©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - OSWAL PUBLICATION

SAMPLE PAPER 7

Question Bank

1. Write the equation of a line parallel to the X axis.
A. $x=a$
B. $y=a$
C. $x=-a$
D. $x=0$

Answer: B

- Watch Video Solution

2. What is the smallest even composite number?
A. 2
B. 3
C. 7
D. 4

Answer: D

D Watch Video Solution

3. If $\sin \theta=\frac{1}{3}$, then find the value of $2 \cot ^{2} \theta+2$.
A. 18
B. 36
C. 20
D. 9

Answer: A

D Watch Video Solution

4. A piece of wire 20 cm long is bent into the from of an arc of a circle, subtending an angle
of 60° at its centre. Find the radius of the circle.

$$
\begin{aligned}
& \text { A. } \frac{60}{\pi} \mathrm{~cm} \\
& \text { B. } \frac{20}{\pi} \mathrm{~cm} \\
& \text { C. } \frac{30}{\pi} \mathrm{~cm} \\
& \text { D. } \frac{15}{\pi} \mathrm{~cm}
\end{aligned}
$$

Answer: A

D Watch Video Solution

5. Find the value of $9 \sec ^{2} A-9 \tan ^{2} A$
A. 1
B. 9
C. -1
D. -9

Answer: B
6. What are the zeroes of the polynomial

$$
\left(x^{2}-9\right) ?
$$

A. $(3,0)$
B. $(3,-3)$
C. $(0,3)$
D. $(3,3)$

Answer: B
(D) Watch Video Solution
7. If alpha,beta are the zeroes of a polynomial, such that alhpa+beta=6 and alpha, beta=4, then write the polynomial.
A. $x^{2}-6 x+4$
B. $x^{2}+6 x+4$
C. $x^{2}+4 x+6$
D. $x^{2}+4 x+6$

Answer: A
8. What is the angle described by the minute hand between $4: 00 \mathrm{pm}$ and $4: 25 \mathrm{pm}$?
A. 120°
B. 150°
C. 90°
D. 135°

Answer: B
(Watch Video Solution
9. What is the probability of getting exactly
one head in tossing a pair of coins?

> A. $\frac{1}{2}$
> B. $\frac{3}{4}$
> C. $\frac{1}{4}$
> D. 1

Answer: A

D Watch Video Solution
10. What are the number of zeroes of the polynomial $f(x)$ in the given graph?

A. 1
B. 2
C. 3
D. 0

- Watch Video Solution

11. What is the value of $\tan 30^{\circ}+\tan 60^{\circ}$?
A. $\frac{4 \sqrt{3}}{3}$
B. $\frac{2 \sqrt{3}}{\alpha}$
C. $\frac{\sqrt{3}}{\alpha}$
D. $\frac{1}{2}$
12. If $\operatorname{cosec} \theta-\cot \theta=\frac{1}{5}$, then the value of $\cos e c \theta+\cot \theta$.
A. $\frac{1}{5}$
B. $\frac{1}{25}$
C. $\frac{-1}{25}$
D. 5

Answer: D
13. A boy walks 12 m due east and 5 m due south. How far is he from the starting point?
A. 12 M
B. 17 M
C. 13 M
D. 20 M

Answer: C

- Watch Video Solution

14. If two different dice are rolled together, the probability of getting an even number on both dice, is $\frac{1}{36}$ (b) $\frac{1}{2}$ (c) $\frac{1}{6}$ (d) $\frac{1}{4}$
A. $\frac{1}{4}$
B. $\frac{3}{2}$
C. 1
D. 0

Answer: A
15. What is the ratio of the areas of a circle and an equilateral triangle whose diameter and a side are respectively equal?

$$
\begin{aligned}
& \text { A. } \frac{\pi}{\sqrt{3}} \\
& \text { B. } \frac{\pi}{3} \\
& \text { C. } \frac{\sqrt{3} \pi}{4} \\
& \text { D. } \frac{\pi}{2}
\end{aligned}
$$

16. A card is drawn from a well shuffled deck of 52 cards. The probability of red queen is :

> A. $\frac{2}{13}$
> B. $\frac{1}{22}$
> C. $\frac{4}{13}$
> D. $\frac{1}{26}$

Answer: D

17. If the area and circumference of a circle are numerically equal, then the radius of circle is \qquad
A. 2 units
B. 4 units
C. π units
D. 6 units

Answer: A

D Watch Video Solution
18. Find the value of k for which the pair of linear equations $k x+3 y=k-3,12 x+k y=k$ has no solution.
A. ± 4
B. ± 3
C. ± 6
D. ± 15

Answer: C
19. If $3 \sec \theta=5$, then find the value of $\cot \theta$
A. $\frac{4}{3}$
B. $\frac{1}{4}(c)$
C. $\frac{5}{3}$
D. $\frac{3}{4}$

Answer: D
(Watch Video Solution
20. Find the solution of linear equations $x+y=3$ and $7 x+6 y=2 ?$
A. $-16,19$
B. 3, 2
C. 11,9
D. $-21,20$

Answer: A

D Watch Video Solution
21. Find the distance between the coordinates
(7, -7) and (15,8).
A. 13
B. 15
C. 17
D. 12

Answer: C

D Watch Video Solution

22. The sum of exponents of prime factors in
the prime -factorisation of 196 is
A. 2
B. 4
C. 6
D. 5

Answer: B

D Watch Video Solution
23. If $\sin A=\frac{3}{4}$, calculate sec A .

$$
\begin{aligned}
& \text { A. } \frac{5}{\sqrt{7}} \\
& \text { B. } \frac{3}{\sqrt{7}} \\
& \text { C. } \frac{4}{\sqrt{7}}
\end{aligned}
$$

D. None of these

Answer: C
(Watch Video Solution
24. The zeroes of the polynomial $x^{2}-3 x-m(m+3)$ are:
A. $-m, m-1$
B. $-m,-\left(m t_{3}\right)$
C. $m, m t_{3}$
D. $-m, m+3$

Answer: D
(Watch Video Solution
25. Which of the following is irrational?
A. 3.1415926535
B. 10.2
C. $(0.2)^{2}$
D. 0.2

Answer: A
(Watch Video Solution
26. Write down the decimal expansions of

13 $\overline{6250}$.

A. 0.028
B. 0.00208
C. $\frac{0.005}{2}$
D. $\frac{0.004}{6}$

Answer: B
(Watch Video Solution
27. In $\triangle A B C$ and $\triangle D E F$, it is given that $\frac{A B}{D E}=\frac{B C}{F D}$ then
A. $\angle A=\angle F$
B. $\angle B=\angle D$
C. $\angle A=\angle D$
D. $\angle B=\angle E$

Answer: B

- Watch Video Solution

28. In figure, if $\angle B A C=90^{\circ}$ and $A D \perp B C$.

Then,

A. $B D \cdot C D=B C^{2}$
B. $A B \cdot A C=B C^{2}$
C. $B D \cdot C D=A D^{2}$
D. $A B . A C=A D^{2}$

Answer: C

- Watch Video Solution

29. The probability that cannot exist among
the following:
A. $\frac{2}{3}$
B. -1.5
C. 15%
D. 0.7

Answer: B

D Watch Video Solution

30. The point which divides the line segment of points $P(-1,7)$ and $Q(4,-3)$ in the ratio of $2: 3$ is:
A. $(-1,3)$
B. $(-1,-3)$
C. $(1,-3)$
D. $(1,3)$

Answer: D

- Watch Video Solution

31. The decimal expansion of $\frac{22}{7}$ is:
A. terminating
B. non-terminating and non-repeating
C. non-terminating and repeating
D. None of the above
32. If $H C F$ of 65 and 117 is expressible in the form $65 m-117$, then the value of m is
A. 4
B. 2
C. 1
D. 3

Answer: B
33. Which of the following are not similar figures?
A. Circles
B. Squares
C. Equilateral triangle
D. Isosceles triangles

Answer: D

- Watch Video Solution

34. If $\triangle A B C \sim \triangle D F E, \angle A=30, \angle C=50^{\circ}$
, $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm}$ and $\mathrm{DF}=7.5 \mathrm{~cm}$. Then, which of the following is true?
A. $D E=12 \mathrm{~cm}, \angle F=50^{\circ}$
B. $D E=12 \mathrm{~cm}, \angle F=100^{\circ}$
C. $E F=12 \mathrm{~cm}, \angle D=100^{\circ}$
D. $E F=12 \mathrm{~cm}, \angle D=30^{\circ}$

Answer: B
35. If one equation of a pair of dependent
linear equations is $-3 x+5 y-2=0$. The second equation will be:

$$
\begin{aligned}
& \text { A. }-6 x+10 y-4=0 \\
& \text { B. } 6 x+10 y-4=0 \\
& \text { C. } 6 x-10 y-4=0 \\
& \text { D. }-6 x+10 y+=0
\end{aligned}
$$

36. The value of $(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})$ is:
A. 10
B. 7
C. 3
D. $\sqrt{3}$

Answer: C

- Watch Video Solution

37. If the centre of a circle is $(3,5)$ and end points of a diameter are $(4,7)$ and $(2, y)$, then
the value of y is
A. 4
B. 7
C. 3
D. -3

Answer: C
38. If $\triangle A B C$ is right angled at C , then the value of $\cos (A+B)$ is
A. 0
B. 1
C. $\frac{1}{2}$
D. $\frac{\sqrt{3}}{2}$

Answer: A
(Watch Video Solution
39.2. $\overline{25}$ is
A. an integer
B. a rational number
C. an irrational number

D. a natural number

Answer: B

D Watch Video Solution
40. If the sum of the zeroes of the quadratic polynomial $\mathrm{f}(\mathrm{x})=m x^{2}+2 x+3 m$ is equal to their product, then m equals

> A. $\frac{1}{3}$
> B. $\frac{2}{3}$
> C. $-\frac{2}{3}$
> D. $-\frac{1}{3}$

Answer: C

D Watch Video Solution
41. Case Study-1: Students of a school are studying in rows and columns in their playground for a drill practice. A, B, C and D are the positions of four students as shown in the figure.

The coordinates of A and B respectively is:
A. $A(3,5), B(7,8)$
B. $A(5,3), B(8,7)$
C. $A(3,5), B(7,9)$
D. $A(5,3), B(9,7)$

Answer: C

- Watch Video Solution

42. Case Study-1: Students of a school are studying in rows and columns in their playground for a drill practice. A, B, C and D are
the positions of four students as shown in the
figure.

The coordinates of C and D respectively is:
A. $C(11,5), D(7,1)$
B. $C(5,11), D(1,7)$
C. $C(5,11), D(7,1)$

D. $C(5,11), D(-1,7)$

Answer: A

- Watch Video Solution

43. Students of a school are standing in rows
and columns in their playground for a drill
practice . A, B, C and D are the positions of four students as shown in figure. Is it possible to place Jaspal inn the drill in such a way that
he is equidistant from each of the four
students A, B C and D ? If so, what should be
his position?

A. Yes
B. Not possible
C. Not true
D. None

Answer: A

D Watch Video Solution

44. Students of a school are standing in rows and columns in their playground for a drill practice . A, B, C and D are the positions of four students as shown in figure. Is it possible to place Jaspal inn the drill in such a way that
he is equidistant from each of the four students A, B C and D ? If so, what should be his position?

A. $(7,5)$
B. $(5,7)$
C. $(7,7)$
D. $(5,5)$

Answer: A

D Watch Video Solution

45. Case Study-1: Students of a school are studying in rows and columns in their playground for a drill practice. A, B, C and D are the positions of four students as shown in the figure.

The distance between B and D is:
A. 5 units
B. 14 units
C. 8 units
D. 10 units

Answer: C

- Watch Video Solution

46. A seminar is being conducted by an

Educational Organisation, where the participants will be educators of different subjects. The number of participants in Hindi, English and Mathematics are 60, 84 and 108 respectively.

In each room the same number of participants
are to be seated and all of them being in the same subject, hence maximum number participants that can accommodated in each room are
A. 14
B. 12
C. 16
D. 18

Answer: B
47. A seminar is being conducted by an Educational Organisation, where the participants will be educators of different subjects. The number of participants in Hindi, English and Mathematics are 60, 84 and 108 respectively.

What is the minimum number of rooms required during the event?
A. 11
B. 31
C. 41
D. 21

Answer: D

D Watch Video Solution

48. A seminar is being conducted by an

Educational Organisation, where the participants will be educators of different
subjects. The number of participants in Hindi,

English and Mathematics are 60, 84 and 108 respectively.

The LCM of 60, 84 and 108 is
A. 3780
B. 3680
C. 4780
D. 4680

Answer: A

- Watch Video Solution

49. A seminar is being conducted by an

Educational Organisation, where the participants will be educators of different subjects. The number of participants in Hindi,

English and Mathematics are 60, 84 and 108 respectively.

The product of HCF and LCM of 60,84 and 108 is
A. 55360
B. 35360
C. 45500
D. 45360

Answer: D
(Watch Video Solution
50. A seminar is being conducted by an

Educational Organisation, where the
participants will be educators of different subjects. The number of participants in Hindi,

English and Mathematics are 60, 84 and 108 respectively.

108 can be expressed as a product of its primes as
A. $2^{3} \times 3^{2}$
B. $2^{3} \times 3^{3}$
C. $2^{2} \times 3^{2}$
D. $2^{2} \times 3^{3}$

Answer: D

- Watch Video Solution

51. Write the equation of a line parallel to the X-axis.
A. $x=a$
B. $y=a$
C. $y=0$
D. $x=0$

Answer: B

- Watch Video Solution

52. What is the smallest composite number:
A. 2
B. 3
C. 7
D. 4

Answer: D

D Watch Video Solution

53. If $\sin \theta=\frac{1}{3}$, then find the value of $2 \cot ^{2} \theta+2$.
A. 18
B. 36
C. 20
D. 9

Answer: A

D Watch Video Solution

54. If piece of wire 20 cm long is bent into the form of an are of a circle subending an angle of 60° at its centre. The radius of the circle is:

$$
\text { A. } \frac{60}{\pi} \mathrm{~cm}
$$

B. $\frac{20}{\pi} \mathrm{~cm}$
C. $\frac{30}{\pi} \mathrm{~cm}$
D. $\frac{15}{\pi} \mathrm{~cm}$

Answer: A

D Watch Video Solution

55. Find the value of $9 \sec ^{2} A-9 \tan ^{2} A$
A. 1
B. 9
C. -1
D. -9

Answer: B

(Watch Video Solution

56. What are the zeroes of the polynomial

$$
\left(x^{2}-9\right) ?
$$

A. $(3,0)$
B. $(3,-3)$
C. $(0,3)$
D. $(3,3)$

Answer: B

D Watch Video Solution

57. If α, β are the zeroes of a polynomial such
that $\alpha+\beta=6$ and $\alpha \beta=4$, then write down
the polynomial.

$$
\text { A. } x^{2}-6 x+4
$$

B. $x^{2}+6 x+4$
C. $x^{2}+4 x+6$
D. $x^{2}-4 x+6$

Answer: A

D Watch Video Solution

58. What is the angle described by the minute hand between $4: 00 \mathrm{pm}$ and $4: 25 \mathrm{pm}$?
A. 120°
B. 150°
C. 90°
D. 135°

Answer: B

D Watch Video Solution

59. What is the probability of getting exacttey one head in tossing a pair of coins?

$$
\text { A. } \frac{1}{2}
$$

B. $\frac{3}{4}$
C. $\frac{1}{4}$
D. 1

Answer: A

- Watch Video Solution

60. What are the number of zeroes of the polynomial $f(x)$ in the given graph?

A. 1
B. 2
C. 3
D. 0

Answer: C

D Watch Video Solution
61. What is the value of $\tan 30^{\circ}+\tan 60^{\circ}$?

$$
\begin{aligned}
& \text { A. } \frac{4 \sqrt{3}}{3} \\
& \text { B. } \frac{2 \sqrt{3}}{\alpha} \\
& \text { C. } \frac{\sqrt{3}}{\alpha} \\
& \text { D. } \frac{1}{2}
\end{aligned}
$$

Answer: A

- Watch Video Solution

62. If $\operatorname{cosec} \theta-\cot \theta=\frac{1}{5}$, then the value of $\cos e c \theta+\cot \theta$.

$$
\begin{aligned}
& \text { A. } \frac{1}{5} \\
& \text { B. } \frac{1}{25} \\
& \text { C. } \frac{-1}{25} \\
& \text { D. } 5
\end{aligned}
$$

Answer: D

63. A boy walks 12 m due east and 5 m due south. How far is he from the starting point?
A. 12 M
B. 17 M
C. 13 M
D. 20 M

Answer: C

D Watch Video Solution
64. If two different dice are rolled together,
the probability of getting an even number on
both dice, is $\frac{1}{36}$ (b) $\frac{1}{2}$ (c) $\frac{1}{6}$ (d) $\frac{1}{4}$
A. $\frac{1}{4}$
B. $\frac{3}{2}$
C. 1
D. 0

Answer: A
65. What is the ratio of the areas of a circle and an equilateral triangle whose diameter and a side are respectively equal?

> A. $\frac{\pi}{\sqrt{3}}$
> B. $\frac{\pi}{3}$
> C. $\frac{\sqrt{3} \pi}{4}$
> D. $\frac{\pi}{2}$

Answer: A

D Watch Video Solution
66. What is the probability of getting a red
queen when a card is drawn from a well
shuffled pack of 52 cards?

> A. $\frac{2}{13}$
> B. $\frac{1}{22}$
> C. $\frac{4}{13}$
> D. $\frac{1}{26}$

Answer: D

D Watch Video Solution
67. If the perimeter and the area of a circle are numerically equal, then the radius of the circle is.
A. 2 units
B. 4 units
C. π units
D. 6 units

Answer: A

D Watch Video Solution
68. Find the value of k for which the pair of
linear equations $k x+3 y=k-3,12 x+k y=k$ has no solution.
A. ± 4
B. ± 3
C. ± 6
D. ± 15

Answer: C

D Watch Video Solution
69. If $3 \sec \theta-5=0$, then value of $\cot \theta$ is:

> A. $\frac{4}{3}$
> B. $\frac{1}{4}$
> C. $\frac{5}{3}$
> D. $\frac{3}{4}$

Answer: D

70. Find the solution of linear equations $x+y=3$ and $7 x+6 y=2 ?$
A. $-16,19$
B. 3, 2
C. 11,9
D. $-21,20$

Answer: A

- Watch Video Solution

71. Find the distance between the coordinates
($7,-7$) and (15,8).
A. 13
B. 15
C. 17
D. 12

Answer: C

D Watch Video Solution
72. What will be the sum of exponents of prime factors in the prime factorisation of 196?
A. 2
B. 4
C. 6
D. 5

Answer: B

D Watch Video Solution
73. If $\sin A=\frac{3}{4}$ calculate sec A .

$$
\begin{aligned}
& \text { A. } \frac{5}{\sqrt{7}} \\
& \text { B. } \frac{3}{\sqrt{7}} \\
& \text { C. } \frac{4}{\sqrt{7}} \\
& \text { D. None of these }
\end{aligned}
$$

Answer: C
74. Evaluate the zeroes of the polynomial

$$
x^{2}-3 x-m(m+3)
$$

A. $-m, m-1$
B. $-m,-\left(m t_{3}\right)$
C. $m, m t_{3}$

$$
\text { D. }-m, m+3
$$

Answer: D

D Watch Video Solution

75. Which among the following options is irrational?
A. 3.1415926535
B. 10.2
C. $(0.2)^{2}$
D. 0.2

Answer: A

D Watch Video Solution
76. Write down the decimal expansions of

13 $\overline{6250}$.

A. 0.028
B. 0.00208
C. $\frac{0.005}{2}$
D. $\frac{0.004}{6}$

Answer: B

D Watch Video Solution
77. In $\triangle A B C$ and $\triangle D E F$, it is given that $\frac{A B}{D E}=\frac{B C}{F D}$ then
A. $\angle A=\angle F$
B. $\angle B=\angle D$
C. $\angle A=\angle D$
D. $\angle B=\angle E$

Answer: B

D Watch Video Solution
78. In the figure given below $\angle B A C=90^{\circ}$ and $A D \perp B C$. Then

A. $B D \cdot C D=B C^{2}$
B. $A B . A C=B C^{2}$
c. $B D \cdot C D=A D^{2}$
D. $A B . A C=A D^{2}$

Answer: C

D Watch Video Solution

79. The probability that cannot exist among
the following:
A. $\frac{2}{3}$
B. -1.5
C. 15%
D. 0.7

Answer: B

D Watch Video Solution

80. The point which divides the line segment
of points $P(-1,7)$ and $Q(4,-3)$ in the ratio of $2: 3$
is:
A. $(-1,3)$
B. $(-1,-3)$
C. $(1,-3)$
D. $(1,3)$

Answer: D

D Watch Video Solution

81. The decimal expansion of $\frac{22}{7}$ is:
A. terminating
B. non-terminating and non-repeating
C. non-terminating and repeating
D. None of the above
82. If $H C F$ of 65 and 117 is expressible in the

form $65 m-117$, then the value of m is

A. 4
B. 2
C. 1
D. 3

Answer: B
83. Which of the following are not similar figures?
A. Circles
B. Squares
C. Equilateral triangle
D. Isosceles triangles

Answer: D

- Watch Video Solution

84. If $\triangle A B C \sim \triangle D F E, \angle A=30, \angle C=50^{\circ}$
, $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm}$ and $\mathrm{DF}=7.5 \mathrm{~cm}$. Then, which of the following is true?
A. $D E=12 \mathrm{~cm}, \angle F=50^{\circ}$
B. $D E=12 \mathrm{~cm}, \angle F=100^{\circ}$
C. $E F=12 \mathrm{~cm}, \angle D=100^{\circ}$
D. $E F=12 \mathrm{~cm}, \angle D=30^{\circ}$

Answer: B

85. If one equation of a pair of dependent
linear equations is $-3 x+5 y-2=0$. The second equation will be:

$$
\begin{aligned}
& \text { A. }-6 x+10 y-4=0 \\
& \text { B. } 6 x+10 y-4=0 \\
& \text { C. } 6 x-10 y-4=0 \\
& \text { D. }-6 x+10 y+=0
\end{aligned}
$$

86. The value of $(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})$ is:
A. 10
B. 7
C. 3
D. $\sqrt{3}$

Answer: C

- Watch Video Solution

87. What is the area of a triangle formed by

lines PQ and, RS and line $X=0$?

A. 11.5 sq. units

B. 10 sq. units
C. 12 sq. units
D. 9.5 sq. units

Answer: C

- Watch Video Solution

88. If $\triangle A B C$ is right angle at C, then value of $\cos (A+B)$ is:
A. 0
B. 1
C. $\frac{1}{2}$
D. $\frac{\sqrt{3}}{2}$

Answer: A

- Watch Video Solution

89. In the given figure $\triangle A B C \sim \triangle P Q R$ the
value of x is:

A. 2.5 cm
B. 3.5 cm
C. 2.75 cm
D. 3 cm

Answer: D

90. In the given figure, $D E I I A B$, which of the
following is true?

A. $x=\frac{a+b}{a y}$
B. $y=\frac{a x}{a+b}$
C. $x=\frac{a y}{a+b}$
D. $\frac{x}{y}=\frac{a}{b}$

Answer: C

- Watch Video Solution

91. Case Study-1: Students of a school are studying in rows and columns in their playground for a drill practice. A, B, C and D are the positions of four students as shown in the figure.

The coordinates of A and B respectively is:
A. $A(3,5), B(7,8)$
B. $A(5,3), B(8,7)$
C. $A(3,5), B(7,9)$
D. $A(5,3), B(9,7)$

Answer: C
92. Case Study-1: Students of a school are studying in rows and columns in their playground for a drill practice. A, B, C and D are the positions of four students as shown in the figure.

The coordinates of C and D respectively is:
A. $C(11,5), D(7,1)$
B. $C(5,11), D(1,7)$
C. $C(5,11), D(7,1)$
D. $C(5,11), D(-1,7)$

- Watch Video Solution

93. Case Study-1: Students of a school are studying in rows and columns in their playground for a drill practice. $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are the positions of four students as shown in the figure.

Is it possible to place Ram (R) in the drill in
such away that he is equidistant from all the four students A, B, C and D ?
A. Yes
B. Not possible
C. Not true
D. None

Answer: A

D Watch Video Solution
94. Case Study-1: Students of a school are studying in rows and columns in their playground for a drill practice. A, B, C and D are the positions of four students as shown in the figure.

What are the coordinates of the position of Ram?
A. $(7,5)$
B. $(5,7)$
C. $(7,7)$
D. $(5,5)$

Answer: A

D Watch Video Solution

95. Case Study-1: Students of a school are studying in rows and columns in their playground for a drill practice. A, B, C and D are
the positions of four students as shown in the
figure.

The distance between B and D is:
A. 5 units
B. 14 units
C. 8 units

D. 10 units

Answer: C

D Watch Video Solution

96. A seminar is being conducted by an

Educational Organisation, where the participants will be educators of different subjects. The number of participants in Hindi,

English and Mathematics are 60, 84 and 108 respectively.

In each room the same number of participants are to be seated and all of them being in the same subject, hence maximum number participants that can accommodated in each room are
A. 14
B. 12
C. 16
D. 18

Answer: B

- Watch Video Solution

97. A seminar is being conducted by an

Educational Organisation, where the participants will be educators of different subjects. The number of participants in Hindi,

English and Mathematics are 60, 84 and 108 respectively.

What is the minimum number of rooms

required during the event?

A. 11
B. 31
C. 41
D. 21

Answer: D

D Watch Video Solution
98. A seminar is being conducted by an

Educational Organisation, where the
participants will be educators of different subjects. The number of participants in Hindi,

English and Mathematics are 60, 84 and 108 respectively.

The LCM of 60,84 and 108 is
A. 3780
B. 3680

C. 4780

D. 4680

Answer: A

D Watch Video Solution

99. A seminar is being conducted by an

Educational Organisation, where the participants will be educators of different subjects. The number of participants in Hindi,

English and Mathematics are 60, 84 and 108
respectively.

The product of HCF and LCM of 60,84 and 108 is
A. 55360
B. 35360
C. 45500
D. 45360

Answer: D

- Watch Video Solution

100. A seminar is being conducted by an Educational Organisation, where the participants will be educators of different subjects. The number of participants in Hindi,

English and Mathematics are 60, 84 and 108 respectively.

108 can be expressed as a product of its primes as
A. $2^{3} \times 3^{2}$
B. $2^{3} \times 3^{3}$
C. $2^{2} \times 3^{2}$
D. $2^{2} \times 3^{3}$

Answer: D

- Watch Video Solution

Section A

1. The $4^{\text {th }}$ term of an A.P. is equal to 3 times the
first term and $7^{\text {th }}$ term excess with the $3^{r d}$ term by 1 . Find its $n^{\text {th }}$ term.

D Watch Video Solution

2. If the quadratic equation
$p x^{2}-2 \sqrt{5} p x+15=0$, has two equal roots
then find the value of p.

D Watch Video Solution
3. In the given figure, $A B$ and $A C$ are tangents to the circle with centre O such that
$\angle B A C=40^{\circ}$. Then find the $\angle B O C$.

- Watch Video Solution

4. The diameter of a sphere is 6 cm . It is melted and drawn in to a wire of diameter 2
mm . Find the length of the wire.

D Watch Video Solution

5. Consider the following distribution:

Marks obtained	Number of students
More than or equal to 0	63
More than or equal to 10	58
More than or equal to 20	55
More than or equal to 30	51
More than or equal to 40	48
More than or equal to 50	42

Find the frequency of the class 30-40.
6. If the roots of the equation
$(a-b) x^{2}+(b-c) x+(c-a)=0 \quad$ are
equal, prove that $b+c=2 a$.

D View Text Solution

7. Find the value of k for which the equation
$x^{2}+k(2 x+k-1)+2=0$ has real and equal roots.
8. In a retail market, fruit vendors were selling mangoes kept in packing boxes. These boxes contained varying number of mangoes. The following was the distribution of mangoes according to the number of boxes.

Number of mangoes	$50-52$	$53-55$	$56-58$	$59-61$	$62-64$
Number of boxes	15	110	135	115	25

Find the mean number of mangoes kept in a packing box. Which method of finding the mean did you choose?
2. If the median of the following frequency
distribution is $32-5$. Find the values of
f_{1} and f_{2}.

Class	f_{1}
$0-10$	5
$10-20$	9
$20-30$	12
$30-40$	f_{2}
$40-50$	3
$50-60$	2
$60-70$	40
Total	

D View Text Solution

3. Draw two tangents to a circle of radius 3.5
cm , from a point P at a distance of 6.2 cm from
its centre.

D View Text Solution

4. The arithmetic mean of the following
frequency distribution is 53 . Find the value of
k.

. Class	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
Frequency	12	15	32	k	13

Section C

1. A solid cylinder of diameter 12 cm and height

15 cm is melted and recast into 12 toys in the
shape of a right-circular cone mounted on a hemisphere. Find the radius of the hemisphere
if the height of the cone is 3 times the radius.

D View Text Solution
2. Six tennis balls of diameter 62 mm are placed in cylindrical tube. Find the volume of the six balls and the internal volume of unfilled space in the tube and express this as a percentage of the volume of the tube.

- View Text Solution

3. Out of the two concentric circles, the radius' of the outer circle is 5 cm and the chord AC of
length 8 cm is a tangent to the inner circle.

Find the radius of the inner circle.

- View Text Solution

4. One day while sitting on the bridge across a river Aaradhya observes the angles of depression of the banks on opposite sides of the river to be 30° and 60° respectively as shown in the figure. (Take $\sqrt{3}=1.73$)

Based on the above information, answer the following questions :

If the bridge is at a height of 6 m , then find $A D$.

D View Text Solution

5. One day while sitting on the bridge across a river Aaradhya observes the angles of depression of the banks on opposite sides of the river to be 30° and 60° respectively as shown in the figure. (Take $\sqrt{3}=1.73$)

Based on the above information, answer the following questions:

What is the width of the river ?

(D) View Text Solution

6. India is competitive manufacturing location due to the low cost of manpower and strong technical and engineering capabilities contributing to higher quality production
runs. The production of TV sets in a factory increases uniformly by a fixed number every
year. It produced 16000 sets in 6th year and 22600 in 9th year.

Based on the above information, answer the following questions:

Find the production for first year.

D Watch Video Solution
7. India is competitive manufacturing location due to the low cost of manpower and strong technical and engineering capabilities contributing to higher quality production runs. The production of TV sets in a factory increases uniformly by a fixed number every
year. It produced 16000 sets in 6th year and 22600 in 9th year.

Based on the above information, answer the following questions :

In which year, the production is 29,200.

- Watch Video Solution

