©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - AGRAWAL PUBLICATION

INTRODUCTION TO TRIGNOMETRY

AND ITS APPLICATIONS

Example

1. Prove that:
$\frac{\cot \theta+\operatorname{cosec} \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}=\frac{1+\cos \theta}{\sin \theta}$

- Watch Video Solution

2. Prove that
$2\left(\sin ^{6} \theta+\cos ^{6} \theta\right)-3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+1=0$

(D) Watch Video Solution

3. If $\sin \theta+\cos \theta=\sqrt{3}$, then prove that $\tan \theta+\cot \theta=1$.
4. Prove that: $\left(\sin ^{4} \theta-\cos ^{4} \theta+1\right) \cos e c^{2} \theta=2$.

D Watch Video Solution

5. Prove that: $\frac{2 \cos ^{3} \theta-\cos \theta}{\sin \theta-2 \sin ^{3} \theta}=\cot \theta$

(Watch Video Solution

6. If $\tan \mathrm{A}=\frac{3}{4}$, then prove that $\sin \mathrm{A} \cos \mathrm{A}=\frac{12}{25}$

D Watch Video Solution
7. $\frac{\tan \theta}{1-\tan \theta}-\frac{\cot \theta}{1-\cot \theta}=\frac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}$

- Watch Video Solution

8.

$\cos \theta+\sin \theta=\sqrt{2} \cos \theta$, then $\cos \theta-\sin \theta$
is

D Watch Video Solution
9.
Prove
that
$(\sin \theta+1+\cos \theta)(\sin \theta-1+\cos \theta) \cdot \sec \theta \cos e c \theta$
$=2$

- Watch Video Solution

10. A ladder 15 metres long just reaches the top
of a vertical wall. If the ladder makes an angle of 60° with the wall, find the height of the wall.

D Watch Video Solution

11. Prove
that:
$\sqrt{\frac{\sec \theta-1}{\sec \theta+1}}+\sqrt{\frac{\sec \theta+1}{\sec \theta-1}}=2 \operatorname{cosec} \theta$

- Watch Video Solution

12.

Prove
that
$(\sin \theta+\operatorname{cosec} \theta)^{2}+(\cos \theta+\sec \theta)^{2}$
$7+\tan ^{2} \theta+\cot ^{2} \theta$.

D Watch Video Solution
13.

Prove
that:
$(1+\cot \theta-\operatorname{cosec} \theta)(1+\tan \theta+\sec \theta)=2$

$$
\text { 14. If } 4 \tan \theta=3 \text {, evaluate } \frac{4 \sin \theta-\cos \theta+1}{4 \sin \theta+\cos \theta-1}
$$

D Watch Video Solution

15. A player sitting on the top of a tower of height 20 m observes the angle of depression of a ball lying on the ground as 60°. Find the distance between the foot of the tower and the ball. $($ Take $\sqrt{3}=1.732)$.

D Watch Video Solution

16. Using the formula $\cos 2 \theta=2 \cos ^{2} \theta-1$, find
the value of $\cos 30^{\circ}$, it is being given that $\cos 60^{\circ}=1 / 2$.

(Watch Video Solution

17. If $\sin \theta+\cos \theta=\sqrt{3}$, then prove $\tan \theta+\cot \theta=1$.

- Watch Video Solution

18. Prove that following identity:
$\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec \mathrm{~A}$

D Watch Video Solution

19. Prove that $\sec ^{2} \theta+\operatorname{cosec}^{2} \theta=\sec ^{2} \theta \operatorname{cosec}^{2} \theta$

D Watch Video Solution
20. If $2 \sin ^{2} \theta-\cos ^{2} \theta=2$, find the value of θ.
21. The shadow of a tower standing on a level plane is found to be 50 m longer when the Sun's elevation is 30° than when it is 60°. The height of the tower is

- Watch Video Solution

22. From a window, 15 m high above the ground, the angles of elevation and depression of the top the foot of a house on the opposite side of the street are 30° and 45°, repectively,
find the height of the opposite house.
$(U s e \sqrt{3}=1.732)$

- Watch Video Solution

23. A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° is 2 minutes. Find the speed of the boat in m / hr.
24. An observer 1.5 m tall is $20 \sqrt{3} \mathrm{~m}$ away from
a chimney. The angle of elevation from the top of the chimney from his eyes is 30° and from bottom is 45°. Find the height of the chimney.

. Watch Video Solution

25. Two men on either side of a tower 75 m
high observe the angle of elevation of the top of the tower to be 30° and 60°. What is the distance between the two men ?
26. The angles of depression of the top and bottom of a 50 m high building from the top of a tower are 45° and 60°, respectively. Find the height of the tower and the horizontal distance between the tower and the building.
$(U s e \sqrt{3}=1.73)$

- Watch Video Solution

27. A man standing on the deck of a ship, which
is 10 m above water level, observes the angle of
elevation of the top of a hil as 60° and the angle of depression of the base of hill as 30°.

Find the distance of the hill from the ship and the height of the hill.

D Watch Video Solution

28. A statue 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of
elevation of the top of the pedestal is 45°. Find the height of the pedestal. $(U s e \sqrt{3}=1.73)$

D Watch Video Solution

29. The angle of elevation of an aeroplane from a point A on the ground is 60°. After a flight of

15 seconds, the angle of elevation changes to
30°. If the aeroplane is flying at a constant height of $1500 \sqrt{3}$ of the plane in $\mathrm{km} / \mathrm{hr}$.

- Watch Video Solution

30. From the top of a 7 m building, the angle of elevation of a top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower. $(U s e \sqrt{3}=1.73)$

D Watch Video Solution

31. The angle of elevation of the top of a tower from a certain point is 30°. If the observer moves 20 metres towards the tower, the angle
of elevation of the top increases by 15°. Find the height of the tower.

- Watch Video Solution

32. A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30°
, which is approaching the foot of the tower with a uniform speed. After covering a distance of 50 m , the angle of derpession of the car
becomes 60°.find the height of the tower.
$(U s e \sqrt{3}=1.73)$.

(Watch Video Solution

33. The angle of elevation of the top of a building from the foot of a tower is 30° and the angle of elevation of the top of a tower from the foot of the building is 60°. If the tower is 50 m high, then find the height of the building.
34. If $1+\sin ^{2} \theta=3 \sin \theta \cos \theta$, then prove that $\tan \theta=1$ or $1 / 2$.

- Watch Video Solution

35. From a point on the ground the angles of elevation of the bottom and the top of a tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower.
36. A vertical tower stands on a horizontal
plane and is surmounted by a vertical flag-staff
is height 6 m . At a point on the plane, the angle
of elevation of the bottom and top of the flag-
staff are 30° and 45° respectively. Find the height of the tower. $(\operatorname{take} \sqrt{3}=1.73)$

D Watch Video Solution

37. From a point on the ground, the angles of elevation of the bottom and the top of a
transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower. $(U s e \sqrt{3}=1.73)$

- Watch Video Solution

38. A boy standing on a horizontal plane find
that angle of elevation of a bird 100 meter away from him at 30°. A girl standing at a house 20 meter above the plane find that elevation of the bird is 45°. If boy and girl are
in the opposite direction find the distance between the bird and the girl.

D Watch Video Solution

39. If $\sin \theta+\cos \theta=p$ and $\sec \theta+\operatorname{cosec} \theta=q$,
then prove that $q\left(p^{2}-1\right)=2 \mathrm{p}$.

- Watch Video Solution

40. The angle of elevation of an aeroplane from
a point A on the ground is 60°. After a flight of

30 seconds, the angle of elevation changes to 30°. If the aeroplane is flying at a constant height of $3600 \sqrt{3}$ metres find the speed of the aeroplane.

D Watch Video Solution

41. Prove that:
$\frac{(1+\cot \theta+\tan \theta)(\sin \theta-\cos \theta)}{\sec ^{3} \theta-\operatorname{cosec} e}=$
$\sin ^{2} \theta \cos ^{2} \theta$.
(Watch Video Solution
42. If $\sec \theta+\tan \theta=m$, show that $\frac{m^{2}-1}{m^{2}+1}=$ $\sin \theta$.

D Watch Video Solution

43. A moving boat is observed from the top of a

150 m high cliff moving away from it. The angle of depressioin of the boat changes from 60° to
45° in 2 minutes. Find the speed of the boat in 'm' min.
44. A ladder rests against a vertical wall at an inclination α to the horizontal, its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an $\angle \beta$ to the horizontal. show that $\frac{p}{q}=\frac{\cos \beta-\cos \alpha}{\sin \alpha-\sin \beta}$

- Watch Video Solution

45. There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole,
the angles of depression at the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and the height of the other pole.

- Watch Video Solution

46. Amit, standing on a horizontal plane, finds a bird flying at a distance of 200 m from him at an elevation of 30°. Deepak standing on the roof of a 50 m high building, finds the angle of elevation of the same bird to be 45°. Amit and

Deepak are on the opposite sides of the bird.

Find the distance of the bird from Deepak.

(Watch Video Solution

47. Prove that:
$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$

D Watch Video Solution

48. The lower window of a house is at a height of 2 m above the ground and its upper window
is 4 m vertically above the lower window. At certain distance the angles of elevation of a balloon from these window are observed to be 60° and 30°, respectively. Find the height of the balloon above the ground.

- Watch Video Solution

49. Prove that:
$\frac{\sin \theta}{\cot \theta+\operatorname{cosec} \theta}=2+\frac{\sin \theta}{\cot \theta-\operatorname{cosec} \theta}$
50. Prove that $\frac{\sin A-\cos A+1}{\sin A+\cos A-1}$
$\overline{\sec A-\tan A}$

D Watch Video Solution

51. A man in a boat rowing away form a light house 100 m hight takes 2 minutes to change the angle of elevation of the top of the light house from 60° to 30°. Find the speed of the boat in metres per minute. $(U s e \sqrt{3}=1.732)$

Watch Video Solution

52. Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between
them on the road, the angles of elevation of
the top of the poles are 60° and 30°, respectively. Find the height of the poles and the distances of the point from the poles.

D Watch Video Solution

53. The shadow of a tower at a time is three
times as long as its shadow when the angle of
elevation of the sun is 60°. Find the angle of elevation of the sun of the longer shadow.

- Watch Video Solution

54. Prove that:
$\frac{\sin A-2 \sin ^{3} A}{2 \cos ^{3} A-\cos A}=\tan \mathrm{A}$

(Watch Video Solution

55. A straight highway leads to the foot of a tower. A man standing on its top observes a car
at an angle of depression of 30°, which is approaching the foot of the tower with a unifrom speed. 6 seconds later, the angle of depression of the car becomes 60°. Find the time taken by the car to reach the foot of the tower from this point.

- Watch Video Solution

56. The angle of elevation of a cloud from a point 60 m above the surface of the water of a lake is 30° and the angle of depression of its
shadow in water of lake is 60°. Find the height of the cloud from the surface of water.

(Watch Video Solution

57. From a point P on the ground, the angles of elevation of the top of a 10 m tall building and a helicopter, at some height vertically over the top the building are 30° and 60° respectively.

Find the height of the helicopter above the ground.
58. A 1.6 m tall boy is standing at some distance
from a 40 m tall building. The angle of elevation from his eyes to the top of the building increases from 30° to 60° as the walks towards the building. Find the distance he walked towards the building.

- Watch Video Solution

59. From the top of a 120 m high tower,a man observes two cars on the opposite sides of the
tower and in straight line with the base of tower the angles of pression as 60° and 45°. Find the distance between two cars.
A.
B.
C.
D.

Answer:

60. A vertical tower stands on a horizontal
plane and its surmounted by a flagstaff of height 5 m . From a point on the ground the angles of elevation of the top and bottom of the flagstaff are 60° and 30° respectivley. Find the height of the tower and the distance of the point from the water. $($ take $\sqrt{3}=1.732)$

D Watch Video Solution

61. At a point A, 20 metres above the level of water in a lake, the angle of elevation of a
cloud is 30°. The angle of depression of the reflection of the cloud in the lake, at A is 60°. Find the distance of the cloud from A.

- Watch Video Solution

62. A bird is sitting on the top of a 80 m high
tree. From a point on the ground, the angle of elevation of the bird is 45°. The bird flies away horizontally in such a way that it remained at a
constant height from the ground. After 2 seconds, the angle of elevation of the bird from
the same point is 30°. Find the speed of the height of the bird. $($ Take $\sqrt{3}=1.732)$

- Watch Video Solution

63. From the top of a lighthouse. 100 m high, the angle of depression of two ships are $30^{\wedge} \mathrm{o}$ and 45^{\wedge} o, if both ships are on same side find the distance between the ships ?

D Watch Video Solution

