

MATHS

BOOKS - OSWAL PUBLICATION

SOME APPLICATIONS OF TRIGONOMETRY (HEIGHTS AND DISTANCES)

Stand Alone Mcqs

1. A pole of height 6 m casts a shadow $2\sqrt{3}$ m

long on the ground. Find the sun's elevation.

A. $60^{\,\circ}$

B. $45^{\,\circ}$

C. 30°

D. 90°

Answer: A

Watch Video Solution

2. If the height of a vertical pole is $\sqrt{3}$ times the length of its shadowon the ground then the angle of elevation of the sun at that time is

- A. 30°
- B. 60°
- C. 45°
- D. 75°

Answer: B

3. The length of a string between a kite and a point on the ground is 90 metres. If the string makes an angle θ with the ground level such that $\tan \theta = \frac{15}{8}$, how high is the kite? Assume that there is no slack in the string.

A. 75 m

B. 79.41 m

C. 80 m

D. 72.5 m

Answer: A

4. The angle of depression of a car parked on the road from the top of the 150 m high tower is 30° .Find the distance of the car from the tower

A. $50\sqrt{3}$ B. $150\sqrt{3}$

 $\mathsf{C}.\,150\sqrt{2}$

D. 75

Answer: B

Watch Video Solution

5. A ladder makes an anglesof 60° with the ground when placed against a wall. If the foot of the ladder is 2m away from the wall, the length of the ladder is

A. $4\sqrt{3}m$

B.
$$\frac{4}{\sqrt{3}}$$
m

C. 4 m

D. $2\sqrt{2}$ m

Answer: C

Watch Video Solution

6. The shadow of a 5-m-long stick is 2m long.

At the same time, the length of the shadow of

a 12.5m high tree is

A. 3m

B. 3.5 m

C. 5 m

D. 4.5 m

Answer: C

Watch Video Solution

7. A pole casts a shadow of length $2\sqrt{3}$ m on

the ground when the sun's elevation is $60^\circ.$

The height of the pole is

A. 3m

B. 12m

C. $4\sqrt{3}$ m

D. 6m

Answer: D

8. The length of a vertical rod and its shadow are in the ratio $1:\sqrt{3}$. The angle of elevation of the sun is

A. 30°

B. $45^{\,\circ}$

 $\mathsf{C.}\, 60^{\,\circ}$

D. 90°

Answer: A

Watch Video Solution

Assertion And Reason Based Mcqs

1. Assertion (A): The angle of elevation of the top of the tower from a point on the ground, which is 30 m away from the foot of the tower, is $30^{\,\circ}$. The height of the tower is 10 m. Reason (R): The angle of depression from B to A and Angle of elevation from A to B are equal. A. Both A and R are true and R is the correct explanation of A. B. Both A and R are true and R is not

correct explanation of A.

C. A is true but R is false.

D. A is false but R is true.

Answer: D

2. The angle of elevation of a tower from two points which are at distances 9 m and 64 m from the foot of the tower on the opposite sides are complementary. The height of the tower is

3. If the height of a vertical pole is equal to the length of its shadow on the ground, the angle of elevation of the sun is

A. Both A and R are true and R is the

correct explanation of A.

B. Both A and R are true and R is not

correct explanation of A.

C. A is true but R is false.

D. A is false but R is true.

Answer: B

Watch Video Solution

4. Assertion (A): In the figure, if BC = 20 m and $\angle ACB = 30^{\circ}$ then height AB is 11.56 m

Reason (R): $\tan \theta = \frac{AB}{BC} = \frac{\text{Perpendicular}}{\text{Base}}$, where θ is the angle $\angle ACB$.

A. Both A and R are true and R is the

correct explanation of A.

B. Both A and R are true and R is not

correct explanation of A.

C. A is true but R is false.

D. A is false but R is true.

Answer: A

Watch Video Solution

Case Based Mcqs

1. A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of

 30° , which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depres

A. 2 sec

B. 3 sec

C. 6 sec

D. 4 sec

Answer: B

Watch Video Solution

2. Write the value of sec 30° .

A.
$$\frac{2}{\sqrt{3}}$$

B.
$$\frac{\sqrt{3}}{2}$$

C.
$$\frac{1}{\sqrt{3}}$$

D.
$$\sqrt{3}$$

Answer: A

3. Write the value of cosec 60° .

Answer: B

4. A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of

30*o* , which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depres

A. horizontal line

B. Vertical line

C. Line of sight

D. Parallel lines

Answer: C

Watch Video Solution

5. A straight highway leads to the foot of a tower of height 50 m. From the top of the tower, the angles of depression of two cars standing on the highway are 30*o* and 60*o* respectively. What is the distance between the two cars and how far is each car from the tower?

A. different

B. equal

C. opposite

D. None of these

Answer: B

6. From a point P on the ground the angle of elevation of the top of a 10 m tall building is 30° . A flag is hoisted at the top of the building and the angle of elevation of the top of the flagstaff from P is 45° . Find the length of the flagstaff

A. 6.32 m

B. 7.32 m

C. 8.32 m

D. 9.32 m

Answer: B

Watch Video Solution

7. From a point P on the ground the angle of elevation of a 10m tall building is 30o. A flag is hoisted at the top of the building and the angle of elevation of the top of the flag-staff from P is 45o . Find the length of the flag-staff and the distance of the building from the point P . (Take $\sqrt{3} = 1.732$) .

A. 17.32 m

B. 18.32 m

C. 19.32 m

D. 20.32 m

Answer: A

Watch Video Solution

8. What is the value of $tan 30^{\circ}$?

Answer: D

9. What is the value of tan $45^{\,\circ}$

A. 2

B. 0

C. 1

Answer: C

10. From a point P on the ground the angle of elevation of the top of a 10 m tall building is 30° . A flag is hoisted at the top of the building

and the angle of elevation of the top of the flagstaff from P is 45° . Find the length of the flagstaff

A.
$$BP^2 = AB^2 + AP^2$$

B. $AB^2 = AP^2 + BP^2$
C. $AP^2 = AB^2 + BP^2$

Answer: A

Watch Video Solution

11. From a point on a bridge across a river, the angles of depression of the banks on opposite sides of the river are 30*o*and 45*o*, respectively. If the bridge is at a height of 3 m from the banks, find the width of the river.

A.
$$1ig(\sqrt{3}+1ig)m$$

B. $ig(\sqrt{3}+1ig)m$

C.
$$\left(\sqrt{3}+2\right)m$$

D. $3\left(\sqrt{3}+1
ight)m$

Answer: D

12. From a point of a bridge across a riuver, the angles of depression of the banks on opposite sides of the river are 30° and 45° , respectively. IF the bridge is at a height of 10 m from the banks, then find the width of the river. (Use $\sqrt{3} = 1.73$)

A. Acute angled triangle

- B. Right angled triangle
- C. Obtuse angled triangle

D. Equilateral triangle.

Answer: B

Watch Video Solution

13. From a point an a bridge across river, the angles of depression of the banks on opposite sides of the river are 30° and 45° respectively. If the bridge is at a height of 3 m from the banks, find the width of the river.

B.
$$\frac{AP}{AD}$$

C. $\frac{PD}{AD}$
D. $\frac{AD}{AP}$

Answer: C

Watch Video Solution

B. 2

C. 1

D. $\frac{1}{\sqrt{3}}$

Answer: C

Watch Video Solution

15. From a point on a bridge across a river, the angles of depression of the banks on opposite sides of the river are 30o and 45o, respectively.

If the bridge is at a height of 3 m from the

banks, find the width of the river.

Answer: A

