©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - OSWAL PUBLICATION

SAMPLE QUESTION PAPER

Question Bank

1. The ratio of LCM and HCF of the least composite and the least prime numbers is
A. $1: 2$
B. 2:1
C. $1: 1$
D. $1: 3$

Answer: B

D Watch Video Solution

2. The value of k for which the lines $5 x+7 y=3$ and $15 x+21 y=k$ coincide is
A. 9
B. 5
C. 7
D. 18

Answer: A

D Watch Video Solution
3. A girl walks 200 m towards East and then

150 m towards North. The distance of the girl
from the starting point is
A. 350 m
B. 250 m
C. 300 m
D. 225 m

Answer: B

D Watch Video Solution

4. The lengths of the diagonals of a rhombus are 24 cm and 32 cm , then the length of the altitude of the rhombus is
A. 12 cm
B. 12.8 cm
C. 19 cm
D. 19.2 cm

Answer: D

D Watch Video Solution
5. Two fair coins are tossed. What is the probability of getting at the most one head?
A. $\frac{3}{4}$
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. $\frac{3}{8}$

Answer: A

D Watch Video Solution
6. $\triangle A B C \sim \Delta P Q R$. If AM and PN are altitudes
of $\triangle A B C$ and $\triangle P Q R$ respectively and $A B^{2}$:
$P Q^{2}=4: 9$ then $A M: P N=$
A. 16: 81
B. $4: 9$
C. $3: 2$
D. $2: 3$

Answer: D

D Watch Video Solution

7. If $2 \sin ^{2} \beta-\cos ^{2} \beta=2$, then β is:
A. 0°
B. 90°
C. 45°
D. 30°

Answer: B

D Watch Video Solution

8. Prime factors of the denominator of a rational number with the decimal expansion
44.123 are
A. 2, 3
B. 2, 3, 5
C. 2,5
D. 3,5

Answer: C

D Watch Video Solution

9. The lines $x=a$ and $y=b$, are
A. intersecting

B. parallel

C. overlapping
D. None of these

Answer: A

- Watch Video Solution

10. The distance of point $A(-5,6)$ from the origin is :

A. 11 units

B. 61 units
C. $\sqrt{11}$ units
D. $\sqrt{61}$ units

Answer: D

- Watch Video Solution

11. If $a^{2}=23 / 25$, then a is
A. rational
B. irrational

C. whole number

D. integer

Answer: B

D Watch Video Solution

12. If $\operatorname{LCM}(x, 18)=36$ and $\operatorname{HCF}(x, 18)=2$, then x is
A. 2
B. 3
C. 4
D. 5

Answer: C

D Watch Video Solution

13. In $\triangle A B C$ right angled at B , if $\tan A=\sqrt{3}$,
then $\cos A \cos C-\sin A \sin C=$
A. -1
B. 0
C. 1

D. $\sqrt{3} / 2$

Answer: B

D Watch Video Solution

14. If the angles of $\Delta A B C$ are in ratio 1:1:2,
respectively (the largest angle being angle C),
then the value of $\frac{\sec A}{\operatorname{cosec} B}-\frac{\tan A}{\cot B}$ is
A. 0
B. $1 / 2$
C. 1
D. $\sqrt{3} / 2$

Answer: A

- Watch Video Solution

15. The number of revolutions made by a circular wheel of radius 0.7 m in rolling a distance of 176 m is :
A. 22
B. 24
C. 75
D. 40

Answer: D

D Watch Video Solution

16. $\triangle A B C$ is such that $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=2 \mathrm{~cm}, \mathrm{CA}=$ 2.5 cm . If $\triangle A B C \sim \Delta D E F$ and $\mathrm{EF}=4 \mathrm{~cm}$, then perimeter of $\triangle D E F$ is
A. 7.5 cm
B. 15 cm
C. 22.5 cm
D. 30 cm

Answer: B

D Watch Video Solution
17. In the figure, if $D E \| B C, A D=3 \mathrm{~cm}, B D=4 \mathrm{~cm}$ and $B C=14 \mathrm{~cm}$, then $D E$ equals

A. 7 cm

B. 6 cm
C. 4 cm
D. 3 cm

Answer: B
18. If $4 \tan \beta=3$, then $\frac{4 \sin \beta-3 \cos \beta}{4 \sin \beta+3 \cos \beta}=$
A. 0
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{3}{4}$

Answer: A

- Watch Video Solution

19. One equation of a pair of dependent linear equations is $-5 x+7 y-2=0$. The second equation can be
A. $10 x+14 y+4=0$
B. $-10 x-14 y+4=0$
C. $-10 x+14 y+4=0$
D. $10 x-14 y=-4$

Answer: D

20. A letter of English alphabet is chosen at random. What is the probability that it is a letter of the word 'MATHEMATICS'?

$$
\begin{aligned}
& \text { A. } \frac{4}{13} \\
& \text { B. } \frac{9}{26} \\
& \text { C. } \frac{5}{13} \\
& \text { D. } \frac{11}{26}
\end{aligned}
$$

Answer: A
21. If sum of two numbers is 1215 and their

HCF is 81 , then the possible number of pairs of
such numbers are :
A. 2
B. 3
C. 4
D. 5

Answer: C

D Watch Video Solution

22. Given below is the graph representing two

linear equations by lines $A B$ and $C D$

respectively. What is the area of the triangle formed by these two lines and the line is
$x=0$?

A. 3 sq. units
B. 4 sq. units
C. 6 sq. units
D. 8 sq. units

Answer: C

D Watch Video Solution

23. If $\tan \alpha+\cot \alpha=2$, then
$\tan ^{20} \alpha+\cot ^{20} \alpha=$
A. 0
B. 2
C. 20
D. 2^{20}

Answer: B

D Watch Video Solution

24. Evaluate $x+y$, if $217 x+131 y=913$ and $131 x+$
$217 y=827$.
A. 5
B. 6
C. 7
D. 8

Answer: A

D Watch Video Solution

25. The LCM of two prime numbers p and q (p
$>q)$ is 221 . Find the value of $3 p-q$.
A. 4
B. 28
C. 38
D. 48

Answer: C

D Watch Video Solution
26. A card is drawn at random from a well shuffled pack of 52 cards. Find the probability
that the drawn card is neither a king nor a queen.

> A. $\frac{11}{13}$
> B. $\frac{12}{13}$
> C. $\frac{11}{26}$
> D. $\frac{11}{52}$

Answer: A

- Watch Video Solution

27. Two dice are rolled simultaneously . Find
the probability of
getting atleast one'5'.

> A. $\frac{5}{36}$
> B. $\frac{11}{36}$
> C. $\frac{12}{36}$
> D. $\frac{23}{36}$

Answer: B

D Watch Video Solution
28. If $1+\sin ^{2} \alpha=3 \sin \alpha \cos \alpha$, then the values of $\cot \alpha$ are
A. $-1,1$
B. 0,1
C. 1, 2
D. $\quad-1,-1$

Answer: C

D Watch Video Solution
29. The vertices of a parallelogram in order are $A(1,2), B(4, y), C(x, 6)$ and $D(3,5)$. Then (x, y) is
A. $(6,3)$
B. $(3,6)$
C. $(5,6)$
D. $(1,4)$

Answer: A

D Watch Video Solution
30. In the given figure,
$\angle A C B=\angle C D A, A C=8 c m, A D=3 \mathrm{~cm}$,
then $B D$ is

A. $\frac{22}{3} \mathrm{~cm}$
B. $\frac{26}{3} \mathrm{~cm}$
C. $\frac{55}{3} \mathrm{~cm}$
D. $\frac{64}{3} \mathrm{~cm}$

Answer: C

D Watch Video Solution

31. The equation of the perpendicular bisector of line segment joining points $A(4,5)$ and $B(-2,3)$ is
A. $2 x-y+7=0$

$$
\text { B. } 3 x+2 y-7=0
$$

$$
\text { С. } 3 x-y-7=0
$$

D. $3 x+y-7=0$

Answer: D

- Watch Video Solution

32. In the given figure, D is the mid-point of $B C$,
then the value of $\frac{\cot y^{\circ}}{\cot x^{\circ}}$ is

A. 2
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer: B

D Watch Video Solution

33. The smallest number by which $1 / 13$ should
be multiplied so that its decimal expansion
terminates after two decimal places is
A. $\frac{13}{100}$
B. $\frac{13}{10}$
C. $\frac{10}{13}$
D. $\frac{100}{13}$

Answer: A

D Watch Video Solution
34. Sides $A B$ and $B E$ of a right triangle, right angled at B are of lengths 16 cm and 8 cm respectively. The length of the side of largest

triangle $A B E$ is

$$
\begin{aligned}
& \text { A. } \frac{32}{3} \mathrm{~cm} \\
& \text { B. } \frac{16}{3} \mathrm{~cm} \\
& \text { C. } \frac{8}{3} \mathrm{~cm} \\
& \text { D. } \frac{4}{3} \mathrm{~cm}
\end{aligned}
$$

Answer: B
35. Point P divides the line segment joining $R(-1,3)$ and $S(9,8)$ in ratio $k: 1$. If P lies on the line $x-y+2=0$, then value of k is

$$
\begin{aligned}
& \text { A. } \frac{2}{3} \\
& \text { B. } \frac{1}{2} \\
& \text { C. } \frac{1}{3} \\
& \text { D. } \frac{1}{4}
\end{aligned}
$$

36. In the figure given below, $A B C D$ is a square of side 14 cm with $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H as the mid points of sides $A B, B C, C D$ and $D A$ respectively. The area of the shaded portion is
A. $44 \mathrm{~cm}^{2}$
B. $49 \mathrm{~cm}^{2}$
C. $98 \mathrm{~cm}^{2}$
D. $\frac{49 \pi}{2} \mathrm{~cm}^{2}$

Answer: C

D Watch Video Solution

37. Given below is the picture of the Olympic rings made by taking five congruent circles of radius 1 cm each, intersecting in such a way
that the chord formed by joining the point of intersection of two circles is also of length 1 cm . Total area of all the dotted regions assuming the thickness of the rings to be negligible is

A. $4\left(\frac{\pi}{12}-\frac{\sqrt{3}}{4}\right) c m^{2}$
B. $\left(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right) c m^{2}$
C. $4\left(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right) c m^{2}$
D. $8\left(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right) c m^{2}$

Answer: D

D Watch Video Solution

38. If 2 and $1 / 2$ are the zeros of $p x^{2}+5 x+r$,
then
A. $p=r=2$
B. $p=r=-2$
C. $p=2, r=-2$
D. $p=-2, r=2$

Answer: B

- Watch Video Solution

39. The circumference of a circle is 100 cm . The side of a square inscribed in the circle is
A. $50 \sqrt{2} \mathrm{~cm}$
B. $\frac{100}{\pi} \mathrm{~cm}$
C. $\frac{50 \sqrt{2}}{\pi} \mathrm{~cm}$
D. $\frac{100 \sqrt{2}}{\pi} \mathrm{~cm}$
π

Answer: C

- Watch Video Solution

40. The number of solutions of $3^{x+y}=243$ and $243^{x-y}=3$ is

A. 0
B. 1
C. 2
D. infinite

Answer: B

- Watch Video Solution

41.

The figure given alongside shows the path of a diver. When she takes a jump from the diving board. Clearly it is parabola .

Annie was standing on a diving board, 48 feet
above the water level. She took a dive into the
pool. Her height (in feet) above the water
level at any time 't' in seconds is given by the
polynomial $h(t)$ such that
$h(t)=-16 t^{2}+8 t+k$

What is value of k ?
A. 0
B. -48
C. 48
D. $\frac{48}{-16}$

- Watch Video Solution

42.

The figure given alongside shows the path of a diver. When she takes a jump from the diving
board. Clearly it is parabola .

Annie was standing on a diving board, 48 feet above the water level. She took a dive into the pool. Her height (in feet) above the water level at any time 't' in seconds is given by the polynomial $h(t)$ such that
$h(t)=-16 t^{2}+8 t+k$
At what time will she touch the water in the pool?
A. 30 seconds
B. 2 seconds
C. 1.5 seconds

D. 0.5 seconds

Answer: B

D Watch Video Solution

43.

The figure given alongside shows the path of a diver, when she takes a jump from the diving board. Clearly it is a parabola.

Annie was standing on a diving board, 48 feet
above the water level. She took a dive into the
pool. Her height (in feet) above the water level at any time't' in seconds is given by the polynomial $h(t)$ such that
$h(t)=-16 t^{2}+8 t+k$.
Rita's height (in feet) above the water level is given by another polynomial $p(t)$ with zeroes -1 and 2. Then $\mathrm{p}(\mathrm{t})$ is given by-

$$
\begin{aligned}
& \text { A. } t^{2}+t-2 \\
& \text { B. } t^{2}+2 t-1 \\
& \text { C. } 24 t^{2}-24 t+48
\end{aligned}
$$

D. $-24 t^{2}+24 t+48$

Answer: D

D Watch Video Solution

44.

The figure given alongside shows the path of a diver. When she takes a jump from the diving board. Clearly it is parabola .

Annie was standing on a diving board, 48 feet
above the water level. She took a dive into the
pool. Her height (in feet) above the water level at any time 't' in seconds is given by the polynomial $h(t)$ such that $h(t)=-16 t^{2}+8 t+k$

A polynomial $q(t)$ with sum of zeroes as 1 and
the product as -6 is modelling Anu's height in feet above the water at any time t (in seconds). Then $q(t)$ is given by:
A. $t^{2}+t+6$
B. $t^{2}+t-6$
C. $-8 t^{2}+8 t+48$
D. $8 t^{2}-8 t+48$

Answer: C

D Watch Video Solution

45.

The figure given alongside shows the path of a diver. When she takes a jump from the diving board. Clearly it is parabola .

Annie was standing on a diving board, 48 feet
above the water level. She took a dive into the
pool. Her height (in feet) above the water level at any time 't' in seconds is given by the polynomial $h(t)$ such that $h(t)=-16 t^{2}+8 t+k$

The zeroes of the polynomial
$r(t)=-12 t^{2}+(k-3) t+48$ are negative of each other. Then k is :
A. 3
B. 0
C. -1.5
D. -3

Answer: A

D Watch Video Solution

46. Case Study-2: A hockey field is the playing
surface for the game of hockey. Historically,
the game was played on natural turf (grass)
but nowadays it is predominantly played on an artificial turf.

It is rectangular in shape-100 yards by 60
yards. Goals consist of two upright posts
placed equidistant from the centre of the
backline, joined at the top by a horizontal
crossbar. The inner edges of the posts must by
3.66 metres (4 yards) apart, and the lower edge of teh crossbar must be 2.14 metres (7 feet) above the ground.

Each team plays with 11 players on the field during the game including the goalie.

Position you might play include:

Forward: As shown by players A, B, C and D.

Midfielders : As shown by players E, F and.

Fullbacks:As shown by players H, I and J.

Goalie: As shows by player K

Using the picture of a hockey field below,

answer the questions that follow:

The coordinates of the centroid of $\Delta E H J$ are:

$$
\begin{aligned}
& \text { А. }\left(\frac{-2}{3}, 1\right) \\
& \text { В. }\left(1, \frac{-2}{3}\right) \\
& \text { С. }\left(\frac{2}{3}, 1\right)
\end{aligned}
$$

$$
\text { D. }\left(\frac{-2}{3},-1\right)
$$

Answer: A

D View Text Solution

47. Case Study-2: A hockey field is the playing
surface for the game of hockey. Historically,
the game was played on natural turf (grass) but nowadays it is predominantly played on an artificial turf.

It is rectangular in shape-100 yards by 60
yards. Goals consist of two upright posts
placed equidistant from the centre of the backline, joined at the top by a horizontal crossbar. The inner edges of the posts must by
3.66 metres (4 yards) apart, and the lower edge of teh crossbar must be 2.14 metres (7 feet) above the ground.

Each team plays with 11 players on the field during the game including the goalie.

Position you might play include:

Forward: As shown by players A, B, C and D.

Midfielders : As shown by players E, F and.

Fullbacks:As shown by players H, I and J.

Goalie: As shows by player K

Using the picture of a hockey field below,

 answer the questions that follow:

If a player P needs to be at equal distance
from A and G, such that A, P and G are in
straight line, then position of P will be given
by:
A. $\left(\frac{-3}{3}, 2\right)$
B. $\left(2, \frac{-3}{2}\right)$
C. $\left(2, \frac{3}{2}\right)$
D. $(-2,-3)$

Answer: C

D View Text Solution

48. Case Study-2: A hockey field is the playing
surface for the game of hockey. Historically,
the game was played on natural turf (grass)
but nowadays it is predominantly played on an artificial turf.

It is rectangular in shape-100 yards by 60 yards. Goals consist of two upright posts placed equidistant from the centre of the backline, joined at the top by a horizontal crossbar. The inner edges of the posts must by
3.66 metres (4 yards) apart, and the lower edge of teh crossbar must be 2.14 metres (7 feet) above the ground.

Each team plays with 11 players on the field during the game including the goalie.

Position you might play include:

Forward: As shown by players A, B, C and D.

Midfielders : As shown by players E, F and.

Fullbacks:As shown by players H, I and J.

Goalie: As shows by player K

Using the picture of a hockey field below, answer the questions that follow:

The point on X -axis equidistant from I and E is:
A. $\left(\frac{1}{2}, 0\right)$
B. $\left(0, \frac{-1}{2}\right)$
C. $\left(\frac{-1}{2}, 0\right)$
D. $\left(0, \frac{1}{2}\right)$

Answer: A

D View Text Solution

49. Case Study-2: A hockey field is the playing
surface for the game of hockey. Historically,
the game was played on natural turf (grass)
but nowadays it is predominantly played on an artificial turf.

It is rectangular in shape-100 yards by 60 yards. Goals consist of two upright posts placed equidistant from the centre of the backline, joined at the top by a horizontal crossbar. The inner edges of the posts must by
3.66 metres (4 yards) apart, and the lower edge of teh crossbar must be 2.14 metres (7 feet) above the ground.

Each team plays with 11 players on the field during the game including the goalie.

Position you might play include:

Forward: As shown by players A, B, C and D.

Midfielders : As shown by players E, F and.

Fullbacks:As shown by players H, I and J.

Goalie: As shows by player K

Using the picture of a hockey field below, answer the questions that follow:

What are the coordinates of the position of a player Q such that his distance from K is twice
his distance from E and K, Q and E are collinear?
A. $(1,0)$
B. $(0,1)$
C. $(-2,1)$
D. $(-1,0)$

Answer: B

D View Text Solution
50. Case Study-2: A hockey field is the playing surface for the game of hockey. Historically,
the game was played on natural turf (grass)
but nowadays it is predominantly played on an artificial turf.

It is rectangular in shape-100 yards by 60
yards. Goals consist of two upright posts
placed equidistant from the centre of the
backline, joined at the top by a horizontal
crossbar. The inner edges of the posts must by
3.66 metres (4 yards) apart, and the lower edge of teh crossbar must be 2.14 metres (7
feet) above the ground.

Each team plays with 11 players on the field during the game including the goalie.

Position you might play include:

Forward: As shown by players A, B, C and D.
Midfielders : As shown by players E, F and.

Fullbacks:As shown by players H, I and J.

Goalie: As shows by player K
Using the picture of a hockey field below, answer the questions that follow:

The point on y-axis equidistant from B and C
is:

A. $(-1,0)$
B. $(0,-1)$
C. $(1,0)$
D. $(0,1)$

Answer: D

D View Text Solution

51. The ratio of LCM and HCF of the least composite and the least prime numbers is
A. $1: 2$
B. $2: 1$
C. 1:1
D. $1: 3$

Answer: B

- Watch Video Solution

52. The value of k for which the lines
$5 x+7 y=3$ and $15 x+21 y=k$ coincide is
A. 9
B. 5
C. 7
D. 18

D Watch Video Solution

53. A girl walks 200 m towards East and then

150m towards North. The distance of the girl
from the starting point is
A. 350 m
B. 250 m
C. 300 m
D. 225 m

Answer: B

D Watch Video Solution

54. The lengths of the diagonals of a rhombus
are 24 cm and 32 cm , then the length of the altitude of the rhombus is
A. 12 cm
B. 12.8 cm
C. 19 cm
D. 19.2 cm

Answer: D

D Watch Video Solution

55. Two fair coins are tossed. What is the probability of getting at the most one head?
A. $\frac{3}{4}$
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. $\frac{3}{8}$

Answer: A

D Watch Video Solution

56. $\triangle A B C \sim \triangle P Q R$. If AM and PN are altitudes of $\triangle A B C$ and $\triangle P Q R$ respectively and $A B^{2}$:
$P Q^{2}=4: 9$ then $A M: P N=$
A. 16: 81
B. $4: 9$
C. $3: 2$
D. $2: 3$

Answer: D

D Watch Video Solution

57. If $2 \sin ^{2} \beta-\cos ^{2} \beta=2$, then β is:
A. 0°
B. 90°
C. 45°
D. 30°

Answer: B

- Watch Video Solution

58. Prime factors of the denominator of a rational number with the decimal expansion 44.123 are
A. 2,3
B. 2, 3, 5
C. 2,5
D. 3,5

- Watch Video Solution

59. The lines $x=a$ and $y=b$, are
A. intersecting
B. parallel
C. overlapping
D. None of these

Answer: A
60. The distance of point $A(-5,6)$ from the origin is
A. 11 units
B. 61 units
C. $\sqrt{11}$ units
D. $\sqrt{61}$ units

Answer: D
61. If $a^{2}=23 / 25$, then a is
A. rational
B. irrational
C. whole number
D. integer

Answer: B
(Watch Video Solution
62. If $\operatorname{LCM}(x, 18)=36$ and $\operatorname{HCF}(x, 18)=2$, then x is
A. 2
B. 3
C. 4
D. 5

Answer: C
(Watch Video Solution
63. In $\triangle A B C$ right angled at B , If $\tan A=\sqrt{3}$,
then $\cos A \cos C-\sin A \sin C=$
A. -1
B. 0
C. 1
D. $\sqrt{3} / 2$

Answer: B
(Watch Video Solution
64. If the angles of $\triangle A B C$ are in ratio $1: 1: 2$,
respectively (the largest angle being angle C),
then the value of $\frac{\sec A}{\cos e c B}-\frac{\tan A}{\cot B}$ is:
A. 0
B. $1 / 2$
C. 1
D. $\sqrt{3} / 2$

Answer: A
65. The number of revolutions made by a circular wheel of radius 0.7 m in rolling a distance of 176 m is
A. 22
B. 24
C. 75
D. 40

Answer: D
66. $\triangle A B C$ is such that $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=2 \mathrm{~cm}, \mathrm{CA}=$ 2.5 cm . If $\triangle A B C \sim \Delta D E F$ and $\mathrm{EF}=4 \mathrm{~cm}$, then perimeter of $\triangle D E F$ is
A. 7.5 cm
B. 15 cm
C. 22.5 cm
D. 30 cm

Answer: B

- Watch Video Solution

67. In the figure, if $D E \| B C, A D=3 \mathrm{~cm}, B D=4 \mathrm{~cm}$ and $B C=14 \mathrm{~cm}$, then $D E$ equals

A. 7 cm
B. 6 cm
C. 4 cm
D. 3 cm

Answer: B

- Watch Video Solution

68. If $4 \tan \beta=3$, then $\frac{4 \sin \beta-3 \cos \beta}{4 \sin \beta+3 \cos \beta}=$
A. 0
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{3}{4}$
69. One equation of a pair of dependent linear equations is $-5 x+7 y-2=0$. The second equation can be
A. $10 x+14 y+4=0$
B. $-10 x-14 y+4=0$
C. $-10 x+14 y+4=0$
D. $10 x-14 y=-4$
70. A letter of English alphabet is chosen at random. What is the probability that it is a letter of the word 'MATHEMATICS'?

$$
\begin{aligned}
& \text { A. } \frac{4}{13} \\
& \text { B. } \frac{9}{26} \\
& \text { C. } \frac{5}{13} \\
& \text { D. } \frac{11}{26}
\end{aligned}
$$

71. If sum of two numbers is 1215 and their

HCF is 81 , then the possible number of pairs of such numbers are :
A. 2
B. 3
C. 4
D. 5

72. If $\tan \alpha+\cot \alpha=2$, then

$\tan ^{20} \alpha+\cot ^{20} \alpha=$
A. 0
B. 2
C. 20
D. 2^{20}

Answer: B
73. If $217 x+131 y=913,131 x+217 y=827$, then x $+y$ is
A. 5
B. 6
C. 7
D. 8

Answer: A

D Watch Video Solution
74. The LCM of two prime numbers p and q (p
$>q)$ is 221 . Find the value of $3 p-q$.
A. 4
B. 28
C. 38
D. 48

Answer: C

75. A card is drawn at random from a well shuffled deck of playing cards. Find the probability that the card drawn is
neither a king nor a queen

$$
\begin{aligned}
& \text { A. } \frac{11}{13} \\
& \text { B. } \frac{12}{13} \\
& \text { C. } \frac{11}{26} \\
& \text { D. } \frac{11}{52}
\end{aligned}
$$

Answer: A

76. Two fair dice are rolled simultaneously. The

 probability that 5 will come up at least once isA. $\frac{5}{36}$
B. $\frac{11}{36}$
C. $\frac{12}{36}$
D. $\frac{23}{36}$

Answer: B

77. If $1+\sin ^{2} \alpha=3 \sin \alpha \cos \alpha$, then the values of $\cot \alpha$ are
A. $-1,1$
B. 0,1
C. 1, 2
D. ${ }^{-1,-1}$

Answer: C

- Watch Video Solution

78. The vertices of a parallelogram in order are $A(1,2), B(4, y), C(x, 6)$ and $D(3,5)$. Then (x, y) is
A. $(6,3)$
B. $(3,6)$
C. $(5,6)$
D. $(1,4)$

Answer: A

- Watch Video Solution

79. In the given figure,
$\angle A C B=\angle C D A, A C=8 c m, A D=3 \mathrm{~cm}$,
then $B D$ is

A. $\frac{22}{3} \mathrm{~cm}$
B. $\frac{26}{3} \mathrm{~cm}$
C. $\frac{55}{3} \mathrm{~cm}$
D. $\frac{64}{3} \mathrm{~cm}$

Answer: C

D Watch Video Solution

80. The equation of the perpendicular bisector
of line segment joining points $A(4,5)$ and $B(-2,3)$ is
A. $2 x-y+7=0$

$$
\text { B. } 3 x+2 y-7=0
$$

$$
\text { C. } 3 x-y-7=0
$$

D. $3 x+y-7=0$

Answer: D

- Watch Video Solution

81. In the given figure, D is the mid-point of $B C$,
then the value of $\frac{\cot y^{\circ}}{\cot x^{\circ}}$ is

A. 2
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer: B

D Watch Video Solution
82. The smallest number by which $1 / 13$ should
be multiplied so that its decimal expansion
terminates after two decimal places is
A. $\frac{13}{100}$
B. $\frac{13}{10}$
C. $\frac{10}{13}$
D. $\frac{100}{13}$

Answer: A

D Watch Video Solution

83. Sides $A B$ and $B E$ of a right triangle, right angled at B are of lengths 16 cm and 8 cm respectively. The length of the side of largest

triangle $A B E$ is

$$
\begin{aligned}
& \text { A. } \frac{32}{3} \mathrm{~cm} \\
& \text { B. } \frac{16}{3} \mathrm{~cm} \\
& \text { C. } \frac{8}{3} \mathrm{~cm} \\
& \text { D. } \frac{4}{3} \mathrm{~cm}
\end{aligned}
$$

Answer: B
84. Point P divides the line segment joining
$R(-1,3)$ and $S(9,8)$ in ratio $k: 1$. If P lies on the
line $x-y+2=0$, then value of k is

$$
\begin{aligned}
& \text { A. } \frac{2}{3} \\
& \text { B. } \frac{1}{2} \\
& \text { C. } \frac{1}{3} \\
& \text { D. } \frac{1}{4}
\end{aligned}
$$

- Watch Video Solution

85. In the figure given below, $A B C D$ is a square
of side 14 cm with $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H as the mid points of sides $A B, B C, C D$ and $D A$ respectively.

The area of the shaded portion is
A. $44 \mathrm{~cm}^{2}$
B. $49 \mathrm{~cm}^{2}$
C. $98 \mathrm{~cm}^{2}$
D. $\frac{49 \pi}{2} \mathrm{~cm}^{2}$

Answer: C

D Watch Video Solution

86. Given below is the picture of the Olympic rings made by taking five congruent circles of radius 1 cm each, intersecting in such a way
that the chord formed by joining the point of intersection of two circles is also of length 1 cm . Total area of all the dotted regions assuming the thickness of the rings to be negligible is

A. $4\left(\frac{\pi}{12}-\frac{\sqrt{3}}{4}\right) c m^{2}$
B. $\left(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right) c m^{2}$
C. $4\left(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right) c m^{2}$
D. $8\left(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right) c m^{2}$

Answer: D

- Watch Video Solution

87. If 2 and $1 / 2$ are the zeros of $p x^{2}+5 x+r$,
then
A. $p=r=2$
B. $p=r=-2$
C. $p=2, r=-2$
D. $p=-2, r=2$

Answer: B

D Watch Video Solution

88. The circumference of a circle is 100 cm . The
side of a square inscribed in the circle is
A. $50 \sqrt{2} \mathrm{~cm}$
B. $\frac{100}{\pi} \mathrm{~cm}$
C. $\frac{50 \sqrt{2}}{\pi} \mathrm{~cm}$
D. $\frac{100 \sqrt{2}}{\pi} \mathrm{~cm}$
π

Answer: C

- Watch Video Solution

89. The number of solutions of
 $3^{x+y}=243$ and $243^{x-y}=3$ is

A. 0
B. 1
C. 2
D. infinite

Answer: A
(Watch Video Solution
90.

The figure given alongside shows the path of a diver, when she takes a jump from the diving board. Clearly it is a parabola.

Annie was standing on a diving board, 48 feet
above the water level. She took a dive into the
pool. Her height (in feet) above the water level
at any time't' in seconds is given by the
polynomial $h(t)$ such that
$h(t)=-16 t^{2}+8 t+k$.

What is the value of k ?
A. 0
B. -48
C. 48
D. $\frac{48}{-16}$

(D) Watch Video Solution

91.

The figure given alongside shows the path of a diver. When she takes a jump from the diving
board. Clearly it is parabola .

Annie was standing on a diving board, 48 feet above the water level. She took a dive into the pool. Her height (in feet) above the water level at any time 't' in seconds is given by the polynomial $h(t)$ such that
$h(t)=-16 t^{2}+8 t+k$
At what time will she touch the water in the pool?
A. 30 seconds
B. 2 seconds
C. 1.5 seconds

D. 0.5 seconds

Answer: B

- Watch Video Solution

The figure given alongside shows the path of a
diver, when she takes a jump from the diving board. Clearly it is a parabola.

Annie was standing on a diving board, 48 feet
above the water level. She took a dive into the
pool. Her height (in feet) above the water level at any time't' in seconds is given by the polynomial $h(t)$ such that
$h(t)=-16 t^{2}+8 t+k$.
Rita's height (in feet) above the water level is given by another polynomial $p(t)$ with zeroes -1 and 2. Then $\mathrm{p}(\mathrm{t})$ is given by-

$$
\begin{aligned}
& \text { A. } t^{2}+t-2 \\
& \text { B. } t^{2}+2 t-1 \\
& \text { C. } 24 t^{2}-24 t+48
\end{aligned}
$$

D. $-24 t^{2}+24 t+48$

Answer: D

- Watch Video Solution

93.

The figure given alongside shows the path of a diver. When she takes a jump from the diving board. Clearly it is parabola .

Annie was standing on a diving board, 48 feet
above the water level. She took a dive into the
pool. Her height (in feet) above the water level at any time 't' in seconds is given by the polynomial $h(t)$ such that $h(t)=-16 t^{2}+8 t+k$

A polynomial $q(t)$ with sum of zeroes as 1 and the product as -6 is modelling Anu's height in feet above the water at any time t (in seconds). Then $q(t)$ is given by:
A. $t^{2}+t+6$
B. $t^{2}+t-6$
C. $-8 t^{2}+8 t+48$
D. $8 t^{2}-8 t+48$

Answer: C

- Watch Video Solution

94.

The figure given alongside shows the path of a diver. When she takes a jump from the diving board. Clearly it is parabola .

Annie was standing on a diving board, 48 feet
above the water level. She took a dive into the
pool. Her height (in feet) above the water level at any time 't' in seconds is given by the polynomial $h(t)$ such that $h(t)=-16 t^{2}+8 t+k$

The zeroes of the polynomial
$r(t)=-12 t^{2}+(k-3) t+48$ are negative of each other. Then k is :
A. 3
B. 0
C. -1.5
D. -3

Answer: A

D Watch Video Solution

95. Case Study-2: A hockey field is the playing
surface for the game of hockey. Historically,
the game was played on natural turf (grass)
but nowadays it is predominantly played on an artificial turf.

It is rectangular in shape-100 yards by 60
yards. Goals consist of two upright posts
placed equidistant from the centre of the backline, joined at the top by a horizontal crossbar. The inner edges of the posts must by
3.66 metres (4 yards) apart, and the lower edge of teh crossbar must be 2.14 metres (7 feet) above the ground.

Each team plays with 11 players on the field during the game including the goalie.

Position you might play include:

Forward: As shown by players A, B, C and D.

Midfielders : As shown by players E, F and.

Fullbacks:As shown by players H, I and J.

Goalie: As shows by player K

Using the picture of a hockey field below,

 answer the questions that follow:

The coordinates of the centroid of $\Delta E H J$ are:

$$
\begin{aligned}
& \text { А. }\left(\frac{-2}{3}, 1\right) \\
& \text { В. }\left(1, \frac{-2}{3}\right) \\
& \text { С. }\left(\frac{2}{3}, 1\right)
\end{aligned}
$$

$$
\text { D. }\left(\frac{-2}{3},-1\right)
$$

Answer: A

D View Text Solution

96. Case Study-2: A hockey field is the playing
surface for the game of hockey. Historically,
the game was played on natural turf (grass)
but nowadays it is predominantly played on an artificial turf.

It is rectangular in shape-100 yards by 60
yards. Goals consist of two upright posts
placed equidistant from the centre of the backline, joined at the top by a horizontal crossbar. The inner edges of the posts must by
3.66 metres (4 yards) apart, and the lower edge of teh crossbar must be 2.14 metres (7 feet) above the ground.

Each team plays with 11 players on the field during the game including the goalie.

Position you might play include:

Forward: As shown by players A, B, C and D.

Midfielders : As shown by players E, F and.

Fullbacks:As shown by players H, I and J.

Goalie: As shows by player K

Using the picture of a hockey field below,

 answer the questions that follow:

If a player P needs to be at equal distance
from A and G, such that A, P and G are in
straight line, then position of P will be given
by:
A. $\left(\frac{-3}{3}, 2\right)$
B. $\left(2, \frac{-3}{2}\right)$
C. $\left(2, \frac{3}{2}\right)$
D. $(-2,-3)$

Answer: C

D View Text Solution

97. Case Study-2: A hockey field is the playing
surface for the game of hockey. Historically,
the game was played on natural turf (grass)
but nowadays it is predominantly played on an artificial turf.

It is rectangular in shape-100 yards by 60 yards. Goals consist of two upright posts placed equidistant from the centre of the backline, joined at the top by a horizontal crossbar. The inner edges of the posts must by
3.66 metres (4 yards) apart, and the lower edge of teh crossbar must be 2.14 metres (7 feet) above the ground.

Each team plays with 11 players on the field during the game including the goalie.

Position you might play include:

Forward: As shown by players A, B, C and D.

Midfielders : As shown by players E, F and.

Fullbacks:As shown by players H, I and J.

Goalie: As shows by player K

Using the picture of a hockey field below, answer the questions that follow:

The point on X -axis equidistant from I and E is:
A. $\left(\frac{1}{2}, 0\right)$
B. $\left(0, \frac{-1}{2}\right)$
C. $\left(\frac{-1}{2}, 0\right)$
D. $\left(0, \frac{1}{2}\right)$

Answer: A

D View Text Solution

98. Case Study-2: A hockey field is the playing
surface for the game of hockey. Historically,
the game was played on natural turf (grass)
but nowadays it is predominantly played on an artificial turf.

It is rectangular in shape-100 yards by 60 yards. Goals consist of two upright posts placed equidistant from the centre of the backline, joined at the top by a horizontal crossbar. The inner edges of the posts must by
3.66 metres (4 yards) apart, and the lower edge of teh crossbar must be 2.14 metres (7 feet) above the ground.

Each team plays with 11 players on the field during the game including the goalie.

Position you might play include:

Forward: As shown by players A, B, C and D.

Midfielders : As shown by players E, F and.

Fullbacks:As shown by players H, I and J .
Goalie: As shows by player K

Using the picture of a hockey field below, answer the questions that follow:

What are the coordinates of the position of a player Q such that his distance from K is twice
his distance from E and K, Q and E are collinear?
A. $(1,0)$
B. $(0,1)$
C. $(-2,1)$
D. $(-1,0)$

Answer: B

- View Text Solution

99. Case Study-2: A hockey field is the playing
surface for the game of hockey. Historically,
the game was played on natural turf (grass)
but nowadays it is predominantly played on an
artificial turf.

It is rectangular in shape-100 yards by 60
yards. Goals consist of two upright posts
placed equidistant from the centre of the
backline, joined at the top by a horizontal
crossbar. The inner edges of the posts must by
3.66 metres (4 yards) apart, and the lower edge of teh crossbar must be 2.14 metres (7
feet) above the ground.

Each team plays with 11 players on the field during the game including the goalie.

Position you might play include:

Forward: As shown by players A, B, C and D.
Midfielders : As shown by players E, F and.

Fullbacks:As shown by players H, I and J.

Goalie: As shows by player K

Using the picture of a hockey field below, answer the questions that follow:

The point on y-axis equidistant from B and C is:
A. $(-1,0)$
B. $(0,-1)$
C. $(1,0)$
D. $(0,1)$

Answer: D

D View Text Solution

Section A

1. Find the value of $a_{25}-a_{15}$ for the AP: 6,9 ,

12, 15,
2. If 7 times the seventh term of the AP is equal to 5 times the fifth term, then find the value of its $12^{\text {th }}$ term.

- Watch Video Solution

3. Find the value of m so that the quadratic equation $m x(5 x-6)=-9$ has two equal roots
4. From a point P, two tangents $P A$ and $P B$ are drawn to a circle $C(O, r)$. If $O P=2 r$, then find
$\angle A P B$. What type of triangle is APB?

D View Text Solution

5. The curved surface area of a right circular cone is $12320 \mathrm{~cm}^{2}$. If the radius of its base is 56 cm , then find its height.

D Watch Video Solution

6. Mrs Garg recorded the marks obtained by
her students in the following table. She calculated the modal marks of the students of
the class as 45 . While printing the data, a blank was left. Find the missing frequency in
the table given below

Marks Obtained	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
Number of Students	5	10	-	6	3

D View Text Solution

7. If Ritu were young by 5 years than what she
really is, then the square of her age would
have been 11 more than five times her present age. What is her present age ?

D Watch Video Solution

8.2) Solve for x : $9 x^{2}-6 p x+\left(p^{2}-q^{2}\right)=0$

D Watch Video Solution

Section B

1. Following is the distribution of the long
jump competition in whch 250 students
participated. Find the median distance jumped
by the students. Interpret the median

Distance $($ inm $)$	$0-1$	$1-2$	$2-3$	$3-4$	$4-5$
Number of Studentsic\|	40	80	62	38	30

View Text Solution

2. Construct a pair of tangents to a circle of radius 3 cm which are inclined to each other at an angle of 60°

- Watch Video Solution

3. The distribution given below shows the runs scored by batsmen in one-day cricket matches.

Find the mean number of runs.

Futins scored	$0-40$	$40-80$	$80-120$	$120-160$	$160-200$
Number of batsmen	12	20	35	30	23

- View Text Solution

4. Two vertical poles of different heights are standing 20 m away from each other on the level ground. The angle of elevation of the top of the first pole from the foot of the second pole is 60° and angle of elevation of the top of the second pole from the foot of the first pole is 30°. Find the difference between the heights of two poles. (Take $\sqrt{3}=1.73$)

D View Text Solution

5. A boy 1.7 m tall is standing on a horizontal ground, 50 m away from a building. The angle of elevation of the top of the building from his eye is 60°. Calculate the height of the building. (Take $\sqrt{3}=1.73$)

- Watch Video Solution

Section C

1. The internal and external radii of a hollow spherical shell are 3 cm and 5 cm -respectively.

It is melted and recast into a solid cylinder of diameter 14 cm , find the height of the cylinder.

Also find the total surface area of the cylinder.

D Watch Video Solution

2. Case Study-1 : Trigonometry in the form of triangulation forms the basis of navigation, whether it is by land, sea or air. GPS a radio
navigation system helps to locate our position on earth with the help of satellites.

A guard, stationed at the top of a 240 m tower, observed an unidentified boat coming towards
it. A clinometer or inclinometer is an instrument used for measuring angles or slopes (tilt). The guard used the clinometer to measure the angle of depression of the boat coming towards the lighthouse and found it to be 30°

(Lighthouse of Mumbai Harbour. Picture credit

- Times of India Travel)

Make a labelled figure on the basis of the given information and calculate the distance of the boat from the foot of the observation tower.
3. Case Study-1 : Trigonometry in the form of triangulation forms the basis of navigation, whether it is by land, sea or air. GPS a radio navigation system helps to locate our position on earth with the help of satellites.

A guard, stationed at the top of a 240 m tower, observed an unidentified boat coming towards
it. A clinometer or inclinometer is an
instrument used for measuring angles or
slopes (tilt). The guard used the clinometer to
measure the angle of depression of the boat coming towards the lighthouse and found it
to be 30°

(Lighthouse of Mumbai Harbour. Picture credit

- Times of India Travel)

After 10 minutes the award observed that the boat vara annroaching the tortor and ite dietanca from tower and its distance from tower is reduced by $240(\sqrt{3}-1) \mathrm{m}$. He immediately raised the alarm. What was the
new angle of depression of the boat from the top of the observation tower?

D View Text Solution

4. Case Study-2: Push-ups are a fast and effective exercise for building strength. These are helpful in almost all sports including athletics. While the push-up primarily targets the muscles of the chest, arms, and shoulders, support required from other muscles helps in toning up the whole body.

Nitesh wants to participate in the push-up challenge. He can currently make 3000 pushups in one hour. But he wants to achieve a target of 3900 push-ups in 1 hour for which he practices regularly. With each day of practice, he is able to make 5 more push-ups in one hour as compared to the previous day. If on first day of practice he makes 3000 push-ups and continues to practice regularly till his target is achieved. Keeping the above situation in mind answer the following

questions:

Form an A.P. representing the number of pushups per day and hence find the minimum number of days he needs to practice before the day his goal is accomplished.

D View Text Solution

5. Case Study-2: Push-ups are a fast and effective exercise for building strength. These are helpful in almost all sports including athletics. While the push-up primarily targets
the muscles of the chest, arms, and shoulders, support required from other muscles helps in toning up the whole body.

Nitesh wants to participate in the push-up challenge. He can currently make 3000 pushups in one hour. But he wants to achieve a target of 3900 push-ups in 1 hour for which he practices regularly. With each day of practice,
he is able to make 5 more push-ups in one
hour as compared to the previous day. If on
first day of practice he makes 3000 push-ups
and continues to practice regularly till his target is achieved. Keeping the above situation in mind answer the following questions:

Find the total number of push-ups performed by Nitesh up to the day his goal is achieved.

