

MATHS

BOOKS - AGRAWAL PUBLICATION

Sample paper 11

Exercise

- 1. Without performing actual division, check if
- $\frac{17}{30}$ is a terminating decimal.

2. Find the value of x so that the distance between the points (-3,4) and (x,-4) is 10 units.

Watch Video Solution

3. The veticles of an equilateral triangle ABC are (0,0)(0,y) and $(3,\sqrt{3})$, then find the value of y.

4. Define the mode of a frequency distribution and give the formula used in computing the mode of a grouped frequency distribution.

Watch Video Solution

5. A right triangle has hypotenuse of length p cm and one side of length q cm . If p-q = 1, find the length of the third side of the triangle.

A.

Β.

C

D.

Answer:

Watch Video Solution

6. If a hexgon ABCDEF circumscribes a circle then show that AB+CD+EF =BC+DE+FA,

7. Three identical cubes each of volume 27 cu cm are joined together end to end. What are the dimesions of the resulting cuboid?

Watch Video Solution

8. If a chord of a circle of radius 'r' subtends a right angle at the centre of the circle, then determine the area of the correspondin segment?

9. What is the volume of the material in a spherical shell with inner radius 'r' and outer radius 'R'?

Watch Video Solution

10. If an heta=1, then calculate the value of $\sec heta + \cos ec heta.$

11. If `3tan^2 x = 1(0^@

Watch Video Solution

12. What is the positive real root of $64x^2 - 1 = 0$?

13. The base radii of two cylinders are in the ratio 2:3 and their heights are in the ratio 5:3.

The ratio of their volumes is:

14. If α and β be the zeros of the quadratic polynomial $2x^2+5x+1$ then calculate the value of $\alpha+\beta+\alpha\beta$?

Watch Video Solution

15. What is middle value of a class interval which lies between true upper limit and true lower limit called?

16. An integer is chosen at random between 1 and 100 . Find the probability that chosen number is divisible by 10.

17. In the figure.If $\frac{\mathrm{OA}}{\mathrm{OD}} = \frac{\mathrm{OC}}{\mathrm{OB}}$, then

which pair of angle are equal?

Watch Video Solution

18. Check if 0.2 is a root of the equatin

$$x^2 - 0.4 = 0.$$

Watch Video Solution

19. If 6 times the 6^{th} term of the A.P is equal to 9 times the 9^{th} term, then find its 15^{th} term.

Watch Video Solution

20. Find the soluton of the following pair of equation: x-3y = 2, 3x-y = 14

21. The chord of a circle of radius 8 cm subtends a right angle at its centre. Find the length of the chord.

Watch Video Solution

22. Formula one Portugese Grand Prix technical team at the Algarve International Circuit are analysing last year data of drives's performance to provide valuable inference to commentators on how the drives can improve this year.

· · · · · · · · · · · · · · · · · · ·	uppor staff	Lap errors	**	Support staff	Lap
Ferrari	36	41 (13%)	Farce India	36	36 (11%)
Mercedes	36	61 (19%)	Toro Rosso	36	23 (7%)
Red Bull Racing	36	52 (16%)	Renault	36	16 (5%)
McLaren	36	31 (9%)	Sauber	36	13 (4%)
Williams	36	33 (10%)	Hoos	.`	19 (6%)

The length of time taken by 80 drives to complete a journey is given in the table below:

Times (in minutes)	70-80	80-90	90-100	100-110	110-120	120-130
Number of drivers	4	10	14	20	24	8

In which interval does the median of the distribution lie?

A. 80-90

B. 90-100

C. 100-110

D. 110-120

Answer:

Watch Video Solution

23. Google maps cartography team is working on improving the scalability quality of maps when you use the app on your phones to zoom in using 4 fingers. They are using a proprietary tool called "MapMaker' to figure out scalability factors. A mathematical model

is created for a type of object (below crosssection) to test its scalability on maps app.

In the diagram, AC=8cm, CE=4cm and the area of the triangle BEC is 4.2 sq cm. Another enlargement with centre E, maps ΔEBC onto $\Delta EFA, BC=3.6cm$

The area of ΔABC is:

- A. 4.2 sq cm
- B. 6.3 sq cm
- C. 8.4 sq cm
- D. 12.6 sq cm

Answer:

24. Find the HCF and the LCM of 72 and 120, using prime factorisation method.

Watch Video Solution

25. Write a pair of equations in variables x and y which is consistent with

- (A) unique solution
- (B) infinitely many solution

26. Write a pair of equations in variables x and

y which is consistent with

- (A) unique solution
- (B) infinitely many solution

Watch Video Solution

27. In an AP, if a = 1, a_n = 20 and S_n = 399, then n is equal to

28. The verticles of an equilateral triangle ABC are (0, 0), (0, y) and $(3, \sqrt{3})$, then find the value of y

Watch Video Solution

29. If $\cos heta + \sin heta = \sqrt{2} \cos heta$, then prove that $\cos \theta - \sin \theta = \sqrt{2} \sin \theta$

30. In the figure, chord AB subtends an angle of 60° at the centre of the circle of radius 3.5 cm. Find the (a) length of the arc APB (b) the area of the sector AOB (C) area of the minor segment (Shaded region) (use $\sqrt{3}=1.73$)

31. If $\sin \theta + \cos \theta = p$ and $\sec \theta + \csc \theta = q$, then prove that $qig(p^2-1ig) = 2p$.

Watch Video Solution

32. 7. Let A (4,2) B(6.,5) and C(1.,4). be the vertices of ΔABC . (1) The median from A meets BC at D. Find the coordinates of the point D. (2) the coordinates of the point P on AD such that AP:PD=2:1. (3) Find the coordinates of points Q and R on medians BE

and CF respectively such that BQ: QE = 2:1

and CR: RF = 2:1. (4) what do yo observe?

Watch Video Solution

33. One card is drawn from a pack of 52 cards, each of the 52 cards being equally likely to be drawn. Find the probability that the card drawn is black.

34. One card is drawn from a pack of 52 cards, each of the 52 cards being equally likely to be drawn. Find the probability that the card drawn is either black or a queen.

Watch Video Solution

35. One card is drawn from a pack of 52 cards, each of the 52 cards being equally likely to be drawn. Find the probability that the card drawn is black and a queen.

Watch Video Solution

36. In figure ABC and DBC are two triangles on the same base BC. If AD intersects BC at O, show that $\frac{ar(ABC)}{ar(DBC)}=\frac{AO}{DO}$.

Watch Video Solution

37. Prove that the line segments joining the mid-points of the sides of a triangle from four triangles, each of which is similar to the original triangle.

38. Verify that 2,1,1 are the zeros of the polynomial x^3-4x^2+5x-2 . Also, verify the relationship between the zeroes and the coefficients

39. If $x=2^2\times 3^3\times 7^2, y=2^3\times 3^2\times 5\times 7$, then find HCF (x,y)

40. What is the HCF of the smallest prime number and the smallest composite number?

Watch Video Solution

41. IF α, β are the zeroes of the polynomial $5x^2-7x+2$ then the sum of their reciprocal is:

42. If the lines represented by 3x + 2py = 2and 2x + 5y + 1 = 0 are parallel, then find the value of p.

- **43.** Find the 10^{th} term form the end of the A.P .

44. Solve for x and y y, x + y = 3 and

7x + 6y = 2.

Watch Video Solution

45. Find a quadratic polynomial whose zeroes are -3 and 5.

46. For what values of 'a' does the quadratic equation $x^2 - ax + 1 = 0$ not have real roots?

Watch Video Solution

47. If p and q are the roots of the quadratic equation $x^2+px-q=0$, then find the values of p and q.

48. Which term of the AP 21, 42, 63, 84,.. Is 210?

Watch Video Solution

49. Find distance between the points (0, 5) and (-5, 0)

Watch Video Solution

50. What is the distance between two parallel tangents to a circle of radius 5 cm?

51. In the figure, $\angle APB=90^{\circ}$. Find the length of OP.

52. $\triangle ABC \sim \triangle DEF$ such that DE = 3 cm , EF = 2 cm , DF = 2.5 and BC = 4 cm . Find the perimeter of ΔABC .

Watch Video Solution

53. If $\csc\theta - \cot\theta = \frac{1}{3}$, then the value of $\csc\theta + \cot\theta$ is:

54. If ΔABC is right angled at C, then the value of $\cos(A+B)$ is

Watch Video Solution

55. A wire is in the shape of a circle of radius 21 cm. It is bent to form a square. The side of the square is : $\left(\pi = \frac{22}{7}\right)$

56. If the area of three adjacent faces of a cuboid are X, Y and Z respectively, then find the volume of cuboid.

Watch Video Solution

57. A crane stands on a level ground. It is represented by a tower ABCD, of height 11 m and a jib BR. The ib is of length 20 m and can rotate in a vertical plane about B.A vertical cable, RS, carries a load S. the diagram shows

current position of the jib, cable and load.

The length BS is

A. 8m

B. 12m

C. 13.9m

D. 17.9 m

Answer:

58. A crane stands on a level ground. It is represented by a tower ABCD of height 11 m and BR. The ib is of length 20 m and can rotate in a vertical plane about B.A vertical cable, RS, carries a load S. the diagram shows current position of the jib, cable and load.

The angle that the jib, BR, makes with the horizontal, is

- A. $45^{\,\circ}$
- B. 30°
- C. 60°
- D. 75°

Answer:

59. A crane stands on a level ground. It is represented by a tower ABCD, of height 11 m and a jib BR. The Jib is of length 20 m and can rotate in a vertical plane about B.A vertical cable, RS, carries a load S. the diagram shows current position of the jib, cable and load.

The measure of the angles BRS, is

B. 75°

C. 30°

D. 45°

Answer:

Watch Video Solution

60. NITI aayog has tasked their statistical officer to create a model for farmers to be able to predict their produce output based on various factors.

To test the model out, the officer picked a local farmer who sells apples to check various factors like weight, bad apples, half-cooked, green vs red etc.

A box containing 250 apples was opened and each apple was weighed.

The distribution of the masses of the apples is given in the following table:

Mass (in grams)	80-100	100-120	120-140	140-160	160-180
Frequency	20	60	70	р	60

The value of p is

- A. 50
- B. 40
- C. 35
- D. 45

Answer:

61. NITI aayog has tasked their statistical officer to create a model for farmers to be able to predict their produce output based on various factors.

To test the model out, the officer picked a local farmer who sells apples to check various factors like weight, bad apples, half-cooked, green vs red etc.

A box containing 250 apples was opened and each apple was weighed.

The distribution of the masses of the apples is given in the following table:

Mass (in grams)	80-100	100-120	120-140	140-160	160-180
Frequency	20	60	70	р	60

The lower limit of the modal class is

A. 80

B. 100

C. 120

D. 140

Answer:

Watch Video Solution

62. Show that $3+\sqrt{5}$ is an irrational number, assuming that $\sqrt{5}$ is an irrational number.

63. Without actually performing the long divison, find if $\frac{987}{10500}$ will have terminating or non-terminating (repeating) decimal expansion. Give reasons for your answer

Watch Video Solution

64. Prove that the points (a,b+c),(b,c+a) and (c,a+b) are collinear.

65. Two opposite vertices of a square are $(-1,\ 2)$ and $(3,\ 2)$. Find the coordinates of other two vertices.

Watch Video Solution

66. In the figure, OABC is a rhombus, where O is the origin.

Write down the coordinates of B in terms of a, s and t.

67. ABC is an isosceles triangle in which AB = AC. Prove that the tangent to the circum-circle at A is parallel to BC.

68. In an acute angled
$$\Delta ABC$$
, $\sec(B+C-A)=2$ and $\tan(C+A-B)=\frac{1}{\sqrt{3}}$. Find the three angles of ΔABC .

69. Find the area of the shaded region in the given figure, if ABCD is a square of side 14 cm

and APD and BPC are semicircles.

70. Show that 12^n cannot end with the digits 0 or 5 for any natural number n

71. Which term of the AP -2, -7, -12, ... will be -77? Find the sum of this AP upto the term -77.

Watch Video Solution

72. 5 books and 7 pens together cost Rs 434, whereas 7 books and 5 pens together cost Rs 550, find the total cost of 1 book and 2 pens.

73.

$$(\tan A)(1+\sec A)-rac{\tan A}{1-\sec A}=2\cos ecA$$

Watch Video Solution

74. If
$$\sin\theta=\frac{12}{13}$$
, find the value of
$$\frac{\sin^2\theta-\cos^2\theta}{2\sin\theta\cos\theta}-\frac{1}{\tan^2\theta}.$$

75. If the zeros of the polynomial $f(x) = ax^3 + 3bx^2 + 3cx + d$ are in A.P. then show that $2b^3 - 3abc + a^2d = 0$

Watch Video Solution

76. From the top of a tower h m high, angles of depression of two objects, which are in line with the foot of the tower are lpha and $\beta(\beta > \alpha)$. Find the distance between the two objects.

Watch Video Solution

77. Two tangents TP and TQ are drawn to a circle with centre O from an external point T . Prove that $\angle PTQ = 2\angle OPQ$.

Watch Video Solution

78. Prove that the area of the semicircle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the

semicircles drawn on the other two sides of the triangle

