

MATHS

BOOKS - AGRAWAL PUBLICATION

INTRODUCTION TO TRIGNOMETRY AND ITS APPLICATIONS

1. Prove that:

 $\frac{\cot\theta + \cos ec\theta - 1}{\cot\theta - \cos ec\theta + 1} = \frac{1 + \cos\theta}{\sin\theta}$

3. If $\sin \theta + \cos \theta$ = $\sqrt{3}$, then prove that

 $an heta + \cot heta$ = 1.

Watch Video Solution

4. Prove that:
$$(\sin^4 \theta - \cos^4 \theta + 1) \cos ec^2 \theta$$
 = 2.

6. If tan A =
$$\frac{3}{4}$$
, then prove that sin A cos A = $\frac{12}{25}$

Watch Video Solution

10. A ladder 15 metres long just reaches the top of a vertical wall. If the ladder makes an angle of 60° with the wall, find the height of the wall.

15. A player sitting on the top of a tower of height 20 m observes the angle of depression of a ball lying on the ground as 60° . Find the distance between the foot of the tower and the ball. $(Take\sqrt{3} = 1.732)$.

16. Using the formula $\cos 2\theta = 2\cos^2 \theta - 1$, find the value of $\cos 30^{\circ}$, it is being given that $\cos 60^{\circ} = 1/2$.

17. If $\sin\theta + \cos\theta = \sqrt{3}$, then prove $\tan\theta + \cot\theta = 1$.

18. Prove that following identity:

$$\frac{\cos A}{1+\sin A} + \frac{1+\sin A}{\cos A} = 2 \sec A$$

Watch Video Solution

19. Prove that $\sec^2 heta + \csc^2 heta = \sec^2 heta \csc^2 heta$

Watch Video Solution

20. If $2\sin^2\theta - \cos^2\theta$ = 2, find the value of θ .

21. The shadow of a tower standing on a level plane is found to be 50 m longer when the Sun's elevation is 30° than when it is 60° . The height of the tower is

Watch Video Solution

22. From a window, 15 m high above the ground, the angles of elevation and depression of the top the foot of a house on the opposite side of the street are 30° and 45° , repectively,

find the height of the opposite house.

 $\left(Use\sqrt{3}=1.732
ight)$

Watch Video Solution

23. A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° is 2 minutes. Find the speed of the boat in m/hr.

24. An observer 1.5 m tall is $20\sqrt{3}m$ away from a chimney. The angle of elevation from the top of the chimney from his eyes is 30° and from bottom is 45° . Find the height of the chimney.

25. Two men on either side of a tower 75 m high observe the angle of elevation of the top of the tower to be 30° and 60°. What is the distance between the two men ?

26. The angles of depression of the top and bottom of a 50 m high building from the top of a tower are 45° and 60° , respectively. Find the height of the tower and the horizontal distance between the tower and the building. $(Use\sqrt{3} = 1.73)$

Watch Video Solution

27. A man standing on the deck of a ship, which

is 10 m above water level, observes the angle of

elevation of the top of a hil as 60° and the angle of depression of the base of hill as 30° . Find the distance of the hill from the ship and the height of the hill.

28. A statue 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of

elevation of the top of the pedestal is $45^{\,\circ}$. Find

the height of the pedestal. $(Use\sqrt{3}=1.73)$

29. The angle of elevation of an aeroplane from a point A on the ground is 60° . After a flight of 15 seconds, the angle of elevation changes to 30° . If the aeroplane is flying at a constant height of $1500\sqrt{3}$ of the plane in km/hr.

30. From the top of a 7 m building, the angle of elevation of a top of a cable tower is 60° and the angle of depression of its foot is 45° . Determine the height of the tower. $(Use\sqrt{3} = 1.73)$

Watch Video Solution

31. The angle of elevation of the top of a tower from a certain point is 30° . If the observer moves 20 metres towards the tower, the angle

of elevation of the top increases by $15^{\circ}.$ Find

the height of the tower.

32. A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30° , which is approaching the foot of the tower with a uniform speed. After covering a distance of 50 m, the angle of derpession of the car

becomes 60° find the height of the tower.

 $(Use\sqrt{3}=1.73).$

Watch Video Solution

33. The angle of elevation of the top of a building from the foot of a tower is 30° and the angle of elevation of the top of a tower from the foot of the building is 60° . If the tower is 50 m high, then find the height of the building.

34. If $1 + \sin^2 \theta = 3 \sin \theta \cos \theta$, then prove that $\tan \theta = 1$ or 1/2.

Watch Video Solution

35. From a point on the ground the angles of elevation of the bottom and the top of a tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower.

36. A vertical tower stands on a horizontal plane and is surmounted by a vertical flag-staff is height 6 m. At a point on the plane, the angle of elevation of the bottom and top of the flag-staff are 30° and 45° respectively. Find the height of the tower. $(take\sqrt{3} = 1.73)$

Watch Video Solution

37. From a point on the ground, the angles of elevation of the bottom and the top of a

transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower. $\left(Use\sqrt{3}=1.73
ight)$

Watch Video Solution

38. A boy standing on a horizontal plane find that angle of elevation of a bird 100 meter away from him at 30° . A girl standing at a house 20 meter above the plane find that elevation of the bird is 45° . If boy and girl are in the opposite direction find the distance

between the bird and the girl.

40. The angle of elevation of an aeroplane from a point A on the ground is 60° . After a flight of

30 seconds, the angle of elevation changes to 30° . If the aeroplane is flying at a constant height of $3600\sqrt{3}metres$ find the speed of the aeroplane.

42. If $\sec \theta + \tan \theta = m$, show that $\frac{m^2 - 1}{m^2 + 1} =$

 $\sin \theta$.

Watch Video Solution

43. A moving boat is observed from the top of a 150 m high cliff moving away from it. The angle of depressioin of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in 'm' min.

44. A ladder rests against a vertical wall at an inclination α to the horizontal, its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an $\angle \beta$ to the horizontal. show that $\frac{p}{q} = \frac{\cos \beta - \cos \alpha}{\sin \alpha - \sin \beta}$

Watch Video Solution

45. There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole,

the angles of depression at the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and the height of the other pole.

46. Amit, standing on a horizontal plane, finds a bird flying at a distance of 200 m from him at an elevation of 30° . Deepak standing on the roof of a 50m high building, finds the angle of elevation of the same bird to be 45° . Amit and

Deepak are on the opposite sides of the bird.

Find the distance of the bird from Deepak.

48. The lower window of a house is at a height of 2 m above the ground and its upper window

is 4 m vertically above the lower window. At certain distance the angles of elevation of a balloon from these window are observed to be 60° and 30° , respectively. Find the height of the balloon above the ground.

51. A man in a boat rowing away form a light house 100 m hight takes 2 minutes to change the angle of elevation of the top of the light house from 60° to 30° . Find the speed of the boat in metres per minute. $(Use\sqrt{3} = 1.732)$

Watch Video Solution

52. Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30° , respectively. Find the height of the poles and the distances of the point from the poles.

Watch Video Solution

53. The shadow of a tower at a time is three times as long as its shadow when the angle of

elevation of the sun is $60^\circ.$ Find the angle of

elevation of the sun of the longer shadow.

tower. A man standing on its top observes a car

at an angle of depression of 30° , which is approaching the foot of the tower with a unifrom speed. 6 seconds later, the angle of depression of the car becomes 60° . Find the time taken by the car to reach the foot of the tower from this point.

Watch Video Solution

56. The angle of elevation of a cloud from a point 60 m above the surface of the water of a lake is 30° and the angle of depression of its

shadow in water of lake is $60^{\,\circ}$. Find the height

of the cloud from the surface of water.

57. From a point P on the ground, the angles of elevation of the top of a 10 m tall building and a helicopter, at some height vertically over the top the building are 30° and 60° respectively. Find the height of the helicopter above the ground.

58. A 1.6 m tall boy is standing at some distance from a 40 m tall building. The angle of elevation from his eyes to the top of the building increases from 30° to 60° as the walks towards the building. Find the distance he walked towards the building.

Watch Video Solution

59. From the top of a 120 m high tower, a man observes two cars on the opposite sides of the

tower and in straight line with the base of tower the angles of pression as 60° and 45° . Find the distance between two cars.

A.

Β.

C.

D.

Answer:

Watch Video Solution

60. A vertical tower stands on a horizontal plane and its surmounted by a flagstaff of height 5 m. From a point on the ground the angles of elevation of the top and bottom of the flagstaff are 60° and 30° respectivley. Find the height of the tower and the distance of the point from the water. $(take\sqrt{3} = 1.732)$

Watch Video Solution

61. At a point A, 20 metres above the level of water in a lake, the angle of elevation of a

cloud is 30° . The angle of depression of the reflection of the cloud in the lake, at A is 60° . Find the distance of the cloud from A.

Watch Video Solution

62. A bird is sitting on the top of a 80 m high tree. From a point on the ground, the angle of elevation of the bird is 45° . The bird flies away horizontally in such a way that it remained at a constant height from the ground. After 2 seconds, the angle of elevation of the bird from

the same point is 30° . Find the speed of the

height of the bird. $(Take\sqrt{3}=1.732)$

63. From the top of a lighthouse. 100 m high,

the angle of depression of two ships are 30^o

and 45^o, if both ships are on same side find

the distance between the ships ?

