© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - OSWAL PUBLICATION

TRIANGLES

Stand Alone Mcqs

1. Sides of two similar triangles are in the ratio 4:9. Areas of these
triangles are in the ratio. (a) $2: 3$ (b) $4: 9$ (c) $81: 16$ (d) $16: 81$
Ans-D
A. $2: 3$
B. $4: 9$
C. $81: 16$
D. 16: 81

Answer: D

- Watch Video Solution

2. Tick the correct answer and justify: $A B C$ and BDE are two equilateral triangles such that D is the mid-point of $B C$. Ratio of the areas of triangles $A B C$ and $B D E$ is (A) 2:1 (B) 1:2 (C) 4:1 (D) 1:4
A. $2: 1$
B. 1:2
C. $4: 1$
D. 1: 4

Answer: C

3. In the given figure, $\angle B A C=90^{\circ}$ and $A D \perp B C$.then,

A. $B D \times C D=B C^{2}$
B. $A B \times A C=B C^{2}$
C. $B D \times C D=A D^{2}$
D. $A B \times A C=A D^{2}$

Answer: C

4. If in two $\triangle A B C$ and $\triangle P Q R, \frac{A B}{Q R}=\frac{B C}{P R}=\frac{C A}{P Q}$, then
A. $\triangle P Q R \sim \triangle C A B$
B. $\triangle P Q R \sim \triangle A B C$
C. $\triangle C B A \sim \Delta P Q R$
D. $\triangle B C A \sim \triangle P Q R$

Answer: A

D Watch Video Solution

5. In $\triangle A B C$ and $\triangle D E F$, it is given that
$\angle B=\angle E \angle F=\angle C$ and $A B=-3 D E$, then the two triangles
are
A. congruent but not similar
B. similar but not similar
C. neither congruent nor similar
D. congruent as well as similar

Answer: B

D Watch Video Solution

6. It is given that $\triangle A B C-\triangle P Q R$, with $\frac{B C}{Q R}=\frac{1}{4}$. Then $\frac{\operatorname{ar} \triangle P Q R}{\operatorname{ar} \triangle A B C}$ is equal to:
A. 16
B. 3
C. $\frac{1}{3}$
D. $\frac{1}{9}$

Answer: A
7. In $\triangle A B C$ and $\triangle D E F$, it is given that $\frac{A B}{D E}=\frac{B C}{F D}$ then
A. $\angle B=\angle E$
B. $\angle A=\angle D$
C. $\angle B=\angle D$
D. $\angle A=\angle F$

Answer: C

D Watch Video Solution

8.

$\triangle A B C \sim \Delta Q R P, \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{9}{4}, A B=18 \mathrm{~cm}$, and $B C=15 \mathrm{~cm}$, then $P R=$?
A. 10 cm
B. 12 cm
C. $\frac{20}{3} \mathrm{~cm}$
D. 8 cm

Answer: A

- Watch Video Solution

9. The shadow of a 5 -m-long stick is 2 m long. At the same time, the length of the shadow of a $12.5 m$ high tree is
A. 3.0
B. 5.0
C. 4.5
D. 3.5
10. Fing the length of the altitude of an equelateral trianle with side 6 cm .
A. $2 \sqrt{3}$
B. $4 \sqrt{3}$
C. $\sqrt{3}$
D. $3 \sqrt{3}$

Answer: D

- Watch Video Solution

11. In
the
given
figure,
$D E|\mid B C$.
$D E=3 \mathrm{~cm}, B C=6$ and $\operatorname{ar}(\triangle A D E)=15 \mathrm{~cm}^{2}$, find the area of
$\triangle A B C$.

A. $70 \mathrm{~cm}^{2}$
B. $58 \mathrm{~cm}^{2}$
C. $60 \mathrm{~cm}^{2}$
D. $64 \mathrm{~cm}^{2}$

Answer: C

12. In $\triangle P Q R$ it is given that $=\frac{P Q}{P R}=\frac{Q S}{S R}$. If $\angle Q=70^{\circ}$ and $\angle R=50^{\circ}$ then $\angle Q P S=$?

A. 40°
B. 30°
C. 45°
D. 50°

Answer: B

- Watch Video Solution

13. The areas of two similar triangles are in respectively 16 cm^{2} and $9 \mathrm{~cm}^{2}$. Then the ratio of their corresponding sides is
A. 3: 4
B. 2:3
C. 3:2
D. $4: 3$

Answer: D

D Watch Video Solution

14. In an equilateral triagnle ABC , if $A D \perp B C$ then which of the following is true?

A. $3 P Q^{2}=2 P S^{2}$
B. $2 P Q^{2}=3 P S^{2}$
C. $4 P Q^{2}=3 P S^{2}$
D. $3 P Q^{2}=4 P S^{2}$

Answer: D

D Watch Video Solution
15. In $\triangle P Q R, P Q=6 \sqrt{3} \mathrm{~cm}, P R=12 \mathrm{~cm}$ and $Q R=6 \mathrm{~cm}$ then
$\angle Q$ is
A. 45°
B. 60°
C. 90°
D. 120°

Answer: C

D Watch Video Solution

Assertion And Reason Based Mcqs

1. There are two villages at $P(-5,-7)$ and $Q(3,7)$. The gram pradhan wants to dig a well in such a way that its distance from
both the villages remain the same.
A. Both A and R are true R is the correct explanation for A.
B. Both A and R are true nad R is not correct explanation for A.
C. A is true but R is false.
D. A is false but R is true.

Answer: A

- Watch Video Solution

2. Assertion (A): Two similar triangles are always congruent.

Reason (R): It the area of two similar triangles are equal then the triangles are congruent
A. Both A and R are true R is the correct explanation for A.
B. Both A and R are true nad R is not correct explanation for A.
C. A is true but R is false.
D. A is false but R is true.

Answer: D

D Watch Video Solution

3. A statements of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as.

Assertion (A): ABC is an isoseles triangle right triangle , right angled at C. Then $A B^{2}=3 A C^{2}$.

Reason (R): In an isosceles triangle $A B C$ if $A C=B C$ and $A B^{2}=2 A C^{2}$ then $\angle C=90^{\circ}$.
A. Both A and R are true R is the correct explanation for A.
B. Both A and R are true nad R is not correct explanation for A.
C. A is true but R is false.
D. A is false but R is true.

Answer: D

- Watch Video Solution

4. Theorem 6.1 : If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
A. Both A and R are true R is the correct explanation for A.
B. Both A and R are true nad R is not correct explanation for A.
C. A is true but R is false.
D. A is false but R is true.

Answer: A

Case Based Mcqs

1.

Rahul is studying in X Standard. He is making a kite to fly it on a
Sunday. Few questions came to his mind while making the kite. Give answers to his questions by looking at the figure Rahul tied the sticks at what angles to each other?
B. 60°
C. 90°
D. 60°

Answer: C

Watch Video Solution

2.

Rahul is studying in X Standard. He is making a kite to fly it on a

Sunday. Few questions came to his mind while making the kite. Give answers to his questions by looking at the figure Rahul tied the sticks at what angles to each other?
A. RHS
B. SAS
C. SSA
D. AAS

Answer: B

3.

Rahul is studying in X Standard. He is making a kite to fly it on a

Sunday. Few questions came to his mind while making the kite. Give answers to his questions by looking at the figure

Sides of two similar triangles are in the ratio 4:9. Corresponding medians of these triangles are in the ratio,
A. $2: 3$
B. $4: 9$
C. $81: 16$
D. 16: 81

Answer: B

-
 Watch Video Solution

4.

Rahul is studying in X Standard. He is making a kite to fly it on a
Sunday. Few questions came to his mind while making the kite. Give
answers to his questions by looking at the figure

In a triangle, if square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle. This theorem is called as,
A. Pythagoras theorem
B. Thale theorem
C. Converse of Pythagoras theorem
D. Converse of Pythagoras theorem

Answer: D

D Watch Video Solution

5.

Rahul is studying in X Standard. He is making a kite to fly it on a
Sunday. Few questions came to his mind while making the kite. Give answers to his questions by looking at the figure

What is the area of the kite, formed by two perpendicular sticks of length 6 cm and 8 cm ?
A. $48 \mathrm{~cm}^{2}$
B. $14 \mathrm{~cm}^{2}$
C. $24 \mathrm{~cm}^{2}$
D. $96 \mathrm{~cm}^{2}$

Answer: C

- Watch Video Solution

6. An aeroplane leaves an airport and flies due north at a speed of $1000 \mathrm{~km} / \mathrm{hr}$. At the same time, another aeroplane leaves the same airport and flies due west at a speed of $1200 \mathrm{~km} / \mathrm{hr}$. How far apart will be the two planes after $1 \frac{1}{2}$ hours?
A. 1500 km
B. 1600 km
C. 1400 km
D. 1300 km

Answer: A

7. An aeroplane leaves an airport and flies due north at a speed of $1000 \mathrm{~km} / \mathrm{hr}$. At the same time, another aeroplane leaves the same airport and fies due west at a speed of $1200 \mathrm{~km} / \mathrm{hr}$. How far apart will be the two planes after $1 \frac{1}{2}$ hours?
A. 1700 km
B. 1800 km
C. 1900 km
D. 2000 km

Answer: B

D Watch Video Solution

8. An aeroplane leaves an airport and flies due north at a speed of $1000 \mathrm{~km} / \mathrm{hr}$. At the same time, another aeroplane leaves the same airport and flies due west at a speed of $1200 \mathrm{~km} / \mathrm{hr}$. How far apart will be the two planes after $1 \frac{1}{2}$ hours?
A. $300 \sqrt{59} \mathrm{~km}$
B. $300 \sqrt{63} \mathrm{~km}$
C. $300 \sqrt{61} \mathrm{~km}$
D. $300 \sqrt{65} \mathrm{~km}$

Answer: C

- Watch Video Solution

9. An aeroplane leaves an airport and flies due north at a speed of $1000 \mathrm{~km} / \mathrm{hr}$. At the same time, another aeroplane leaves the same
airport and flies due west at a speed of $1200 \mathrm{~km} / \mathrm{hr}$. How far apart will be the two planes after $1 \frac{1}{2}$ hours?
A. right
B. obtuse
C. acute
D. None of these

Answer: A

- Watch Video Solution

10. Theorem 6.1 : If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
A. Basic Proportionality
B. Converse of Thales theorem

C. Pythagoras theorem

D. Similarity of triangles

Answer: A

- Watch Video Solution

11. In $\triangle A B C, A B: B C: D C=3: 1: 3$

FInd the lenght of $A B$
A. 8 cm
B. 16 cm
C. 24 cm
D. 32 cm

Answer: C

Watch Video Solution
12. In $\triangle A B C, A B: B C: D C=3: 1: 3$

Find the lenght of BD
A. 8 cm
B. 16 cm
C. 24 cm
D. 32 cm

Answer: D
13. In $\triangle A B C, A B: B C: D C=3: 1: 3$

Find the lenght of $C D$
A. $8 \sqrt{3} \mathrm{~cm}$
B. $16 \sqrt{3} \mathrm{~cm}$
C. 24 cm
D. 32 cm

Answer: C

D Watch Video Solution
14. In $\triangle A B C, A B: B C: D C=3: 1: 3$

Find the lenght of $A C$
A. $8 \sqrt{2} \mathrm{~cm}$
B. $8 \sqrt{5} \mathrm{~cm}$
C. $8 \sqrt{3} \mathrm{~cm}$
D. $8 \sqrt{10} \mathrm{~cm}$

Answer: D

- Watch Video Solution

15. In $\triangle A B C, A B: B C: D C=3: 1: 3$

Find $B C+C D$
A. 8 cm
B. $16 \sqrt{3} \mathrm{~cm}$
C. 24 cm
D. 32 cm

Answer: D

D Watch Video Solution

Example

1. In the given figure DEFG is a square and $\angle B A C=90^{\circ}$. Show that $F G^{2}=B G \times F C$.

2. In $\triangle A B C$ if AD is the median the show that $A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$

- Watch Video Solution

1. In $\triangle A B C, D E \| B C$ then the value of x is

A. $x=5$
B. $x=3$
C. $x=1$
D. $x=2$

Answer: B
2. In the given figure if $D E|\mid B C$. Then $E C=$

A. 2 cm
B. 1 cm
C. 4 cm
D. 3 cm

Answer: A
3. If triangle $A B C$ is similar to triangle $D E F$ such that $2 A B=D E$ and $B C$
$=8 \mathrm{~cm}$ then EF is .

A. 8 cm
B. 2 cm
C. 16 cm
D. 4 cm

Answer: C

- Watch Video Solution

1. In Figure $D E \| \mid B C$ find the length of side $A D$ is Given that $\mathrm{AE}=$ $1.8 \mathrm{~cm}, \mathrm{BD}=7.2 \mathrm{~cm}$ and $\mathrm{CE}=5.4 \mathrm{~cm}$.

- Watch Video Solution

2. In the given figure PQ is parallel to MN . If $\frac{K P}{P M}=\frac{4}{13}$ and $\mathrm{KN}=$ 20.4 cm then find $\mathrm{KQ}=$ \qquad

- Watch Video Solution

3. In figure if $A D=6$, $D B=9 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm}$ and $E C=12 \mathrm{~cm}$ and $\angle A D E=48^{\circ}$. Find $\angle A B C$.

- Watch Video Solution

Self Assessment 1 li Short Answer Type Questions I

1. In the given figure of $\triangle A B C$, D and E are points on CA and CB respectively such that $D E \| A B, A D=2 x, D C=x+3, B E=2 x-1, C E=x$
find x .

D Watch Video Solution

2. In the given figure G is the mid-point of the side PQ of $\triangle P Q R$ and GH || QR .Prove that H is the mid -point of the side PR of the
triangle $P Q R$.

- Watch Video Solution

3. In the given figure in a triangle $\mathrm{PQR}, \mathrm{ST} \| \mathrm{QR}$ and $\frac{P S}{S Q}=\frac{3}{5}$ and $P R=28 \mathrm{~cm}$ find PT.

- Watch Video Solution

Self Assessment 1 lif Short Answer Type Questions li

1. In the given figure, $L M\|C B\|$ and $L N|\mid C D$.

Prove that $\frac{A M}{A B}=\frac{A N}{A D}$

D Watch Video Solution

2. If the diagonals of a quadrilateral divide each other proportionally; then it is a trapezium.

Self Assessment 1 Iv Long Answer Type Questions

1. Theorem 6.1 : If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

- Watch Video Solution

2. In trapezium $A B C D . A B \| D C$ and $D C=2 A B$. A line segment $E F$ drawn parallel to $A B$ cuts $A D$ in F and $B C$ in E such that $\frac{B E}{E C}=\frac{3}{4}$. Diagonal DB intersects EF at G. prove that \&EF= 10AB.

3. In the given figure, $D B \perp B C, D E \perp A B$ and $A C \perp B C$.

Prove that $\frac{B E}{D E}=\frac{A C}{B C}$

- Watch Video Solution

Self Assessment 2 I Objective Type Questions A Multiple Choice Questons

1. In an equilateral triangle of side $3 \sqrt{3} \mathrm{~cm}$ then length of the altitude is
A. $\mathrm{h}=4 \mathrm{~cm}$
B. $\mathrm{h}=5 \mathrm{~cm}$
C. $\mathrm{h}=4.5 \mathrm{~cm}$
D. $\mathrm{h}=5.5 \mathrm{~cm}$

Answer: C

- Watch Video Solution

2. In $\triangle A B C$, $\mathrm{AD} \perp \mathrm{BC}$ such that $A D^{2}=B D \times C D$. Then
$\triangle A B C$ is a \qquad at A.

A. right angled
B. obtuse angled
C. Acute angled
D. Reflex angled

Answer: A

Watch Video Solution

1. A man goes 10 m due east and then 24 m due north. Find the distance from the starting point.

D Watch Video Solution

Self Assessment 2 I C Very Short Answer Type Questions

1. In the given figure , $\angle Q P R=90^{\circ} \mathrm{QR}=26 \mathrm{~cm} \mathrm{PM}=6 \mathrm{~cm}, \mathrm{MR}=8 \mathrm{~cm}$ and $\angle P M R=90^{\circ}$. Find the area of triangle $P Q R$.

2. $A B C$ is an isosceles triangle right angled at C. Prove that $A B^{2}=2 A C^{2}$.

D Watch Video Solution

3. In Figure $A B C$ is an isosceles triangle right angled at C with $A C=4$ cm . Find the length of $A B$.

Self Assessment 2 ii Short Answer Type Questions I

1. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

D Watch Video Solution

2. Prove that is a right angle triangle, the square of the hypotenuse is equal the sum of the squares of other two sides.

D Watch Video Solution

3. $A B C$ is a right triangles right angled at C. Let $B C=a, C A=b, A B=c$, and p be the length of perpendicular from C to $A B$. Prove that $c p=$
ab.

- Watch Video Solution

Self Assessment 2 lif Short Answer Type Questions li

1. In the given figure ABC is a right angled triangle with $\angle B=90^{\circ}$.

D is the mid -point of BC . Show that $A C^{2}=A D^{2}+3 C D^{2}$.

- Watch Video Solution

2. In the given figure if $A D \perp B C$ prove that $A B^{2}+C D^{2}=B D^{2}+A C^{2}$

- Watch Video Solution

3. In the same figure, $\triangle A B C$ and $\triangle D B C$ are on the same base BC
. If $A D$ is intersects $B C$ at O, prove that

D Watch Video Solution

Self Assessment 2 Iv Long Answer Type Questions

1. The following figure shows a triangle $A B C$ in which $A D$ is a median and $A E \perp B C$. Prove that $2 A B^{2}+2 A C^{2}=4 A D^{2}+B C^{2}$.

D Watch Video Solution

2. In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $B D=\frac{1}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$.
3. In figure, $A B C$ is a right triangle, right angled at B. $A D$ and $C E$ are the two medians drawn from A and C respectively. If $A C=5 \mathrm{~cm}$ and $A D=\frac{3 \sqrt{5}}{2} c m$, find the length of CE :

D Watch Video Solution

1.

Rahul is studying in X Standard. He is making a kite to fly it on a
Sunday. Few questions came to his mind while making the kite. Give answers to his questions by looking at the figure

Rahul tied the sticks at what angles to each other?
A. 30°
B. 60°
C. 90°
D. 120°

Answer:

Watch Video Solution

2.

Rahul is studying in X Standard. He is making a kite to fly it on a
Sunday. Few questions came to his mind while making the kite. Give
answers to his questions by looking at the figure

Which is the correct similarity criteria applicable for smaller triangles at the upper part of this kite?
A. RHS
B. SAS
C. SSA
D. AAS

Answer:

3.

Rahul is studying in X Standard. He is making a kite to fly it on a
Sunday. Few questions came to his mind while making the kite. Give answers to his questions by looking at the figure

Sides of two similar triangles are in the ratio 4:9. Corresponding medians of these triangles are in the ratio,
A. $2: 3$
B. $4: 9$
C. $81: 16$
D. 16: 81

Answer:

-
 Watch Video Solution

4.

Rahul is studying in X Standard. He is making a kite to fly it on a
Sunday. Few questions came to his mind while making the kite. Give
answers to his questions by looking at the figure

In a triangle, if square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle. This theorem is called as,
A. Pythagoras theorem
B. Thales theorem
C. Converse of Thales theorem
D. Converse of Pythagoras theorem

Answer:

D Watch Video Solution

5.

Rahul is studying in X Standard. He is making a kite to fly it on a

Sunday. Few questions came to his mind while making the kite. Give answers to his questions by looking at the figure

What is the area of the kite, formed by two perpendicular sticks of length 6 cm and 8 cm ?
A. $48 \mathrm{~cm}(2)$
B. $14 \mathrm{~cm}(2)$
C. $24 \mathrm{~cm}^{2}$
D. $96 \mathrm{~cm}^{2}$

Answer:

- Watch Video Solution

6. An aeroplane leaves an airport and flies due north at a speed of $1000 \mathrm{~km} / \mathrm{hr}$. At the same time, another aeroplane leaves the same airport and flies due west at a speed of $1200 \mathrm{~km} / \mathrm{hr}$. How far apart will be the two planes after $1 \frac{1}{2}$ hours?
A. 1500 km
B. 1600 km
C. 1400 km
D. 1300 km

Answer:

7. An aeroplane leaves an airport and flies due north at a speed of 1000 km per hour. At the same tune, another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour. |How far apart will be the two planes after 1¹ $1 / 2$
A. 1700 km
B. 1800 km
C. 1900 km
D. 2000 km

Answer:

8. An aeroplane leaves an airport and flies due north at a speed of $1000 \mathrm{~km} / \mathrm{hr}$. At the same time, another aeroplane leaves the same airport and flies due west at a speed of $1200 \mathrm{~km} / \mathrm{hr}$. How far apart will be the two planes after $1 \frac{1}{2}$ hours?
A. $300 \sqrt{59} \mathrm{~km}$
B. $300 \sqrt{63} \mathrm{~km}$
C. $300 \sqrt{61} \mathrm{~km}$
D. $300 \sqrt{65} \mathrm{~km}$

Answer:

D Watch Video Solution

9. An aeroplane leaves an airport and flies due north at a speed of $1000 \mathrm{~km} / \mathrm{hr}$. At the same time, another aeroplane leaves the same
airport and flies due west at a speed of $1200 \mathrm{~km} / \mathrm{hr}$. How far apart will be the two planes after $1 \frac{1}{2}$ hours?
A. right
B. obtuse
C. acute
D. None of these

Answer:

D Watch Video Solution

10. An aeroplane leaves an airport and flies due west at a speed of $2100 \mathrm{~km} / \mathrm{hr}$. At the same time, another aeroplane leaves the same place at airport and flies due south at a speed of $2000 \mathrm{~km} / \mathrm{hr}$. How far apart will be the two planes after 1 hour?
A. Basic Proportionality
B. Converse of Thales theorem
C. Pythagoras theorem
D. Similarity of triangles

Answer:

- Watch Video Solution

11. Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod.

Assuming that her string (form the tip of her rod to the fly) is taut, how much string does she have out (see figure)?
A. 2 cm
B. 3 cm
C. 4 cm
D. 5 cm

Answer:

12. Nazinia is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that h
A. 0.5 cm
B. 3 cm
C. 4 cm
D. 5 cm

Answer:

- Watch Video Solution

13. Nazinia is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under
the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, how much string does she have out? If she pulls in the string at the rate of 5 cm per second, what will be the horizontal distance of the fly from her after 12 seconds?
A. 2.79 m
B. 3.79 m
C. 5.79 m
D. 4.79 m

Answer:

D Watch Video Solution

14. Nazinia is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string
rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that h
A. median
B. vertex
C. Altitude
D. Perimeter

Answer:

D Watch Video Solution

15. Nazinia is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that h
B. Perpendicular
C. Hypotenuse
D. Vertex

Answer:

- Watch Video Solution

Ncert Corner Textbook Questions Exercise 61

1. All circles are (congruent, similar)

D Watch Video Solution

2. All squares are \qquad . (congruent/similar)
3. Fill in the blanks using the correct word given in brackets: All circles are (congruent, similar) All squares are (similar, congruent) (iii) All triangles are similar (isosceles, equilaterals):

(Watch Video Solution

4. Fill in the blanks using the correct word given in bracket: (i) All circles are \qquad (congruent, similar)
(ii) All squares are \qquad . (similar, congruent) (iii) All_____triangles are similar, (isosceles, equilateral) (iv) Two polygons of the

- Watch Video Solution

5. Give two different examples of pair of (i) similar figures. (ii) nonsimilar figures.
6. State whether the following quadrilaterals are similar or not:

(D) Watch Video Solution

Ncert Corner Textbook Questions Exercise 62

1. In Figure (i) and (ii), $D E \| B C$. Find $E C$ in (i) and $A D$ in (ii).
2. E and F are points on the sides PQ and PR respectively of $\triangle P Q R$. For each of the following cases, state whether EF || QR: (i) PE = 3.9 $\mathrm{cm} . \mathrm{EQ}=3 \mathrm{~cm} . \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4$ (ii) $\mathrm{PE}=4 \mathrm{~cm} . \mathrm{QE}=4.5 \mathrm{~cm} . \mathrm{PF}=$ Scm and $\mathrm{RF}=9 \mathrm{~cm}$ (iii)

D Watch Video Solution

3. E and F are points on the sides PQ and PR respectively of $\triangle P Q R$.

For each of the following cases, state whether $E F \| Q R$: (i) $P E=3.9$ $\mathrm{cm} . \mathrm{EQ}=3 \mathrm{~cm} . \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4$ (ii) $\mathrm{PE}=4 \mathrm{~cm} . \mathrm{QE}=4.5 \mathrm{~cm} . \mathrm{PF}=$ Scm and $\mathrm{RF}=9 \mathrm{~cm}$ (iii)

(D) Watch Video Solution

4. E and F are points on the sides PQ and PR respectively of $\triangle P Q R$.

For each of the following cases, state whether EF || QR: (i) PE = 3.9
$\mathrm{cm} . \mathrm{EQ}=3 \mathrm{~cm} . \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4$ (ii) $\mathrm{PE}=4 \mathrm{~cm} . \mathrm{QE}=4.5 \mathrm{~cm} . \mathrm{PF}=$
Scm and $\mathrm{RF}=9 \mathrm{~cm}$ (iii)

D Watch Video Solution

5.

In the fig. if $\mathrm{LM} \| \mathrm{CB}$ and $\mathrm{LN} \| \mathrm{CD}$, prove that $\frac{A M}{A B}=\frac{A N}{A D}$

- Watch Video Solution

6. In the given figure, $D E \| A C$ and $D F \| A E$.

Prove that $\frac{B F}{F E}=\frac{B E}{E C}$

- Watch Video Solution

7. In figure $D E$ || $O Q$ and $D F$ || OR. Show that EF||QR.

- Watch Video Solution

8. In figure A, B and C are points on $O P, O Q$ and $O R$ respectively such that $A B|\mid P Q$ and $A C| \mid P R$. Show that $B C|\mid Q R$.

D Watch Video Solution

9. Theorem 8.10 : The line drawn through the mid-point of one side of a triangle, parallel to another side bisects the third side.

- Watch Video Solution

10. Prove that the line joining the mid-points of the two sides of a triangle is parallel to the third side.

D Watch Video Solution

11. $A B C D$ is a trapezium in which $A B \| D C$ and its diagonals intersect each other at the point O. Show that $\frac{A O}{B O}=\frac{C O}{D O}$.

D Watch Video Solution
12. The diagonals of a quadrilateral $A B C D$ intersect each other at the point O such that $\frac{A O}{B O}=\frac{C O}{D O}$. Show that ABCD is a trapezium.

D Watch Video Solution

Ncert Corner Textbook Questions Exercise 63

1. State the pairs of triangles in the given figures are similar.

- Watch Video Solution

2. State the pairs of triangles in the given figures are similar.

- Watch Video Solution

3. State the pairs of triangles in the given figures are similar

- Watch Video Solution

4. State the pairs of triangles in the given figures are similar. Write the similarity criterion used by you for answering the question and also writer the pairs of similar triangles in the symbolic from :

5. State the pairs of triangles in the given figures are similar. Write the similarity criterion used by you for answering the question and also writer the pairs of similar triangles in the symbolic from :

- Watch Video Solution

6. State the pairs of triangles in the given figures are similar. Write the similarity criterion used by you for answering the question and
also writer the pairs of similar triangles in the symbolic from :

- Watch Video Solution

7. In the figure below $\triangle O D C \sim \triangle O B A, \angle B O C=125^{\circ}$ and $\angle C D O=70^{\circ}$. Find $\angle D O C, \angle D C O$ and $\angle O A B$.

- Watch Video Solution

8. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B|\mid ~ D C$ intersect each other at the point O. Using a similarity criterion for two triangles, show that $\frac{O A}{O C}=\frac{O B}{O D}$

- Watch Video Solution

9. In the given figure, $\frac{Q R}{Q S}=\frac{Q T}{P R}$ and $\angle 1=\angle 2$ then prove that $\triangle P Q S \sim \triangle T Q R$.

10. S and T are points on sides PR and QR of $\triangle P Q R$ such that $\angle P=\angle R T S$. Show that $\Delta R P Q \Delta R T S$.

- Watch Video Solution

11. In the Figure given below if $\triangle A B E \cong \triangle A C D$ show that $\triangle A D E \sim \triangle A B C$.

12. In the figure given below altiudes AD and CE of $\triangle A B C$ intersect each other at the point P. Show that .

$\triangle A E P \sim \triangle C D P$

- Watch Video Solution

13. In the figure given below altiudes AD and CE of $\triangle A B C$ intersect each other at the point P. Show that .

$\triangle A B D \sim \triangle C B E$

- Watch Video Solution

14. Show that: $\triangle A E P \sim \Delta A D B$

15. Show that : $\triangle P D C \sim \Delta B E C$

D Watch Video Solution

16. E is a point on the side $A D$ produced of a parallelogram $A B C D$ and BE intersects CD at F . Show that $\triangle A B E \Delta C F B$.
17. In the figure given below $A B C$ and $A M P$ are two right triangles right angled at B and M respectively .Prove that

$\triangle A B C \sim \Delta A M P$

- Watch Video Solution

18. In figure $A B C$ and $A M P$ are two right triangles, right angles at B and M respectively. Prove that (i) $\triangle A B C \Delta A M P$ (ii) $\frac{C A}{P A}=\frac{B C}{M P}$
19. CD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE of $\triangle A B C$ and $\triangle E F G$ respectively. If $\triangle A B C \sim \Delta F E G$ show that :

$$
\frac{C D}{G H}=\frac{A C}{F G}
$$

- Watch Video Solution

20. CD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE of $\triangle A B C$ and $\triangle E F G$ respectively. If $\triangle A B C \sim \triangle F E G$ show that :

$\Delta D C B \sim \Delta H G E$

D Watch Video Solution

21. CD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ of $\triangle A B C$ and $\triangle E F G$ respectively. If $\triangle A B C \sim \triangle F E G$ show that :

$\Delta D C A \sim \Delta H G F$

(D) Watch Video Solution

22. In the given figure, E is a point on side CB produced of an isosceles $\triangle A B C$ with $A B=A C$. . If $A D \perp B C$ and $E F \perp A C$, prove tha $\triangle A B D \sim \Delta E C F$

- Watch Video Solution

23. Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides PQ and QR and median PM of $\triangle P Q R$. Show that $\triangle A B C \Delta P Q R$.
24. In the given figure, D is a point on the side BC of $\triangle A B C$ such that $\angle A D C=\angle B A C$. Prove that $C A^{2}=C B \times C D$.

- Watch Video Solution

25. Sides $A B$ and $A C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $P R$ and median $P M$ of another triangle PQR . Show that $\triangle A B C \triangle P Q R$.
26. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

- Watch Video Solution

27. If $A D$ and $P M$ are medians of triangles $A B C$ and $P Q R$, respectively where $\triangle A B C \triangle P Q R$, prove that $\frac{A B}{P Q}=\frac{A D}{P M}$

D Watch Video Solution

Ncert Corner Textbook Questions Exercise 64

1. Let $\triangle A B C \sim \triangle D E F$ and their areas be respectively $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=15.4 \mathrm{~cm}$ find BC .
2. Diagonals of a trapezium $A B C D$ with $A B|\mid D C$ intersect each other at the point O. If $A B=2 C D$, find the ratio of the areas of triangles $A O B$ and COD.

Watch Video Solution

3. In figure $A B C$ and $D B C$ are two triangles on the same base $B C$. If

AD intersects BC at O , show that $\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(D B C)}=\frac{A O}{D O}$.

- Watch Video Solution

4. If the areas of two similar triangles are equal, prove that they are congruent.
5. D, E and F are respectively the mid-points of sides $A B . B C$ and $C A$ of $\triangle A B C$. Find the ratio of the areas of DDEF and $\triangle A B C$.

- Watch Video Solution

6. Theorem 6.6: The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

(D) Watch Video Solution

7. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.
8. $A B C$ and $B D E$ are two equilateral triangles such that D is the mid-point of $B C$. The ratio of the areas of the triangles $A B C$ and $B D E$ is $2: 1$ (b) $1: 2$ (c) $4: 1$ (d) $1: 4$
A. $2: 1$
B. 1:2
C. $4: 1$
D. 1: 4

Answer: C

- Watch Video Solution

9. Sides of two similar triangles are in the ratio 4:9. Areas of these triangles are in the ratio. (a) $2: 3$ (b) $4: 9$ (c) $81: 16$ (d) $16: 81$ Ans-D
A. $2: 3$
B. $4: 9$
C. $81: 16$
D. 16: 81

Answer: D

- Watch Video Solution

Ncert Corner Textbook Questions Exercise 65

1. Determine which of them are right triangles.
$5 \mathrm{~cm}, 2 \mathrm{~cm}$ and 5 cm

Watch Video Solution
2. Determine which of them are right triangles.
$7 \mathrm{~cm}, 13 \mathrm{~cm}$ and 8 cm

(D) Watch Video Solution

3. Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle write the length of its hypotenuse.
$50 \mathrm{~cm}, 80 \mathrm{~cm}$ and 100 cm

- Watch Video Solution

4. Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse.
(i) $13 \mathrm{~cm}, 12 \mathrm{~cm}, 5 \mathrm{~cm}$ (ii) $20 \mathrm{~cm}, 25 \mathrm{~cm}, 30 \mathrm{~cm}$.
5. $P Q R$ is a triangle right angled at P and M is a point on $Q R$ such that $P M \perp Q R$. Show that $P M^{2}=Q M M R$.

- Watch Video Solution

6. In the figure given below $A B C$ is a triangle right angled at A and AC \perp CD. Show that

$A C^{2}=B C \times D C$

- Watch Video Solution

7. In the figure given below $A B C$ is a triangle right angled at A and $A C \perp B D$. Show that

$A D^{2}=B D \times D C$

D Watch Video Solution
8. In the figure given below $A B C$ is a triangle right angled at A and $A C \perp B D$.Show that

$$
A B^{2}=B C \times B D
$$

(D) Watch Video Solution

9. $A B C$ is an isosceles triangle right angled at C. Prove that $A B^{2}=2 A C^{2}$.

- Watch Video Solution

10. ABC is an isosceles triangle with $\mathrm{AC}=\mathrm{BC}$. If $A B^{2}=2 A C^{2}$, prove that $A B C$ is a right triangle.

D Watch Video Solution

11. $A B C$ is an equilateral triangle of side $2 a$. Find each of its altitudes.

- Watch Video Solution

12. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.
13. In fig., O is a point in the interior of a triangle $A B C, O D \perp B C, O E$ $\perp \quad A C$ and $O F \perp$ AB. Show that:$O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+B D^{2}+C E^{2}$

(D) Watch Video Solution

14. In the figure given below O is a point in the interior of a triangle $\mathrm{ABC}, \mathrm{OD} \perp \mathrm{BC}, \mathrm{OE} \perp \mathrm{AC}$ and $O F \perp A B$. Show that

$$
A F^{2}+B D^{2}+C E^{2}=A E^{2}+C D^{2}+B F^{2}
$$

(D) Watch Video Solution

15. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.
16. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

(D) Watch Video Solution

17. An aeroplane leaves an airport and flies due north at a speed of

1000 km per hour. At the same tune, another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour.
|How far apart will be the two planes after 1¹/2

D Watch Video Solution

18. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m , find the distance between their tops.
19. D and E are points on the sides $C A$ and $C B$ respectively of a triangle $A B C$ right angled at C. Prove that $A E^{2}+B D^{2}=A B^{2}+D E^{2}$.

D Watch Video Solution
20. The perpendicular from A on side $B C$ of a $A B C$ intersects $B C$ at D such that $\mathrm{DB}=3 \mathrm{CD}$. Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$.

- Watch Video Solution

21. In an equilateral triangle $A B C, D$ is a point on side $B C$ such that
$B D=\frac{1}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$.

- Watch Video Solution

22. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

D Watch Video Solution

23. Tick the correct answer and justify : In $\triangle P Q R, \mathrm{PQ}=6 \sqrt{3} \mathrm{~cm}$, PR
$=12 \mathrm{~cm}$ and $Q R=6 \mathrm{~cm}$. The angle Q is :
A. 120°
B. 60°
C. 90°
D. 45°

Answer: C

Ncert Corner Textbook Questions Exercise 66

1. In the figure given below PS is the bisector of $\angle Q P R$ of $\triangle P Q R$.

Prove that $\frac{Q S}{S R}=\frac{P Q}{P R}$.

- Watch Video Solution

2. In the figure given below D is a point on hypotenuse $A C$ of
$\triangle A B C$ such that $\mathrm{BD} \perp \mathrm{ACDM} \perp \mathrm{BC}$ and $\mathrm{DN} \perp \mathrm{AB}$. Prove that :

(i) $D M^{2}=D N \times M C$ (ii) $D N^{2}=D M \times A N$

- Watch Video Solution

3. In the given figure, $\triangle A B C$ is an obtuse triangle, obtuse-angled at
B.

If $\quad A D \perp C B$
(produced
) prot that
$A C^{2}=A B^{2}+B C^{2}+2 B C \cdot B D$

- Watch Video Solution

4. (Result on acute triangle) In Fig. 4.184, $\angle B$ of $A B C$ is an acute angle and $A D \perp B C$, prove that

$$
A C^{2}=A B^{2}+B C^{2}-2 B C \times B D
$$

5. The following figure shows a triangle $A B C$ in which $A D$ is a median and $A E \perp B C$. Prove that $2 A B^{2}+2 A C^{2}=4 A D^{2}+B C^{2}$.

- Watch Video Solution

6. The following figure shows a triangle $A B C$ in which $A D$ is a median and $A E \perp B C$. Prove that $2 A B^{2}+2 A C^{2}=4 A D^{2}+B C^{2}$.

- Watch Video Solution

7. In the figure given below $A D$ is a median of a triangle $A B C$ and $A M$
$\perp B C$. Prove that:

$A C^{2}+A B^{2}=2 A D^{2}+\frac{1}{2} B C^{2}$

- Watch Video Solution

8. Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.

- Watch Video Solution

9. In Figure, two chords $A B$ and $C D$ intersect each other at the point P. Prove that: (i) $\triangle A P C \Delta D P B$ (ii) $A P \cdot P B=C P \cdot D P$

- Watch Video Solution

10. In Figure two chords $A B$ and $C D$ of a circle intersect each other at the point P (when produced) outside the circle. Prove that (i) $\Delta P A C \Delta P D B$ (ii) $P A \dot{P} B=P C \dot{P} D$

(D) Watch Video Solution

11. In figure D is a point on side BC of a $\triangle A B C$ such that $\frac{B D}{C D}=\frac{A B}{A C}$. Prove that AD is the bisector of $\angle B A C$.

- Watch Video Solution

12. Nazinia is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string
rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that h

- Watch Video Solution

Ncert Exemplar Exercise 61

1. In the figure given below $\angle B A C=90^{\circ}$ and $\mathrm{AD} \perp \mathrm{BC}$. Then

A. $B C \times C D=A C^{2}$
B. $A B \times A C=B C^{2}$
C. $B D \times C D=A D^{2}$
D. $A B \times A C=A D^{2}$

Answer: A

- Watch Video Solution

2. The lengths of the diagonals of a rhombus are 16 cm and 12 cm .

Then, the length of the side of the rhombus is
A. 9 cm
B. 10 cm
C. 9 cm
D. 20 cm

Answer: B

3. If $\triangle A B C \sim \triangle E D F$ and $\triangle A B C$ is not similar to $\triangle D E F$, then which of the following is not true?
A. $B C \times E F=A C \times F D$
B. $A B \times E F=A C \times D E$
C. $B C \times D E=A B \times E F$
D. $B C \times D E=A B \times F D$

Answer: C

D Watch Video Solution

4. If in two $\triangle A B C$ and $\triangle P Q R, \frac{A B}{Q R}=\frac{B C}{P R}=\frac{C A}{P Q}$, then
A. $\triangle P Q R \sim \triangle C A B$
B. $\triangle P Q R \sim \triangle A B C$
C. $\triangle C B A \sim \triangle P Q R$
D. $\triangle B C A \sim \triangle P Q R$

Answer: A

- Watch Video Solution

5. In figure, two line segments $A C$ and $B D$ intersects each other at the point P such that $P A=6 \mathrm{~cm}, P B=3 \mathrm{~cm}, P C=2.5 \mathrm{~cm}, P D=5$ cm, $\angle A P B=50^{\circ}$ and $\angle C D P=30^{\circ}$. Then, $\angle P B A$ is equal to

A. 50°
B. 30°
C. 60°
D. 100°

Answer: D

(D) Watch Video Solution

6. In $\triangle D E F$ and $\triangle P Q R$, it is given that
$\angle D=\angle Q$ and $\angle R=\angle E$, then which of the following is not true?
A. $\frac{E F}{P R}=\frac{D F}{P Q}$
B. $\frac{D E}{P Q}=\frac{F E}{R P}$
C. $\frac{D E}{Q R}=\frac{D F}{P Q}$
D. $\frac{E F}{R P}=\frac{D E}{Q R}$

Answer: B

7. In $\triangle A B C$ and $\triangle D E F, \angle B=\angle E, \angle F=\angle C$ and $A B=3 D E$. Then, the two triangles are
A. congruent but not similar
B. similar but not congruent
C. neither congruent nor similar
D. congruent as well as similar

Answer: B

(Watch Video Solution

8. If $\triangle A B C \sim \Delta P Q R$ with $\frac{B C}{Q R}=\frac{1}{3}$,then $\frac{a r(\Delta P R Q)}{a r(\Delta B C A)}$ is equal to
A. 9
B. 3
C. $\frac{1}{3}$
D. $\frac{1}{9}$

Answer: A

D Watch Video Solution

9. If $\triangle A B C \sim \Delta D F E, \angle A=30, \angle C=50^{\circ}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm}$ and $D F=7.5 \mathrm{~cm}$. Then, which of the following is true?
A. $\mathrm{DE}=12 \mathrm{~cm} \angle F=50^{\circ}$
B. $D E=12 \mathrm{~cm}, \angle F=100^{\circ}$
C. $\mathrm{E}=12 \mathrm{~cm} \angle D=100^{\circ}$
D. $\mathrm{EF}=12 \mathrm{~cm}, \angle D=30^{\circ}$

Answer: B

10. If in $\triangle A B C$ and $\triangle D E F, \frac{A B}{D E}=\frac{B C}{F D}$, then they will be similar, when
A. $\angle B=\angle E$
B. $\angle A=\angle D$
C. $\angle B=\angle D$
D. $\angle A=\angle F$

Answer: C

(D) Watch Video Solution

11. If $\triangle A B C \sim \Delta Q R P, \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{9}{4}, \mathrm{AB}=18 \mathrm{~cm}$ and $\mathrm{BC}=15 \mathrm{~cm}$, then $P R$ is equal to
A. 10 cm
B. 12 cm
C. $\frac{20}{3} \mathrm{~cm}$
D. 8 cm

Answer: A

D Watch Video Solution

12. If S is a point on side PQ of a $\triangle P Q R$ such that $\mathrm{PS}=\mathrm{QS}=\mathrm{RS}$, then
A. $P R \times Q R=R S^{2}$
B. $Q S^{2}+R S^{2}=Q R^{2}$
C. $P R^{2}+Q R^{2}=P Q^{2}$
D. $P S^{2}+R S^{2}=P R^{2}$

Answer: C

Ncert Exemplar Exercise 62

1. Is the triangle with sides $25 \mathrm{~cm}, 5 \mathrm{~cm}$ and 24 cm a right triangle?

Give reason for your answer.

- Watch Video Solution

2. It is given that $\triangle D E F \sim \triangle R P Q$. Is it true to say that $\angle D=\angle R$ and $\angle F=\angle P$? Why?

(D) Watch Video Solution

3. A and B are respectively the points on the sides $P Q$ and $P R$ of a
$\triangle P Q R$ such that $\mathrm{PQ}=12.5 \mathrm{~cm}, \mathrm{PA}=5 \mathrm{~cm}, \mathrm{BR}=6 \mathrm{~cm}$ and $\mathrm{PB}=4 \mathrm{~cm}$. Is $A B \| Q R$? Give reason for your answer.

Watch Video Solution

4. In figure $B D$ and $C E$ intersect each other at the point P. Is $\triangle P B C \sim \triangle P D E$? Why?

D Watch Video Solution

5. In
$\triangle P Q R$
and
$\Delta M S T$,
$\angle P=55^{\circ}, \angle Q=25^{\circ}, \angle M=100^{\circ}$ and $\angle S=25^{\circ}$.
$\Delta Q P R \sim \Delta T S M$? Why?

- Watch Video Solution

6. Is the following statement true? Why? "Two quadrilaterals are similar, if their corresponding angles are equal".

D Watch Video Solution

7. Two sides and the perimeter of one triangle are respectively three times the corresponding sides and the perimeter of the other triangle. Are the two triangles similar? Why?

- Watch Video Solution

8. If in two right triangles, one of the acute angles of one triangle is equal to an acute angle of the other triangle. Can you say that two triangles will be similar? Why?
9. The ratio of the corresponding altitudes of two similar triangles is $\frac{3}{5}$. Is it correct to say that ratio of their areas is $\frac{6}{5}$? Why?

D Watch Video Solution

10. D is a point on side QR of $\triangle P Q R$ such that $\mathrm{PD} \perp \mathrm{QR}$. Will it be correct to say that $\triangle P Q D \sim \Delta R P D$? Why?

- Watch Video Solution

11. In figure, if $\angle D=\angle C$, then it is true that $\triangle A D E \sim \triangle A C B$? Why?
12. Is it true to say that, if in two triangles, an angle of one triangle is equal to an angle of another triangle and two sides of one triangle are proportional to the two sides of the other triangle, then the triangles are similar? Give reason for your answer.

D Watch Video Solution

Ncert Exemplar Exercise 63

1. In $P Q R, Q M \perp P R$ and $P R^{2}-P Q^{2}=Q R^{2}$. Prove that
$Q M^{2}=P M \times M R$

- Watch Video Solution

2. Find the value of x for which $D E \| A B$ in the given figure.

(D) Watch Video Solution

3. In figure, if $\angle 1=\angle 2$ and $\Delta N S Q=\Delta M T R$, then prove that
$\triangle P T S \sim \Delta P R Q$.

D Watch Video Solution

4. Diagonals of a trapezium PQRS intersect each other at the point 0 , $\mathrm{PQ}|\mid \mathrm{RS}$ and $\mathrm{PQ}=3$ RS. Find the ratio of the areas of $\triangle P O Q$ and $\Delta R O S$.

D Watch Video Solution

5. In figure, if $A B \| D C$ and AC, PQ intersect each other at the point
O. Prove that OA.CQ=OC.AP.

(D) Watch Video Solution

6. Find the altitude of an equilateral triangle of side 8 cm .
7. If $\triangle A B C \sim \Delta D E F A B=4 \mathrm{~cm}, \mathrm{DE}=6 \mathrm{~cm}, \mathrm{EF}=9 \mathrm{~cm}$ and $\mathrm{FD}=12 \mathrm{~cm}$ find the perimeter of $\triangle A B C$.

D Watch Video Solution

8. In figure, if $\mathrm{DE}|\mid \mathrm{BC}$, then find the ratio of ar $(\triangle A D E)$ and $\operatorname{ar}(\mathrm{DECB})$.

9. $A B C D$ is a trapezium in which $A B \| D C$ and P, Q are points on $A D$ and $B C$ respectively, such that $P Q \| D C$, if $P D=18 \mathrm{~cm}, \mathrm{BQ}=35 \mathrm{~cm}$ and $\mathrm{QC}=15$ cm. Find AD.

- Watch Video Solution

10. Corresponding sides of two similar triangle are in the ratio of 2:3 . If the are of the smaller triangle is $48 \mathrm{~cm}^{2}$ find the area of the larger triangle .

- Watch Video Solution

11. In a $\triangle P Q R, \mathrm{~N}$ is a point on PR , such that $\mathrm{QN} \perp \mathrm{PR}$. If $\mathrm{PN} \cdot \mathrm{NR}=$ $Q N^{2}$, then prove that $\angle P Q R=90^{\circ}$.
12. Areas of two similar triangles are $36 \mathrm{~cm}^{2}$ and $100 \mathrm{~cm}^{2}$. If the length of a side of the larger triangle is 20 cm find the length of the corresponding side of the smaller triangle.

- Watch Video Solution

13. In given figure, if $\angle A C B=\angle C D A, A C=8 \mathrm{~cm}$ and $A D=3 \mathrm{~cm}$

, then find BD.

D Watch Video Solution
14. A 15 high tower casts a sshadow 24 long at a certain time at the same time, a telephone pole casts a shadow 16 long. Find the height of the telephone pole.

D Watch Video Solution

15. Foot of a 10 m long ladder leaning against a verticle wall is 6 m away from the base of the wall. Find the height of the point on the wall where the top of the ladder reaches.

(D) Watch Video Solution

Ncert Exemplar Exercise 64

1. In given figure, if $\angle A=\angle C, \mathrm{AB}=6 \mathrm{~cm}, \mathrm{BP}=15 \mathrm{~cm}, \mathrm{AP}=12 \mathrm{~cm}$ and $C P=4 \mathrm{~cm}$, then find the lengths of PD and CD.

Watch Video Solution

2. It is given that $\triangle A B C \sim \Delta E D F$ such that $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm}, \mathrm{DF}=$ 15 cm and $D E=12 \mathrm{~cm}$. Find the lengths of the remaining sides of the triangles.

D Watch Video Solution

3. Theorem 6.1: If a line is drawn parallel to one side of a triangle to
intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
4. In the figure given below if PQRS is a parallelogram and $A B$ |PS then prove that OC ||SR.

5. A 5 m long ladder is placed leaning towards a vertical wall such that it reaches the wall such that it reaches the wall at a point 4 m high. If the foot of the ladder is moved 1.6 m towards the wall, then find the distance by which the top of the ladder would slide upwards on teh wall.

- Watch Video Solution

6. For going to a city B from city A there is a route via city C such that $A C \perp C B, \mathrm{AC}=2 \mathrm{x} \mathrm{km}$ and $\mathrm{CB}=2(\mathrm{x}+7) \mathrm{km}$. It is proposed to construct a 26 km highway which directly connects the two cities A and B. Find how much distance will be saved in reaching city B from city A after the construction of the highway.

D Watch Video Solution

7. A flag pole 18 m high casts a shadow 9.6 m long. Find the distance of the top of the pole from the far end of the shadow.

D Watch Video Solution

8. A street light bulb is fixed on a pole 6 m above the level of the street. If a women of height 1.5 m casts a shadow of 3 m , then find how far she is away from the base of the pole.

- Watch Video Solution

9. In given figure, $A B C$ is a triangle right angled at B and $B D \perp A C$. If
$A D=4 \mathrm{~cm}$ and $C D=5 \mathrm{~cm}$, then find $B D$ and $A B$.

- Watch Video Solution

10. In given figure $P Q R$ is a right angled triangle, right angled at Q and $\mathrm{QS} \perp \mathrm{PR}$. If $\mathrm{PQ}=6 \mathrm{~cm}$ and $\mathrm{PS}=4 \mathrm{~cm}$, then find QS, RS and QR .

11. Ii $\Delta P Q R, \mathrm{PD} \perp \mathrm{QR}$ such that D lies on QR , if $\mathrm{PQ}=\mathrm{a}, \mathrm{PR}=\mathrm{b}, \mathrm{QD}=\mathrm{c}$ and $D R=d$, then prove that $(a+b)(a-b)=(c+d)(c-d)$.

D Watch Video Solution

12. In a quadrilateral $\mathrm{ABCD}, \angle A+\angle D=90^{\circ}$. Prove that $A C^{2}+B D^{2}=A D^{2}+B C^{2}$

D Watch Video Solution

13. In given figure, $\|\| m$ and liner segments $A B, C D$ and $E F$ are concurrent at point P. Prove that $\frac{A E}{B F}=\frac{A C}{B D}=\frac{C E}{F D}$

- Watch Video Solution

14. 14 In Fig. 6.21, PA, QB Rc and SD are all perpendiculars to a line I, AB $6 \mathrm{~cm}, \mathrm{Bc} 9 \mathrm{~cm}, \mathrm{CD} \mathrm{g} \mathrm{cm}$ and SP 36 om Find PO, QR an RS. Fig. 6.21
15. O is the point of intersection of the diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$. Through O, aline segment $P Q$ is drawn parallel to $A B$ meeting $A D$ in P and $B C$ in Q, prove that $P O=Q O$.

D Watch Video Solution

16. In figure, line segment DF intersects the side AC of a $\triangle A B C$ at the point E such that E is the mid-point of CA and $\angle A E F-\angle A F E$.

Prove that $\frac{B D}{C D}=\frac{B F}{C E}$

17. Prove that the area of the semicircle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the
semicircles drawn on the other two sides of the triangle

- Watch Video Solution

18. Prove that the area of the equilateral triangle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the equilateral triangles drawn on the other two sides of the triangle.

- Watch Video Solution

Board Corner Very Short Answer Type Question 1 Mark Each

1. In Figure $1 D E|\mid B C, A D=1 \mathrm{~cm}$ and $B D=2 \mathrm{~cm}$. What is the ratio of the ar $(\triangle A B C)$ to the $\operatorname{ar}(\triangle A D E)$?

- Watch Video Solution

2. In figure below $A B C$ is an isosceles triangle right at C with $A C=4$ cm . Find the length of $A B$.

- Watch Video Solution

3. In Figure below $D E|\mid B C$. Find the length of side $A D$ given that $A E$ $=1.8 \mathrm{~cm}$ BD $=7.2 \mathrm{~cm}$ and $C E=5.4 \mathrm{~cm}$.

D Watch Video Solution

4. Given $\triangle A B C \sim \triangle P Q R$ if $\frac{A B}{P Q}=\frac{1}{3}$ then find $\frac{\text { ar } \triangle A B C}{\text { ar } \triangle P Q R}$

D Watch Video Solution

Board Corner Short Answer Type Question 3 Mark Each

1. In the given figure, $\angle A C B=90^{\circ}$ and $C D \perp A B$. Prove that $C D^{2}=B D \cdot A D$

- Watch Video Solution

2. P and Q are points on the sides $C A$ and $C B$ respectively of $A B C$, right angled at C. Prove that $A Q^{2}+B P^{2}=A B^{2}+P Q^{2}$.
3. Two right triangles $A B C$ and $D B C$ are drawn on the same hypotenues $B C$ on the same side of $B C$. If $A C$ and $D B$ intersects at P, then :

- Watch Video Solution

4. Diagonals of a trapezium PQRS intersect each other at the point 0 , $\mathrm{PQ}|\mid \mathrm{RS}$ and $\mathrm{PQ}=3 \mathrm{RS}$. Find the ratio of the areas of $\triangle P O Q$ and $\Delta R O S$.
5. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

- Watch Video Solution

6. If the areas of two similar triangles are equal, prove that they are congruent.

D Watch Video Solution

Board Corner Long Short Answer Type Question 4 Mark Each

1. Theorem 6.9 : In a triangle, if square of one side is equal to the

 sum of the squares of the other two sides, then the angle opposite the first side is a right angle.
D Watch Video Solution

2. Theorem 6.8 : In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

- Watch Video Solution

3. Theorem 6.6: The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

- Watch Video Solution

4. In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $B D=\frac{1}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$.

D Watch Video Solution

Multiple Choice Questions

1. In $\triangle P Q R$, if PS is the internal bisector of $\angle P$ meeting OR at S and $P Q=15 \mathrm{~cm}, \mathrm{QS}=(3+x) \mathrm{cm}, \mathrm{SR}=(\mathrm{x}-3) \mathrm{cm}$ and $\mathrm{PR}=7 \mathrm{~cm}$, then find the value of x.
A. 2.85 cm
B. 8.25 cm
C. 5.28 cm
D. 8.52 cm

- View Text Solution

2. In the figure given below, $A B C$ is a triangle. $B C$ is parallel to $A E$. If
$\mathrm{BC}=\mathrm{AC}$, then what is the value of $\angle C A E$?

A. 20°
B. 30°
C. 40°
D. 50°

Answer: D

- View Text Solution

3. In the figure given below, YZ is parallel to MN, XY is parallel to LM and XZ is parallel to LN . Then MY is:

A. The median of $\Delta L M N$
B. The angular bisector of $\angle L M N$
C. Perpendicular to LN
D. Perpendicular bisector of LN

Answer: A

- View Text Solution

4. The lengths of three sides (in cm) of a triangle aa Which one of the following cases is not suitable to be the three sides of a triangle?
A. $2,3,4$
B. $2,3,5$
C. $2,4,5$
D. $3,4,5$

- View Text Solution

5. In the figure given below, $\mathrm{PQ}=\mathrm{QS}$ and $\mathrm{QR}=\mathrm{RS}$. If $\angle S R Q=100^{\circ}$, then find the angle of $\angle Q P S$?

A. 40°
B. 30°
C. 20°
D. 15°

- View Text Solution

6. In the given figure, $Q R$ is parallel to $A B$ and $D R$ is parallel to $Q B$.

What is the number of distinct pairs of similar triangles?

A. 1
B. 2
C. 3
D. 4

- View Text Solution

7. The vertical angle of an isosceles triangle is 15° more than each of its base angles. What is the vertical angle?
A. 35°
B. 55°
C. 65°
D. 70°

Answer: D

- View Text Solution

8. In $\triangle A B C$, D and E are points on sides AB and AC , such that $\mathrm{DE} \|$
$B C$. If $A D=x, D B=x-2, A E=x+2$ and $E C=x-1$, then the value of x is:
A. 4
B. 2
C. 1
D. 8

Answer: A

- View Text Solution

9. In $\triangle A B C$, the angle bisector of $\angle A$ cuts BC at E . Find the length of $A C$, if lengths of $A B, B E$ and $E C$ are $9 \mathrm{~cm}, 3.6 \mathrm{~cm}$ and 2.4 cm ?
A. 5.4 cm
B. 8 cm
C. 4.8 cm
D. 6 cm

Answer: D

- View Text Solution

10. In the given figure, if $\angle B=38^{\circ}, \mathrm{AC}=\mathrm{BC}$ and $\mathrm{AD}=\mathrm{CD}$, then $\angle D$ equals to:

A. 26°
B. 28°
C. 38°
D. 52°

Answer: B

- View Text Solution

11. If the areas of two similar triangles are equal, then these triangles are \qquad
A. congruent
B. equilateral
C. equivalent
D. none of these

Answer: A
12. In Fig. $\angle B A C=90^{\circ}$ and $A D \perp B C$. Then,

A. $B D \cdot C D=B C^{2}$
B. $A B \cdot A C=B C^{2}$
C. $B D \cdot C D=A D^{2}$
D. $A B \cdot A C=A D^{2}$

Answer: C

13. If $\triangle A B C \sim \triangle E D F$ and $\triangle A B C$ is not similar to $\triangle D E F$, then which of the following is not true?
A. $B C \cdot E F=A C \cdot F D$
B. $A B \cdot E F=A C \cdot D E$
C. $B C \cdot D E=A B . E F$
D. $B C \cdot D E=A B \cdot F D$

Answer: B

- View Text Solution

14. In Fig., two line segments, $A C$ and $B D$ intersect each other at the point P such that $P A=6 \mathrm{~cm}, \mathrm{~PB}=3 \mathrm{~cm}, \mathrm{PC}=2.5 \mathrm{~cm}, \mathrm{PD}=5 \mathrm{~cm}$,
$\angle A P B=50^{\circ}$ and $\angle C D P=30^{\circ}$. Then $\angle P B A$ is equal to :

A. 30°
B. 60°
C. 80°
D. 100°

Answer: D

- View Text Solution

Very Short Answer Type Questions

1. In $\triangle D E W$, $\mathrm{AB}|\mid \mathrm{EW}$. If $\mathrm{AD}=4 \mathrm{~cm}, \mathrm{DE}=12 \mathrm{~cm}$ and $\mathrm{DW}=24 \mathrm{~cm}$, then find the value of DB.

- View Text Solution

2. In a right triangle $A B C$, right-angled at $B, B C=12 \mathrm{~cm}$ and $A B=5 \mathrm{~cm}$.

Find the radius of the circle inscribed in the triangle.

- View Text Solution

3. In $\triangle A B C, \mathrm{D}$ and E are mid-points of AC and BC respectively such that DE
$A D=2 x, B E=2 x-1, C D=x+1$ and $C E=x-1, \quad$ then find the value of x.

- View Text Solution

4. In figure, $D E \| B C$, Find the length of side $A D$, given that $A E=1.8$ $\mathrm{cm}, \mathrm{BD}=7.2 \mathrm{~cm}$ and $\mathrm{CE}=5.4 \mathrm{~cm}$.

5. A vertical tree of 12 m long casts a shadow 8 m long on the ground. At the same time, a tower casts the shadow 40 m long on the ground. Determine the height of the tower.

- View Text Solution

6. A girl of height 90 cm is walking away from the base of a lamppost at a speed of $1.2 \mathrm{~m} / \mathrm{s}$. If the lamp is 3.6 m above the ground, find the length of her shadow after 4 seconds.

- View Text Solution

7. In $\triangle A B C$, AD is the bisector of $\angle A$. If $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{BD}=3.2 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$, find $A C$.
8. The perimeters of two similar triangles are 25 cm and 15 cm respectively. If one side of the first triangle is 9 cm , find the corresponding side of the second triangle.

- View Text Solution

9. In $\triangle A B C$, D and E are points on AB and AC respectively such that $D E$ || $B C$. If $A D=2.4 \mathrm{~cm}, A E=3.2 \mathrm{~cm}, \mathrm{DE}=2 \mathrm{~cm}$ and $B C=5 \mathrm{am}$, find $B D$ and CE.

- View Text Solution

10. If $\triangle A B C$ and $\Delta B D E$ are equilateral triangles where D is the mid-point of BC , find the ratio of the area of $\triangle A B C$ and $\triangle B D E$.
11. In the given figure, $\triangle A H K$ is similar to $\triangle A B C$. If $\mathrm{AK}=10 \mathrm{~cm}, \mathrm{BC}$
$=3.5 \mathrm{~cm}$ and $\mathrm{HK}=7 \mathrm{~cm}$, find AC .

- View Text Solution

12. In the figure given below, $\mathrm{DE} \| \mathrm{BC}$ and $A D=\frac{1}{2} \mathrm{BD}$. If $\mathrm{BC}=4.5 \mathrm{~cm}$, find $D E$.

- View Text Solution

Assertion And Reasoning Based Questions

1. Assertion: If in a $\triangle A B C$, a line $\mathrm{DE} \| \mathrm{BC}$, intersects AB in D and AC in E , then $\frac{A B}{A D}=\frac{A C}{A E}$.

Reason: If a line is drawn parallel to one side of a triangle intersecting the other two sides, then the other two sides are divided in the same ratio.
A. Both the Assertion and the Reason are correct and the Reason is the correct explanation of the Assertion.
B. Both-the Assertion.and the Reason are.correct but the Reason
is not the correct explanation of the Assertion.
C. Assertion is true but the Reason is false.
D. Assertion is false but the Reason is true.

Answer: A

- View Text Solution

2. Assertion: $A B C$ is an isosceles right triangle, right angled at C, then $A B^{2}=3 A C^{2}$.

Reason: In an isosceles triangle ABC , if $\mathrm{AC}=\mathrm{BC}$ and $A B^{2}=2 A C^{2}$, then $\angle C=90^{\circ}$.
A. Both the Assertion and the Reason are correct and the Reason
is the correct explanation of the Assertion.
B. Both-the Assertion.and the Reason are.correct but the Reason
is not the correct explanation of the Assertion.
C. Assertion is true but the Reason is false.
D. Assertion is false but the Reason is true.

Answer: D

- View Text Solution

Case Based Questions

1. On one day, a poor girl is looking for a lamppost for completing her homework as in her area power is not there and she finds the same at some distance away from her home. After completing the homework, she is walking away from the base of a lamp-post at a speed of $1.2 \mathrm{~m} / \mathrm{s}$. The lamp post is 3.6 m above the ground and height of the girl is 90 cm (see below figure).

The distance of the girl from the base of the lamp post after 4 seconds:
A. 1.2
B. 3.6 m
C. 4.8 m
D. none of these

Answer: C

- View Text Solution

2. On one day, a poor girl is looking for a lamppost for completing her homework as in her area power is not there and she finds the same at some distance away from her home. After completing the homework, she is walking away from the base of a lamp-post at a speed of $1.2 \mathrm{~m} / \mathrm{s}$. The lamp post is 3.6 m above the ground and height of the girl is 90 cm (see below figure).

The correct similarity criteria appliable for triangles ABE and CDE is:
A. $A A$
B. SAS
C. SSS
D. AAS

- View Text Solution

3. On one day, a poor girl is looking for a lamppost for completing her homework as in her area power is not there and she finds the same at some distance away from her home. After completing the homework, she is walking away from the base of a lamp-post at a speed of $1.2 \mathrm{~m} / \mathrm{s}$. The lamp post is 3.6 m above the ground and height of the girl is 90 cm (see below figure).

The length of her shadow after 4 seconds is:
A. 1.2 m
B. 3.6 m
C. 4.8 m
D. none of these

Answer: D

- View Text Solution

4. On one day, a poor girl is looking for a lamppost for completing her homework as in her area power is not there and she finds the same at some distance away from her home. After completing the homework, she is walking away from the base of a lamp-post at a speed of $1.2 \mathrm{~m} / \mathrm{s}$. The lamp post is 3.6 m above the ground and height of the girl is 90 cm (see below figure).

Sides of two similar triangles are in the ratio $9: 16$. The ratio of corresponding area of these triangles.
A. $9: 16$
B. 3.4
C. $81: 256$
D. 18: 32

Answer: C

- View Text Solution

5. On one day, a poor girl is looking for a lamppost for completing her homework as in her area power is not there and she finds the same at some distance away from her home. After completing the homework, she is walking away from the base of a lamp-post at a speed of $1.2 \mathrm{~m} / \mathrm{s}$. The lamp post is 3.6 m above the ground and height of the girl is 90 cm (see below figure).

The ratio $A C$: $C E$. is:
A. $1: 3$
B. 3:1
C. 1: 4
D. $4: 1$

Answer: B

- View Text Solution

6. Two hotels are at the ground level on either side of a mountain.

On moving a certain distance towards the top of the mountain two huts are situated as shown in the figure. The ratio between the distance from hotel B to hut2 and that of hut-2 to mountain top is

3: 7.

What is the ratio of the perimeters of the triangle formed by both
hotels and mountain top to the triangle formed by both huts and mountain top?
A. $5: 2$
B. 10:7
C. 7:3
D. $3: 10$

Answer: B

- View Text Solution

7. Two hotels are at the ground level on either side of a mountain.

On moving a certain distance towards the top of the mountain two huts are situated as shown in the figure. The ratio between the distance from hotel B to hut2 and that of hut-2 to mountain top is 3: 7.

If distance between hut-1 and mountain top is 10 miles, then the distance between the hotel A and hut-1 is:
A. 2.5 miles
B. 29 miles
C. 4.29 miles
D. 1.5 miles

Answer: C

8. Two hotels are at the ground level on either side of a mountain.

On moving a certain distance towards the top of the mountain two huts are situated as shown in the figure. The ratio between the distance from hotel B to hut2 and that of hut-2 to mountain top is

3: 7.

If the horizontal distance between the hut- 1 and hut- 2 is 8 miles, then the distance between the two hotels is:
A. 2.4 miles
B. 11.43 miles
C. 9 miles
D. 7 miles

Answer: B

- View Text Solution

9. Two hotels are at the ground level on either side of a mountain.

On moving a certain distance towards the top of the mountain two huts are situated as shown in the figure. The ratio between the distance from hotel B to hut2 and that of hut-2 to mountain top is 3: 7.

Hut-1

If the distance from mountain top to hut-1 is 5 miles more than that of distance from hotel B to mountain top, then what is the distance between hut-2 and mountain top?
A. 3.5 miles
B. 6 miles
C. 5.5 miles
D. 4 miles

Answer: A

10. In the backyard of house, Shikha has some empty space in the shape of a $\triangle P Q R$. She decided to make it a garden. She divided the whole space into three parts by making boundaries $A B$ and $C D$ using bricks to grow flowers and vegetables where $A B\|C D\| Q R$ as shown in figure.

Based on the above information, answer the following questions:
The length of $A B$ is:
A. 3 m
B. 4 m
C. 5 m
D. 6 m

Answer: A

D View Text Solution

11. In the backyard of house, Shikha has some empty space in the shape of a $\triangle P Q R$. She decided to make it a garden. She divided the whole space into three parts by making boundaries $A B$ and $C D$ using bricks to grow flowers and vegetables where $A B\|C D\| Q R$ as shown in figure.

Based on the above information, answer the following questions:
The length of CD is:
A. 4 m
B. 5 m
C. 6 m
D. 7 m

Answer: D
12. In the backyard of house, Shikha has some empty space in the shape of a $\triangle P Q R$. She decided to make it a garden. She divided the whole space into three parts by making boundaries $A B$ and $C D$ using bricks to grow flowers and vegetables where $A B\|C D\| Q R$ as shown in figure.

Based on the above information, answer the following questions:

Area of whole empty land is:
A. $90 m^{2}$
B. $60 m^{2}$
C. $32 m^{2}$
D. $72 m^{2}$

Answer: A

- View Text Solution

Passage Based Questions

1. The foot of a ladder is 12 m away from a wall and its top reaches a window 5 m above the ground. The ladder is shifted in such a way that its top touches the roof which is 6 m above the window.

Based on the given information, answer the following questions :
What is the length of the ladder?

- View Text Solution

2. The foot of a ladder is 12 m away from a wall and its top reaches a window 5 m above the ground. The ladder is shifted in such a way that its top touches the roof which is 6 m above the window.

Based on the given information, answer the following questions :
How much the foot of ladder is shifted towards the wall, so that the top of ladder touches the roof?

- View Text Solution

3. An aeroplane leaves an airport and flies due North at a speed of

1000 km per hour. At the same time, another aeroplane leaves the same airport and flies due West at a speed of 1200 km per hour.

Based on the following information, answer the following

questions:

How far apart will be the planes after $1 \frac{1}{2}$ hour?

- View Text Solution

4. An aeroplane leaves an airport and flies due North at a speed of

1000 km per hour. At the same time, another aeroplane leaves the same airport and flies due West at a speed of 1200 km per hour.

Based on the following information, answer the following questions:

If the speed of first plane is 1600 km per hour, then find the distance between two planes after $1 \frac{1}{2}$ hours?

- View Text Solution

5. An aeroplane leaves an airport and fies due North at a speed of

1000 km per hour. At the same time, another aeroplane leaves the
same airport and flies due West at a speed of 1200 km per hour.

Based on the following information, answer the following questions:

If second plane flies in the South direction, then how far apart will be the planes after 1 hour?

- View Text Solution

6. Two spotlights, P and Q are mounted on a vertical pole $A B$, as shown below. Light beams from P and Q shine on two points on the ground, H and K respectively. Distance between two spotlights is 16 m , horizontal distance between first shine point and vertical pole is 16 m , distance of spotlight P and Q to its shine points on ground H and K is 35 m and 20 m respectively.

Based on the following information, answer the following questions :

The height above the ground at which the spotlight Q is mounted.

- View Text Solution

7. Two spotlights, P and Q are mounted on a vertical pole $A B$, as shown below. Light beams from P and Q shine on two points on the ground, H and K respectively. Distance between two spotlights is 16 m , horizontal distance between first shine point and vertical pole is

16 m , distance of spotlight P and Q to its shine points on ground H and K is 35 m and 20 m respectively.

Based on the following information, answer the following questions :

The distance between the projections of the light beams.

- View Text Solution

1. $A B C D$ is a trapezium, in which $A B \| C D$ and $A B=2 C D$. Determine the ratio of the areas of $\triangle A O B$ and $\triangle C O D$.

- View Text Solution

2. D and E are points on the sides AB and AC respectively of $\triangle A B C$ such that $\mathrm{DE}|\mid \mathrm{BC}$ and divides $\triangle A B C$ into two parts, equal in area. Find $\frac{B D}{A B}$.

- View Text Solution

3. A guy wire attached to a vertical pole of height 18 m is 24 m long hand has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?
4. An aeroplane leaves an airport and flies due north at speed of $1000 \mathrm{~km} / \mathrm{hr}$. At the same time, another plane leaves due west at a speed of $1200 \mathrm{~km} / \mathrm{hr}$. How far apart will the two planes be after 1 hour and 30 minute?

- View Text Solution

