© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - OSWAL PUBLICATION

SOME APPLICATIONS OF

TRIGONOMETRY (HEIGHTS AND

DISTANCES)

Stand Alone Mcqs

1. A pole of height 6 m casts a shadow $2 \sqrt{3} \mathrm{~m}$

long on the ground. Find the sun's elevation.
A. 60°
B. 45°
C. 30°
D. 90°

Answer: A
(Watch Video Solution
2. If the height of a vertical pole is $\sqrt{3}$ times the length of its shadowon the ground then the angle of elevation of the sun at that time is
A. 30°
B. 60°
C. 45°
D. 75°

Answer: B
3. The length of a string between a kite and a point on the ground is 90 metres. If the string makes an angle θ with the ground level such that $\tan \theta=\frac{15}{8}$, how high is the kite? Assume that there is no slack in the string.
A. 75 m
B. 79.41 m
C. 80 m
D. 72.5 m

Answer: A

D Watch Video Solution

4. The angle of depression of a car parked on
the road from the top of the 150 m high tower
is 30°. Find the distance of the car from the
tower
A. $50 \sqrt{3}$
B. $150 \sqrt{3}$
C. $150 \sqrt{2}$

D. 75

Answer: B

D Watch Video Solution

5. A ladder makes an anglesof 60° with the ground when placed against a wall. If the foot of the ladder is $2 m$ away from the wall, the length of the ladder is
A. $4 \sqrt{3} m$
B. $\frac{4}{\sqrt{3}} \mathrm{~m}$
C. 4 m
D. $2 \sqrt{2} \mathrm{~m}$

Answer: C

D Watch Video Solution

6. The shadow of a 5 -m-long stick is 2 m long.

At the same time, the length of the shadow of
a $12.5 m$ high tree is
A. 3 m
B. 3.5 m
C. 5 m
D. 4.5 m

Answer: C

D Watch Video Solution

7. A pole casts a shadow of length $2 \sqrt{3} \mathrm{~m}$ on the ground when the sun's elevation is 60°.

The height of the pole is
A. 3 m
B. 12 m
C. $4 \sqrt{3} \mathrm{~m}$
D. 6 m

Answer: D

D Watch Video Solution

8. The length of a vertical rod and its shadow are in the ratio $1: \sqrt{3}$. The angle of elevation of the sun is
A. 30°
B. 45°
C. 60°
D. 90°

Answer: A

- Watch Video Solution

Assertion And Reason Based Mcqs

1. Assertion (A): The angle of elevation of the top of the tower from a point on the ground, which is 30 m away from the foot of the tower, is 30°. The height of the tower is 10 m .

Reason (R): The angle of depression from B to
A and Angle of elevation from A to B are equal.
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true and R is not correct explanation of A.
C. A is true but R is false.
D. A is false but R is true.

Answer: D

D Watch Video Solution

2. The angle of elevation of a tower from two points which are at distances 9 m and 64 m from the foot of the tower on the opposite sides are complementary. The height of the tower is

- Watch Video Solution

3. If the height of a vertical pole is equal to the length of its shadow on the ground, the angle of elevation of the sun is
A. Both A and R are true and R is the correct explanation of A.
B. Both A and R are true and R is not correct explanation of A.
C. A is true but R is false.
D. A is false but R is true.

Answer: B

D Watch Video Solution

4. Assertion (A): In the figure, if $B C=20 \mathrm{~m}$ and
$\angle A C B=30^{\circ}$ then height AB is 11.56 m

Reason (R) : $\tan \theta=\frac{A B}{B C}=\frac{\text { Perpendicular }}{\text { Base }}$, where θ is the angle $\angle A C B$.
A. Both A and R are true and R is the
correct explanation of A.
B. Both A and R are true and R is not correct explanation of A.
C. A is true but R is false.
D. A is false but R is true.

Answer: A

D Watch Video Solution

Case Based Mcqs

1. A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of
30°, which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depres
A. 2 sec
B. 3 sec
C. 6 sec
D. 4 sec

Answer: B

D Watch Video Solution
2. Write the value of $\sec 30^{\circ}$.

$$
\begin{aligned}
& \text { A. } \frac{2}{\sqrt{3}} \\
& \text { B. } \frac{\sqrt{3}}{2} \\
& \text { C. } \frac{1}{\sqrt{3}} \\
& \text { D. } \sqrt{3}
\end{aligned}
$$

Answer: A

D Watch Video Solution
A. $\sqrt{3}$
B. $\frac{2}{\sqrt{3}}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{1}{\sqrt{3}}$

Answer: B

D Watch Video Solution

4. A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of
$30 o$, which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depres
A. horizontal line
B. Vertical line
C. Line of sight
D. Parallel lines

Answer: C

D Watch Video Solution
5. A straight highway leads to the foot of a tower of height 50 m . From the top of the tower, the angles of depression of two cars standing on the highway are $30 o$ and $60 o$ respectively. What is the distance between the two cars and how far is each car from the tower?
A. different
B. equal
C. opposite
D. None of these

Answer: B

D Watch Video Solution

6. From a point P on the ground the angle of elevation of the top of a 10 m tall building is 30°. A flag is hoisted at the top of the building and the angle of elevation of the top of the
flagstaff from P is 45°. Find the length of the flagstaff
A. 6.32 m
B. 7.32 m
C. 8.32 m
D. 9.32 m

Answer: B

D Watch Video Solution

7. From a point P on the ground the angle of elevation of a 10 m tall building is 30 o . A flag is hoisted at the top of the building and the angle of elevation of the top of the flag-staff
from P is $45 o$. Find the length of the flag-staff and the distance of the building from the point P. (Take $\sqrt{3}=1.732)$.
A. 17.32 m
B. 18.32 m
C. 19.32 m
D. 20.32 m

Answer: A

D Watch Video Solution
8. What is the value of $\tan 30^{\circ}$?
A. 1
B. $\frac{\sqrt{3}}{2}$
C. $\sqrt{3}$
D. $\frac{1}{\sqrt{3}}$

Answer: D

D Watch Video Solution
9. What is the value of $\tan 45^{\circ}$
A. 2
B. 0
C. 1
D. $\frac{\sqrt{3}}{2}$

Answer: C

D Watch Video Solution
10. From a point P on the ground the angle of elevation of the top of a 10 m tall building is 30°. A flag is hoisted at the top of the building
and the angle of elevation of the top of the
flagstaff from P is 45°. Find the length of the flagstaff

$$
\text { A. } B P^{2}=A B^{2}+A P^{2}
$$

B. $A B^{2}=A P^{2}+B P^{2}$
C. $A P^{2}=A B^{2}+B P^{2}$
D. None of these

Answer: A

D Watch Video Solution
11. From a point on a bridge across a river, the angles of depression of the banks on opposite sides of the river are 30 oand $45 o$, respectively. If the bridge is at a height of 3 m from the banks, find the width of the river.
A. $1(\sqrt{3}+1) m$
B. $(\sqrt{3}+1) m$
C. $(\sqrt{3}+2) m$
D. $3(\sqrt{3}+1) m$

- Watch Video Solution

12. From a point of a bridge across a riuver, the angles of depression of the banks on opposite sides of the river are 30° and 45°, respectively. IF the bridge is at a height of 10 m from the banks, then find the width of the river. (Use $\sqrt{3}=1.73)$
A. Acute angled triangle
B. Right angled triangle
C. Obtuse angled triangle

D. Equilateral triangle.

Answer: B

- Watch Video Solution

13. From a point an a bridge across river, the angles of depression of the banks on opposite sides of the river are 30° and 45° respectively. If the bridge is at a height of 3 m from the banks, find the width of the river.

$$
\text { A. } \frac{A D}{D P}
$$

B. $\frac{A P}{A D}$
c. $\frac{P D}{A D}$
D. $\frac{A D}{A P}$

Answer: C

- Watch Video Solution

14. Find the value of,
$2 \tan 45^{\circ}+\cos 30^{\circ}-\sin 60^{\circ}$.
A. 0
B. 2
C. 1
D. $\frac{1}{\sqrt{3}}$

Answer: C

- Watch Video Solution

15. From a point on a bridge across a river, the angles of depression of the banks on opposite sides of the river are 30 oand $45 o$, respectively.

If the bridge is at a height of 3 m from the banks, find the width of the river.

$\frac{\text { Perpendicular }}{\text { Base }}$

B. $\frac{\text { Base }}{\text { Perpendicular }}$
$\frac{\text { Hypotenuse }}{\text { Base }}$
D. $\frac{\text { Perpendicular }}{\text { Hypotenuse }}$

Answer: A

- Watch Video Solution

