).
A. $\frac{77}{8}$
B. $\frac{22}{7}$
C. 78
D. 156

- Watch Video Solution

56. Find the proability of getting a number which is neither prime nor composite in a single throw of dice.
A. $\frac{1}{4}$
B. $\frac{2}{3}$
C. $\frac{1}{6}$
D. $\frac{1}{5}$

D Watch Video Solution

57. A wire is in the shape of a circle of radius 21
cm . It is bent to form a square. The side of the
square is : $\left(\pi=\frac{22}{7}\right)$
A. 33 cm
B. 44 cm
C. 66 cm

D. 100 cm

Answer: A

D Watch Video Solution

58. Find the common difference of an A.P. in
which $a_{10}-a_{8}=12$.
A. 0
B. 1
C. 2
D. 6

Answer: D

D Watch Video Solution

59. If the difference between the
circumference and the radius of a circle is 37 cm, then using $\pi=\frac{22}{7}$, what would be the radius of the circle (in cm)?
A. 3.5 cm

B. 7 cm

C. 14 cm
D. 21 cm

Answer: B

D Watch Video Solution

60. If $P(E)=0.05$, then what will be the probability of $\mathrm{P}($ not E$)$ or $P(\bar{E})$?
A. 0.05
B. 0.01
C. 0.9
D. 0.95

Answer: D

D Watch Video Solution

61. For a Math Activity of class X students, teacher show a political map of India on projector screen then ask the student that how many states they have visited in India,
then ask to observe the map carefully and
assign them to locate the coordinates of capital to each state. Based on information given in map. Answer the question given below.

Consider 1 block as 1000 km.

Find the distance between mobile
communication tower in states Bihar and

Gujrat, if these are located at $B(6,4)$ and $D(-6$,
-1) is:
A. 1000 km
B. 13000 km
C. 500 km
D. 2000 km

Answer: B
(Watch Video Solution
62. Due to heavy storm an electric wire got bent as shown in the figure. It followed a mathematical shape. Answer the following questions below

Name the shape in which the wire is bent
A. Spiral
B. Circle

C. Hyperbola

D. Parabola

Answer: D

- Watch Video Solution

63. If one of the zeroes of the quadratic polynomial $(k-1) x^{2}+k x+1$ is -3 , then find the value of k :
A. $3 / 4$
B. $4 / 3$
C. $3 / 2$
D. $2 / 4$

Answer: B

- Watch Video Solution

64. If the HCF of 65 and 117 is expressible in
the form $65 m-117$, then the value of ' m ' is:
A. 4
B. 2
C. 1
D. 3

Answer: B

D Watch Video Solution

65. Write whether $\frac{2 \sqrt{45}+3 \sqrt{20}}{2 \sqrt{5}}$ on
simplification gives a rational or an irrational number:
A. Rational number
B. Irrational number
C. Both (a) and (b)
D. None of these

Answer: A

- Watch Video Solution

66. Out of the following, the incorrect statement for a quadratic polynomial is:
A. no real zeroes
B. two equal real zeroes
C. two distinct zeroes
D. three real zeroes

Answer: A

D Watch Video Solution
67. Solve the following pair of linear equations by substitution method:
$x+2 y=2$
$x-3 y=7$
A. (2.1)
B. $(1,0)$
C. $(4,-1)$
D. $(0,4)$

Answer: C

D Watch Video Solution
68. If the points $A(x, 2), B(-3,-4)$ and $C(7,-5)$ are collinear, then the value of x is:
A. -63
B. 63
C. - 60
D. 60

Answer: A

D Watch Video Solution
69. If the HCF of two numbers is 2 and their

LCM is 27 , what is the product of the two numbers?
A. 54
B. 27
C. 45
D. 82

Answer: A

70. The perimeter of a triangle with vertices

 $A(0,4), B(0,0)$ and $C(3,0)$:A. 3
B. 5
C. 10
D. 12

Answer: D
(Watch Video Solution
71. What are the coordinates of the mid-point of $A(-1,3)$ and $B(1,-1)$?
A. $(0,1)$
B. $(0,2)$
C. $(0,3)$
D. $(0,4)$

Answer: A
(D) Watch Video Solution
72. If zeroes of the quadratic polynomial $a x^{2}+b x+c=0$ are reciprocal of each other, then:
A. $a=c$
B. $a=b$
C. $b=c$
D. $a+c=0$

Answer: A

73. In a right angled triangle $A B C$, right angled

 at $B, A B=3, B C=x+2$ and $A C=x+3$. Then find the value of x :A. 4
B. 2
C. 1
D. 3

Answer: B

D Watch Video Solution

74. The area of the triangle in the given figure

(in sq. units) is:

A. 15
B. 10
C. 7.5
D. 2.5

Answer: C

D Watch Video Solution

75. One card is drawn from a well-shuffled deck of 52 cards. What is the probability of getting a king card?
A. $1 / 13$
B. $1 / 3$
C. $1 / 3$
D. $1 / 2$

- Watch Video Solution

76. If a be any composite number then \sqrt{a} is always:
A. Rational
B. Irrational
C. Both a and B
D. None of these

Answer: C

D Watch Video Solution

77. What is the probability that a number selected at random from the numbers $3,4,5$,, 9 is a multiple of 4 ?
A. $1 / 5$
B. $1 / 3$
C. 1/4
D. $1 / 2$

D Watch Video Solution

78. IF the HCF of two numbers is 1 , then the two numbers are called:
A. Composite
B. relatively prime or co-prime
C. perfect
D. irrational numbers

Answer: B

- Watch Video Solution

79. The area of the circle that can be inscribed
in a square of side 6 cm is
A. $2 \pi c m^{2}$
B. $3 \pi \mathrm{~cm}^{2}$
C. $9 \pi \mathrm{~cm}^{2}$
D. $4 \pi \mathrm{~cm}^{2}$

Answer: C

D Watch Video Solution

80. If -4 is a zero of the polynomial
$x^{2}-x-(2 k+2)$, then find the value of k .
A. 3
B. 9
C. 6
D. -9

Answer: B

D Watch Video Solution

81. If the point $C(k, 4)$ divides the join of points
$A(2,6)$ and $B(5,1)$ in the ratio $2: 3$, then the
value of k is:
A. 16
B. $\frac{28}{5}$
C. $\frac{16}{5}$
D. $\frac{8}{5}$

Answer: C

- Watch Video Solution

82. The distance of the point $(-3,4)$ from
the x-axis is: 3 (b) -3 (c) 4 (d) 5
A. 3
B. -3
C. 4
D. 5

- Watch Video Solution

83. Someone is asked to take number from 1 to
84. The probablity that it is a prime, is
A. $1 / 5$
B. $6 / 25$
C. 1/4
D. $13 / 50$

Answer: C

- Watch Video Solution

84. If $3^{x-1}=9$ and $3^{x+y}=81$, then value of y
is:
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

85. In the given figure $P(5,-3)$ and $Q(3, y)$ are
the points of trisection of the line segment joining $A(4,7)$ and $B(1,-5)$. Then y equals:

A. 2
B. 4
C. -4

$$
\text { D. }-\frac{5}{2}
$$

Answer: C

D Watch Video Solution

86. If θ is an acute angle and $6+4 \sin \theta=8$,
then the value of θ :
A. 90°
B. 30°
C. 45°
D. 60°

Answer: B

D Watch Video Solution

87. If the coordinates of one end of a diameter of a circle are $(2,3)$ and the coordinates of its centre are $(-2,5)$, then the coordinates of the other end of the diameter are
A. $(-6,7)$
B. $(6,-7)$
C. $(6,7)$
D. $(-6,-7)$

Answer: A

D Watch Video Solution

88. Graphically $x-3=0$ represents a line:
A. parallel to x-axis at a distance 3 units from x-axis
B. parallel to y-axis at a distance 3 units
from y-axis
C. parallel to x-axis at a distance 3 units
from y-axis
D. parallel to y-axis at a distance 3 units
from x-axis

Answer: B
89. The coordinates of the point P dividing the
line segment joining the points $A(1,3)$ and $B(4$,
6) in the ratio 2: 1 are:
A. $(2,4)$
B. $(3,5)$
C. $(4,2)$
D. $(5,3)$

Answer: B

D Watch Video Solution
90. The pair of linear equations is said to be inconsistent if they have:
A. only one solution
B. no solution
C. infinitely many solutions

D. both a and c

Answer: B
91. Case Study-1: Consider a right triangle,
where a and b are its length, and base and c is
its hypotenuse as shown below. When we observe and apply the trigonometric functions
to make a relationship between angles and
sides of the right triangle. We can obtain the results as per the calculations and the table depicted below.

If the right angle of the right triangle $A B C$ is at
the point C, then the sine (\sin), cosine (cos)
and tangent (tan) of the angles α (at the point
A) and β (at the point B). It should be noted that $\sin \alpha \cos \beta$ are the equal and same goes
for $\sin \alpha$ and $\cos \beta$. So, to find sine of the angle, we divided the side that is opposite of that angle and the hypotenuse. To find the
cosine of the angle, we divide the side that
makes that angle (adjacent side) by the hypotenuse.

Thus,

$$
\begin{array}{cc}
\sin \alpha=a / c & \sin \beta=b / c \\
\cos \alpha=b / c & \cos \beta=a / c \\
\tan \alpha=a / b & \tan \beta=b / a
\end{array}
$$

Answer the following questions:

If sides a and b of a right triangle are 3 cm and
4 cm , respectively, find the value of cosine of α.
A. $4 / 5$
B. $3 / 5$
C. $4 / 3$

D. $3 / 4$

Answer: A

- Watch Video Solution

92. Case Study-1: Consider a right triangle,
where a and b are its length, and base and c is
its hypotenuse as shown below. When we observe and apply the trigonometric functions to make a relationship between angles and sides of the right triangle. We can obtain the
results as per the calculations and the table depicted below.

If the right angle of the right triangle $A B C$ is at
the point C, then the sine (sin), cosine (cos) and tangent (tan) of the angles α (at the point
A) and β (at the point \mathbf{B}). It should be noted that $\sin \alpha \cos \beta$ are the equal and same goes for $\sin \alpha$ and $\cos \beta$. So, to find sine of the
angle, we divided the side that is opposite of
that angle and the hypotenuse. To find the cosine of the angle, we divide the side that makes that angle (adjacent side) by the hypotenuse.

Thus,

$$
\begin{array}{lc}
\sin \alpha=a / c & \sin \beta=b / c \\
\cos \alpha=b / c & \cos \beta=a / c \\
\tan \alpha=a / b & \tan \beta=b / a
\end{array}
$$

Answer the following questions :

Find the tangent of the angle α of a right triangle, if a is 3 and b is 4.
A. 1/4
B. 5/3
C. $4 / 3$
D. 3/4

Answer: D

D Watch Video Solution

93. Case Study-1: Consider a right triangle,
where a and b are its length, and base and c is
its hypotenuse as shown below. When we observe and apply the trigonometric functions
to make a relationship between angles and
sides of the right triangle. We can obtain the results as per the calculations and the table depicted below.

If the right angle of the right triangle $A B C$ is at the point C, then the sine (\sin), cosine (cos) and tangent (tan) of the angles α (at the point
A) and β (at the point B). It should be noted that $\sin \alpha \cos \beta$ are the equal and same goes
for $\sin \alpha$ and $\cos \beta$. So, to find sine of the angle, we divided the side that is opposite of that angle and the hypotenuse. To find the cosine of the angle, we divide the side that makes that angle (adjacent side) by the hypotenuse.

Thus,

$$
\begin{array}{cc}
\sin \alpha=a / c & \sin \beta=b / c \\
\cos \alpha=b / c & \cos \beta=a / c \\
\tan \alpha=a / b & \tan \beta=b / a
\end{array}
$$

Answer the following questions:

Find the value of $\sin \alpha+\sin \beta$.
A. $25 / 12$
B. $5 / 3$
C. $7 / 5$
D. $3 / 20$

Answer: C

D Watch Video Solution

94. Case Study-1: Consider a right triangle,
where a and b are its length, and base and c is
its hypotenuse as shown below. When we observe and apply the trigonometric functions
to make a relationship between angles and
sides of the right triangle. We can obtain the results as per the calculations and the table depicted below.

If the right angle of the right triangle $A B C$ is at the point C, then the sine (\sin), cosine (cos) and tangent (tan) of the angles α (at the point
A) and β (at the point B). It should be noted that $\sin \alpha \cos \beta$ are the equal and same goes
for $\sin \alpha$ and $\cos \beta$. So, to find sine of the angle, we divided the side that is opposite of that angle and the hypotenuse. To find the cosine of the angle, we divide the side that makes that angle (adjacent side) by the hypotenuse.

Thus,

$$
\begin{array}{cc}
\sin \alpha=a / c & \sin \beta=b / c \\
\cos \alpha=b / c & \cos \beta=a / c \\
\tan \alpha=a / b & \tan \beta=b / a
\end{array}
$$

Answer the following questions :

Calculate $\tan \alpha+\tan \beta$.
A. $25 / 12$
B. $12 / 25$
C. $7 / 12$
D. $12 / 7$

Answer: A

D Watch Video Solution

95. Case Study-1: Consider a right triangle,
where a and b are its length, and base and c is
its hypotenuse as shown below. When we observe and apply the trigonometric functions
to make a relationship between angles and
sides of the right triangle. We can obtain the results as per the calculations and the table depicted below.

If the right angle of the right triangle $A B C$ is at the point C, then the sine (\sin), cosine (cos) and tangent (tan) of the angles α (at the point
A) and β (at the point B). It should be noted that $\sin \alpha \cos \beta$ are the equal and same goes
for $\sin \alpha$ and $\cos \beta$. So, to find sine of the angle, we divided the side that is opposite of that angle and the hypotenuse. To find the cosine of the angle, we divide the side that makes that angle (adjacent side) by the hypotenuse.

Thus,

$$
\begin{array}{cc}
\sin \alpha=a / c & \sin \beta=b / c \\
\cos \alpha=b / c & \cos \beta=a / c \\
\tan \alpha=a / b & \tan \beta=b / a
\end{array}
$$

Answer the following questions :

Find the sum of $\cos \alpha+\cos \beta$ of right angled triangle, if the lengths a and b are increased twice of their original values.
A. 5/7
B. 5/6
C. $3 / 5$
D. $7 / 5$

Answer: C

D Watch Video Solution
96. Case Study-2: Two spotlight, in a locality are mounted on a vertical pole as shown in the figure.

Here P and Q are the light, mounted on a
vertical pole $A B$ as shown. Light beams from P and Q shine to two points on a ground, H and K respectively.

Here, $P Q=16 \mathrm{~cm}, \mathrm{~KB}=16 \mathrm{~cm}, \mathrm{PH}=35 \mathrm{~cm}$ and QK=20 cm.

Answer the following questions:

The height at which spotlight Q is mounted from the ground?
A. 12 cm
B. 14 cm
C. 16 cm
D. 18 cm

Answer: A
(Watch Video Solution
97. Case Study-2: Two spotlight, in a locality are mounted on a vertical pole as shown in the figure.

Here P and Q are the light, mounted on a
vertical pole $A B$ as shown. Light beams from P
and Q shine to two points on a ground, H and

K respectively.

Here, $P Q=16 \mathrm{~cm}, \mathrm{~KB}=16 \mathrm{~cm}, \mathrm{PH}=35 \mathrm{~cm}$ and

QK=20 cm.

Answer the following questions:

The height at which spotlight P is mounted on the pole from the ground?
A. 28 cm
B. 29 cm
C. 30 cm
D. 31 cm

Answer: A
98. Case Study-2: Two spotlight, in a locality are mounted on a vertical pole as shown in the figure.

Here P and Q are the light, mounted on a vertical pole $A B$ as shown. Light beams from P and Q shine to two points on a ground, H and K respectively.

Here, $P Q=16 \mathrm{~cm}, \mathrm{~KB}=16 \mathrm{~cm}, \mathrm{PH}=35 \mathrm{~cm}$ and

QK=20 cm.

Answer the following questions:

Calculate the distance on the ground, from
the pole where the projection made by the spotlight P.
A. 21 cm
B. 38 cm
C. 18 cm
D. 12 cm
99. Case Study-2: Two spotlight, in a locality are mounted on a vertical pole as shown in the figure.

Here P and Q are the light, mounted on a vertical pole $A B$ as shown. Light beams from P
and Q shine to two points on a ground, H and
K respectively.
Here, $P Q=16 \mathrm{~cm}, \mathrm{~KB}=16 \mathrm{~cm}, \mathrm{PH}=35 \mathrm{~cm}$ and

QK=20 cm.

Answer the following questions:

Find the distance between the projections of the light beam.
A. 5 cm
B. 4 cm
C. 2 cm
D. 1 cm

Answer: A

D Watch Video Solution

100. Case Study-2: Two spotlight, in a locality
are mounted on a vertical pole as shown in
the figure.

Here P and Q are the light, mounted on a
vertical pole $A B$ as shown. Light beams from P and Q shine to two points on a ground, H and K respectively.

Here, $\mathrm{PQ}=16 \mathrm{~cm}, \mathrm{~KB}=16 \mathrm{~cm}, \mathrm{PH}=35 \mathrm{~cm}$ and $\mathrm{QK}=20 \mathrm{~cm}$.

Answer the following questions:
Are the $\Delta K B Q$ and HBP similar, is so by which property?
A. Similar, RHS
B. Similar, SAS
C. Similar, AAA

D. Not similar

Answer: D

D Watch Video Solution

Section A

1. If α and β are the roots of the equation
$x^{2}+p x+q=0$, then what is value of $\alpha^{2}+\beta^{2} ?$
2. For which value of k does the pair of equation
$x^{2}-y^{2}=0$ and $(x-k)^{2}+y^{2}=1$ yield a unique positive solution of x ?

- View Text Solution

3. Find how many integers between 200 and 500 are divisible by 8 .
4. Draw a line segment of length 7 cm and divide it internally in the ratio 2:3.

D View Text Solution

5. Volume and surface area of a solid hemisphere are numerically equal. What is the diameter of hemisphere?

D View Text Solution
6. For the following distribution:

Felow	10	20	30	40	50	60
Number of students	3	12	27	57	75	80

Find the modal class

D Watch Video Solution

7. The sum of two numbers is 15 and their reciprocals is $\frac{3}{10}$. Find the numbers.

D Watch Video Solution

1. The marks attained by 40 students in a short assessment is given below where a and b are missing. If the mean of the distribution is 7.2 , find a and b.

D Watch Video Solution

2. If $A B, A C, P Q$ are the tangents is the figure, and $\mathrm{AB}=5 \mathrm{~cm}$, find the perimeter of $\triangle A P Q$.

- View Text Solution

3. The following table provides data about the
weekly wages (in Rs) of workers in a factory.

Calculate the Mean and the Modal Class.

Class Interval	$50-55$	$55-60$	$60-65$	$65-70$	$70-75$	$75-80$	$80-85$	$85-90$
Weekly wages ((₹)	5	20	10	10	9	6	12	8

- View Text Solution

4. A kite is flying at a height of 30 m from the ground. The length of the string from the kite to the ground is 60 m . Assuming that there is no slack in the string, then find the angle of elevation of the kite at the ground.

- View Text Solution

5. A tower stands vertically on the ground.

From a point on the ground which is 25 m away from the foot of the tower, the angle of elevation of the top of the tower is found to be 45°. Then find the height (in meters) of the tower.

D View Text Solution

Section C

1. A hemispherical depression is cut out from one face of a cubical block of side 7 cm such
that the diameter of the hemisphere is equal to the edge of the cube. Find the surface area of the remaining solid. (Use $\pi=\frac{22}{7}$)

D View Text Solution

2. Sushant has a vessel in the shape of an inverted cone that is open at the top. Its
height is 11 cm and the radius of the top is 2.5
cm . It is full of water and metallic spherical balls of diameter 0.5 cm are put in the vessel such that $\frac{2}{5}$ th of the water flows out. Find the number of balls that were put in the vessel.

D View Text Solution

3. Two hoardings are put on two poles of equal heights standing on either side of the road. From a point between them on the road
(not the mid point) the angle of elevation of the top of poles are 60° and 30° respectively.

Height of the each pole is 20 m . (Take $\sqrt{3}=1.73$)

Answer the following questions.

Find the length of PO.

- Watch Video Solution

4. Two hoardings are put on two poles of equal heights standing on either side of the road. From a point between them on the road
(not the mid point) the angle of elevation of the top of poles are 60° and 30° respectively. Height of the each pole is 20 m . (Take $\sqrt{3}=1.73$)

Answer the following questions.

The width of the road.

- Watch Video Solution

5. Aadita is celebrating her birthday. She invited her friends. She bought a packet of toffees/candies which contains 120 candies.

She arranged the candies such that in the first row there are 3 candies, in second there are 5 candies, in third there are 7 candies and so on.

Find the first term and common difference of A.P.

D Watch Video Solution

6. Aadita is celebrating her birthday. She invited her friends. She bought a packet of toffees/candies. She arranged the candies
such that in the first row there are 3 candies, in second there are 5 candies, in third there are 7 candies and so on.

How many candies are placed in the $9^{t h}$ row?

- Watch Video Solution

7. Aadita is celebrating her birthday. She invited her friends. She bought a packet of toffees/candies. She arranged the candies
such that in the first row there are 3 candies,

in second there are 5 candies, in third there are 7 candies and so on.

Find the difference in number of candies placed in $7^{\text {th }}$ and $3^{\text {rd }}$ row.
8. Aadita is celebrating her birthday. She invited her friends. She bought a packet of toffees/candies. She arranged the candies
such that in the first row there are 3 candies, in second there are 5 candies, in third there are 7 candies and so on.

Find the number of candies in $12^{\text {th }}$ row.

- Watch Video Solution

