©゙" doubtnut

MATHS

BOOKS - AGRAWAL PUBLICATION

SAMPLE PAPER 4

Exercise

1. What is the common zero of the polynomial
$x^{3}+1, x^{2}-1$ and $x^{2}+2 x+1 ?$
2. If $p, 2 p-1,2 p+1$ are three consecutive terms of an A.P., then what is the value of p ?

(D) Watch Video Solution

3. In which quadrant does the point $(-1,-2)$ lie?
(D) Watch Video Solution
4. The perimeter of a tringle with vertices (0,4),
$(0,0)$ and $(3,0)$ is

D Watch Video Solution

5. If radii of two concentric circles are 4 cm and 5
cm, then length of each chord of one circle which is tangent to the other circle, is

- Watch Video Solution

6. Find the value of $\sqrt{\operatorname{cosec} 25^{\circ}-\cot ^{2} 45^{\circ}}$

- Watch Video Solution

7. If $\tan x=\sin 45^{\circ} \cos 45^{\circ}+\sin 30^{\circ}$ then x is equal to

(Watch Video Solution

8. What is the area of a circle inscribed in a square of side 'a' units?
(D) Watch Video Solution
9. A car travels 0.99 km in which each wheel makes

450 complete revolutions. Find radius of the wheel.

(D) Watch Video Solution

10. A number from 11 to 30 was chosen at random. Find the probability of this chosen number being a multiple of 2 .
11. If α and β are the zeros of the polynomial
$p(x)=x^{2}-p x+q$,
then find the value of $\frac{1}{\alpha}+\frac{1}{\beta}$

(D) Watch Video Solution

12. Find the sum of first 20 even numbers.

(D) Watch Video Solution

13. Find the discriminant of the quadratic equation $\quad(p+3) x^{2}-(5-p) x+1=0 \quad$ and
hence determine the value of p for which the roots are real and distinct.

D Watch Video Solution

14. In $A B C, D E$ is parallel to base $B C$, with D on $A B$ and E on $A C$. If $\frac{A D}{D B}=\frac{2}{3}$, find $\frac{B C}{D E}$.

D Watch Video Solution

15. In a frequency distrubution, what does ogive help in calculating?
16. Find the $8^{\text {th }}$ term from the end of the A.P..
$-12,-7,-2, \ldots, 68$
(D) Watch Video Solution
17. State $S A S$ similarity criterion.

- Watch Video Solution

18. Mr. Naik is a paramilitary Intelligence Corps officer who is tasked with planning a coup on the enemy at a certain date. Currently he is inspecting the area standing on top of the cliff.

Agent Vinod is on a hot air ballon in the sky.

When Mr. Naik looks down below the cliff towards
the sea, he has Ajay and Maran in boats positioned to get a good vantage point.

The main goal is to scope out the range and angles at which they should train their soldiers.

Ajay's boat is 25 m away from the base of the cliff. If $<d=30^{\circ}$. What is the height of the cliff?
(use $\sqrt{3}=1.73$)

A. 17.5 ,
B. 12.26 m
C. 14.45 m
D. 15.4 m

Answer:

19. Mr. Naik is a paramilitary Intelligence Corps officer who is tasked with planning a coup on the enemy at a certain date. Currently he is inspecting the area standing on top of the cliff.

Agent Vinod is on a hot air ballon in the sky.

When Mr. Naik looks down below the cliff towards
the sea, he has Ajay and Maran in boats positioned to get a good vantage point.

The main goal is to scope out the range and angles at which they should train their soldiers.

If the height of the cliff is $30 m,<c=45^{\circ}$ and
$<d=30^{\circ}$, distance between the two boats is
(use $(\sqrt{3}=1.73)$

A. 6.8 m
B. 8.5 m
C. 11.2 m
D. 21.9 m

Answer:

20. To celebrate Diwali festival among senior citizens of an old home, four friends of a society,

Rohan, Amar, Saran and Madhukar decided to pool some money to gift packs to every old man/woman staying in the neighbouring old-age home. They pooled money in the ratio $2: 3: 4: 5$.

With the pooled money of Rs.3500, they start preparing gift packs. In the preparation of one gift pack, Rohan, Amar, Saran and Madhukar spend $7,6,8$ and 9 minutes respectively.

On the basis of the above information, answer any four of the following questions:

How much amount was pooled by Saran?

A. Rs 500
B. Rs 750
C. Rs 1000
D. Rs 1250

Answer:

- Watch Video Solution

21. To celebrate Diwali festival among senior citizens of an old home, four friends of a society,

Rohan, Amar, Saran and Madhukar decided to pool some money to gift packs to every old man/woman staying in the neighbouring old-age home. They pooled money in the ratio $2: 3: 4: 5$.

With the pooled money of Rs.3500, they start preparing gift packs. In the preparation of one gift pack, Rohan, Amar, Saran and Madhukar spend $7,6,8$ and 9 minutes respectively.

On the basis of the above information, answer any four of the following questions:

How much time (in minutes) was spent on one

gift?

A. 20
B. 25
C. 30
D. 40

Answer:

- Watch Video Solution

22. To celebrate Diwali festival among senior citizens of an old home, four friends of a society,

Rohan, Amar, Saran and Madhukar decided to pool some money to gift packs to every old man/woman staying in the neighbouring old-age home. They pooled money in the ratio $2: 3: 4: 5$.

With the pooled money of Rs.3500, they start preparing gift packs. In the preparation of one gift pack, Rohan, Amar, Saran and Madhukar spend $7,6,8$ and 9 minutes respectively.

On the basis of the above information, answer any four of the following questions:

If each gift costs to them Rs.70, how many senior
citizens were given the cards?

A. 35
B. 50
C. 54
D. 60

Answer:

23. To celebrate Diwali festival among senior citizens of an old home, four friends of a society,

Rohan, Amar, Saran and Madhukar decided to pool some money to gift packs to every old man/woman staying in the neighbouring old-age home. They pooled money in the ratio $2: 3: 4: 5$.

With the pooled money of Rs.3500, they start preparing gift packs. In the preparation of one gift pack, Rohan, Amar, Saran and Madhukar spend $7,6,8$ and 9 minutes respectively.

On the basis of the above information, answer any four of the following questions:

How much amount was pooled by Rohan and

Madhukar together for giving the gifts?

A. Rs 1856
B. Rs 1750
C. Rs 1623
D. Rs 2150

Answer:

24. Thermas Housewares Co. Ltd is one of the leading brands in the field of vacuum flask. They are producing a new high-quality heat preservation flask series and the below figure shows the cross - section of the interior part of a new concept thermos flask.

The top part is a trapezium, the middle part is a rectangle and the bottom part is a semi-circle

The dimension of various parts are:
$C E=20 \mathrm{~cm}, \mathrm{BC}=25 \mathrm{~cm}, \mathrm{AB}=\mathrm{GF}=13 \mathrm{~cm}, \mathrm{AG}=10$
cm and $\mathrm{AN}=12 \mathrm{~cm}$

The perimeter of the trapezium part of the cross
section, is
A. 36 cm
B. 56 cm
C. 30 cm
D. 46 cm

Answer:

(Watch Video Solution

25. Thermas Housewares Co. Ltd is one of the leading brands in the field of vacuum flask. They are producing a new high-quality heat
preservation flask series and the below figure shows the cross - section of the interior part of a new concept thermos flask.

The top part is a trapezium, the middle part is a rectangle and the bottom part is a semi-circle

The dimension of various parts are:
$C E=20 \mathrm{~cm}, \mathrm{BC}=25 \mathrm{~cm}, \mathrm{AB}=\mathrm{GF}=13 \mathrm{~cm}, \mathrm{AG}=10$
cm and $\mathrm{AN}=12 \mathrm{~cm}$

The perimeter of the rectangular part of the cross section, is
A. 90 cm
B. 70 cm
C. 50 cm
D. 40 cm

Answer:

- Watch Video Solution

26. The figure shows the cross-section of the interior of thermos flask.

The top part is a trapezium , the middle part is a rectangle and the bottom part is a semicircle if
$C E=20 \mathrm{~cm}, \mathrm{BC}=25 \mathrm{~cm}, \mathrm{AB}=\mathrm{GF}=13 \mathrm{~cm}, \mathrm{AG}=10$ cm and $\mathrm{AN}=12 \mathrm{~cm}$, the find :

The perimeter of the cross-section
A. 83 cm

B. 86 cm

C. 117.4 cm
D. 130.4 cm

Answer:

D Watch Video Solution

27. Without actually performing the long division, write the decimal expansion of $\frac{11725}{2^{3} \times 5^{4}}$
28. Show that $3+\sqrt{5}$ is an irrational number, assuming that $\sqrt{5}$ is an irrational number.

(D) Watch Video Solution

29. Solve algebraically: $4 x+3 y=14$ and $3 \mathrm{x}-4 \mathrm{y}=$ 23.

(D) Watch Video Solution

30.

Evaluate:
$\left(\sin ^{4} 60^{\circ}+\sec ^{4} 30^{\circ}\right)-2\left(\cos ^{2} 45^{\circ}-\sin ^{2} 90^{\circ}\right)$

Watch Video Solution

31. Prove that $\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta$

D Watch Video Solution
32. A die is thrown twice. Find the probability that:

5 will not come up either time
33. Find a point on x-axis which is equidistant
from $A(-3,4)$ and $B(7,6)$.

D Watch Video Solution

34. If the circumference of a circle increases from
4π to 8π, then find the percentage increase in the area of the circle.
35. The sum of the squares of two consecutive multiples of 7 is 637 . Find the multiples.

D Watch Video Solution

36. The figure drawn on the graph paper shows a
$\Delta A B C$ with vertices $\mathrm{A}(-4,1) \mathrm{B}(-4,6)$ and $\mathrm{C}(8,1)$.

Find the length of $B C$,

- Watch Video Solution

37. The figure drawn on the graph paper shows a
$\Delta A B C$ with vertices $\mathrm{A}(-4,1) \mathrm{B}(-4,6)$ and $\mathrm{C}(8,1)$.

Find $\sin B$

D Watch Video Solution

38. The figure drawn on the graph paper shows a
$\Delta A B C$ with vertices $\mathrm{A}(-4,1) \mathrm{B}(-4,6)$ and $\mathrm{C}(8,1)$.

Find $\cos C$

- Watch Video Solution

39. Prove that the length of the tangents drawn

from an external point to a circle are equal.

40. Two spotlights, P and Q are mounted on a vertical pole $A B$ as shown.

Light beams from P and Q shine to two points on the ground, H and K , respectively. Given that $\mathrm{PQ}=$ $16 \mathrm{~m}, \mathrm{~KB}=16 \mathrm{~m}, \mathrm{PH}=35 \mathrm{~m}$ and $\mathrm{QK}=20 \mathrm{~m}$, Find:

HK, the distance between the projections of the light beams.

D Watch Video Solution

41. The minute hand of a clock is 2 cm long. Find the area of the face of the clock described by the
minute hand between 7 am and $7: 15 \mathrm{am}$.

(D) Watch Video Solution

42. Two spheres of same metal weight 1 Kg and 7

Kg . The radius of the smaller sphere is 3 cm . The two spheres are melted to form a single big sphere. Find the diameter of the new sphere.

D Watch Video Solution

43. A bag contains 15 white balls and some black balls. If the probability of drawing a black ball is
thrice that of a white ball, find the number of black balls in the bag.

(D) Watch Video Solution

44. Two men on either sideof a 75 m high building and in line with base of buildig observe the angle of elevation of the top of the building as 30° and 60°. Find the distance between the two men. (Use $\sqrt{3}=1.73$)

D Watch Video Solution

45. In the given figure, PA, QB and RC each is perpendicular to AC such
that
$P A=x, R C=y, Q B=z, A B=a$, and $B C=b$
Prove that $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$

D Watch Video Solution
46. Using factorisation, find the HCF of 36 and 54.

D Watch Video Solution

47. Write a rational number and an irrational number between 1 and 2 .
(D) Watch Video Solution
48. Find the zeros of the polynomial $p(x)=$ $x^{2}-7 x+6$
49. Find the discrimination of thequadratic equation $x^{2}-4 x+1=0$

D Watch Video Solution

50. Which term of the A.P. $4,9,14$ is 254 ?

- Watch Video Solution

51. Find the sum of the first 20 natural numbers.
52. Find the centroid of $\triangle A B C$, where $A(-4,6), B(2$,
$-2)$ and $C(2,5)$

D Watch Video Solution

53. A man goes 15 m due west and then 8 m due north. How far is he from the starting point?
54. Prove that $4 \tan ^{2} A-4 \sec ^{2} A=-4$

(D) Watch Video Solution

55. If $\tan A=\frac{3}{4}$, find the value of $\sin \mathrm{A}$.

- Watch Video Solution

56. If the perimeter of a semi-circular protractor is

36 cm , then its diameter is (a) 10 cm (b) 12 cm (c)

14 cm (d) 16 cm
57. The chord of a circle of radius 10 cm subtends a right angle at its centre. The length of the chord (in cm) is

D Watch Video Solution

58. A box contains 20 balls bearing numbers - 1,
$2,3,4, \ldots, 20$.
A ball is drawn at random from the box. What is
the probability that the number on the ball is divisible by 7 ?
59. Mean of twenty observations is 15. If two observations 3 and 14 replaced by 8 and 9 respectively, then the new mean will be

(D) Watch Video Solution

60. If the mean and mode of a discrete data is 6 and 9 , find the median of the data.
61. Write the number of zeros for a polynomial $\mathrm{p}(\mathrm{x})$ whose graph is given in the figure.

62. Write a pair of linear equations which has the unique solution $x=-1, y=3$

- Watch Video Solution

63. The quadratic equation $2 x^{2}+p x+3=0$ has two equal roots. Find the value of p.

(D) Watch Video Solution

64. Construct a tangent to a circle of radius 4 cm
from a point which is at a distance of 6 cm from
its centre.

- Watch Video Solution

65. The perimeters of two similar triangles are 30
cm and 20 cm respectively. If one side of the first
triangle is 9 cm long, find the length of the corresponding side of the second triangle.

- Watch Video Solution

66. In a circle of radius 7 cm , tangent PT is drawn
from a point P such that $\mathrm{PT}=24 \mathrm{~cm}$.If O is the
center of circle then length $\mathrm{OP}=$?

D Watch Video Solution

67. Jawaharlal Nehru Stadium in New Delhi is
conducting the annual sports competition soon.
The curator of the stadium is tasked with preparing the grounds for various sports as per the technical requirements of sports invigilator.

The engineer assigned to assist the curator is tasked with figuring out the dimensions for
carving out some areas allotted for a 'hockey
court' and a 'javelin range', as shown in the figure
below.

The shapes of the 'hockey court' and the 'javelin
range' are square and triangle respectively. Both
of the courts have a common edge that touches
the centre of stadium. The construction of the javelin range is such that the angle to centre is 90°. The radius of the stadium is 200 metres.

The area (in sq m) allotted to 'javelin" range' is
A. 11400
B. 20000
C. 31400
D. 40000

Answer:
68. Jawaharlal Nehru Stadium in New Delhi is
conducting the annual sports competition soon.
The curator of the stadium is tasked with preparing the grounds for various sports as per the technical requirements of sports invigilator.

The engineer assigned to assist the curator is tasked with figuring out the dimensions for carving out some areas allotted for a 'hockey court' and a 'javelin range', as shown in the figure below.

The shapes of the 'hockey court' and the 'javelin range' are square and triangle respectively. Both of the courts have a common edge that touches
the centre of stadium. The construction of the javelin range is such that the angle to centre is 90°. The radius of the stadium is 200 metres.

The area (in sq m) allotted to 'javelin" range' is
A. 11400
B. 20000
C. 31400
D. 40000

Answer:
69. Jawaharlal Nehru Stadium in New Delhi is conducting the annual sports competition soon.

The curator of the stadium is tasked with preparing the grounds for various sports as per the technical requirements of sports invigilator.

The engineer assigned to assist the curator is tasked with figuring out the dimensions for carving out some areas allotted for a 'hockey court' and a 'javelin range', as shown in the figure below.

The shapes of the 'hockey court' and the 'javelin range' are square and triangle respectively. Both of the courts have a common edge that touches
the centre of stadium. The construction of the javelin range is such that the angle to centre is 90°. The radius of the stadium is 200 metres.

If the team of the curators managing the stadium, likes to allot space for some more sports, how much area (in sq m) is available to them?
A. 1,25,600
B. 1,05,600
C. 85600
D. 58600

Answer:

D Watch Video Solution

70. Jawaharlal Nehru Stadium in New Delhi is
conducting the annual sports competition soon.
The curator of the stadium is tasked with preparing the grounds for various sports as per the technical requirements of sports invigilator.

The engineer assigned to assist the curator is tasked with figuring out the dimensions for
carving out some areas allotted for a 'hockey
court' and a 'javelin range', as shown in the figure

below.

The shapes of the 'hockey court' and the 'javelin
range' are square and triangle respectively. Both
of the courts have a common edge that touches
the centre of stadium. The construction of the javelin range is such that the angle to centre is 90°. The radius of the stadium is 200 metres.

If the boundaries of the hockey court and javelin range are to be fenced, then the total length (in m) of the fence required is
A. $100(2+3 \sqrt{2})$
B. $100(2+5 \sqrt{2})$
C. $200(2+5 \sqrt{2})$
D. $200(2+3 \sqrt{2})$

Answer:

(Watch Video Solution

71. Jawaharlal Nehru Stadium in New Delhi is
conducting the annual sports competition soon.
The curator of the stadium is tasked with preparing the grounds for various sports as per the technical requirements of sports invigilator.

The engineer assigned to assist the curator is tasked with figuring out the dimensions for
carving out some areas allotted for a 'hockey
court' and a 'javelin range', as shown in the figure

below.

The shapes of the 'hockey court' and the 'javelin
range' are square and triangle respectively. Both
of the courts have a common edge that touches
the centre of stadium. The construction of the javelin range is such that the angle to centre is 90°. The radius of the stadium is 200 metres.

If the cost of fencing is Rs 12 per metre, then the total cost of fencing is
A. $1200(2+3 \sqrt{2})$
B. $1200(2+5 \sqrt{2})$
C. $2400(2+5 \sqrt{2})$
D. $2400(2+3 \sqrt{2})$

Answer:

(D) Watch Video Solution

72. A game at a stall in Diwali fare involves using a spinner first as a pre-cursor to complete the game with certain rules. If the spinner stops at a particular number, then the player is allowed to roll a 6. faced unbiased die,

What is the probability of getting an odd number on the spinner?
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. $\frac{1}{8}$

D. | $1 / 16$ |
| :--- |

Answer:

D Watch Video Solution

73. A game at a stall in Diwali fare involves using a spinner first as a pre-cursor to complete the game with certain rules. If the spinner stops at a particular number, then the player is allowed to roll a 6. faced unbiased die,

If getting an even number on the spinner allows a player to roll the die, then the probability of his rolling the die is
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. $\frac{1}{8}$
D. ${ }^{`} / 16$

Answer:

(D) Watch Video Solution

74. A game at a stall in Diwali fare involves using a spinner first as a pre-cursor to complete the game with certain rules. If the spinner stops at a particular number, then the player is allowed to roll a 6. faced unbiased die,

If getting an even number on the spinner allows a player to roll the die, then the probability of his rolling the die is
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{6}$

Answer:

- Watch Video Solution

75. A game at a stall in Diwali fare involves using a spinner first as a pre-cursor to complete the game with certain rules. If the spinner stops at a particular number, then the player is allowed to roll a 6. faced unbiased die,

If getting a square number on the spinner allows
a player to'roll the die, then the probability of his rolling the die is
A. $\frac{3}{4}$
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer:

(Watch Video Solution

76. A game at a stall in Diwali fare involves using a spinner first as a pre-cursor to complete the game with certain rules. If the spinner stops at a
particular number, then the player is allowed to roll a 6. faced unbiased die,

If the player is allowed to roll the die and getting a prime number entitles him to get prize, then the probability of his winning the prize is
A. $\frac{3}{4}$
B. $\frac{1}{6}$
C. $\frac{1}{2}$
D. $\frac{2}{3}$

Answer:

D Watch Video Solution

77. Radio towers are typically tall structures designed to support antennas for tele communications and broadcasting, including television. There are 2 main types: guyed and selfsupporting structures.

They are among the tallest human-made structures. Masts are often named after the
broadcasting organizations that originally built them or currently use them.

On a similar concept, a radio - station tower was
built in two sections A and B. From a point 24 m
from the base of the tower, the angle of elevation of the top of section A is 30° and the angle of elevation of the top of section B is $\left.45^{\circ}\right)$.

The height of the section A is
A. 13.84 m
B. 14.6 m
C. 16.7 m

D. 34.5 m

Answer:

D Watch Video Solution

78. Radio towers are typically tall structures designed to support antennas for tele communications and broadcasting, including television. There are 2 main types: guyed and selfsupporting structures.

They are among the tallest human-made structures. Masts are often named after the
broadcasting organizations that originally built them or currently use them.

On a similar concept, a radio - station tower was
built in two sections A and B. From a point 24 m
from the base of the tower, the angle of elevation
of the top of section A is 30° and the angle of elevation of the top of section B is $\left.45^{\circ}\right)$.

The height of the section B is
A. 5.4 m
B. 3.3 m
C. 6.16 m

D. 10.16 m

Answer:

D Watch Video Solution

79. Radio towers are typically tall structures designed to support antennas for tele communications and broadcasting, including television. There are 2 main types: guyed and selfsupporting structures.

They are among the tallest human-made structures. Masts are often named after the
broadcasting organizations that originally built them or currently use them.

On a similar concept, a radio - station tower was
built in two sections A and B. From a point 24 m
from the base of the tower, the angle of elevation
of the top of section A is 30° and the angle of elevation of the top of section B is $\left.45^{\circ}\right)$.

The height of the tower is
A. 17.9 m
B. 24 m
C. 31.6 m

D. 20 m

Answer:

D Watch Video Solution

80. Radio towers are typically tall structures designed to support antennas for tele communications and broadcasting, including television. There are 2 main types: guyed and selfsupporting structures.

They are among the tallest human-made structures. Mosts are often named after the
broadcasting organizations that originally built them or currently use them.

On a similar concept, a radio - station tower was
built in two sections A and B. From a point 24 m
from the base of the tower, the angle of elevation
of the top of section A is 30° and the angle of elevation of the top of section B is $\left.45^{\circ}\right)$.

On the basis of the above information, answer any four of the following question:

The length of the wire structure from the point to the top of section A is
A. 11.8 m
B. 14.6 m
C. 27.7 m
D. 33.84 m

Answer:

D Watch Video Solution

81. Radio towers are typically tall structures designed to support antennas for tele communications and broadcasting, including television. There are 2 main types: guyed and selfsupporting structures.

They are among the tallest human-made structures. Masts are often named after the broadcasting organizations that originally built them or currently use them.

On a similar concept, a radio - station tower was
built in two sections A and B. From a point 24 m
from the base of the tower, the angle of elevation of the top of section A is 30° and the angle of elevation of the top of section B is $\left.45^{\circ}\right)$.

On the basis of the above information, answer any four of the following question:

The length of the wire structure from the point o to the top of section B is

A. 11.8 m

B. 14.6 m
C. 27.7 m
D. 33.84 m

Answer:

- Watch Video Solution

82. Two unbiased coins are tossed. Find the probability of getting : (i) two heads and (ii) at least one head.
83. If α, β are zeroes of the quadratic polynomial
$p(x)=2 x^{2}-K x+7 \quad$ such that
$\alpha^{2}+\beta^{2}-\frac{1}{2} \alpha \beta=\frac{23}{2}$. Find the value of K.

D Watch Video Solution

84. Find a relation between x and y such that the point (x, y) is equidistant from the point $(3,6)$ and $(-3,4)$.
85. Show that the points $(4,2),(7,5)$ and $(9,7)$ are collinear.

D Watch Video Solution

86. If the circumference of a circle increases from
4π to 8π, then find the percentage increase in the area of the circle.
87. If 0.3528 is expressed in the form of $\frac{p}{2^{m} 5^{n}}$ find the simallest values of m, n and p .

- Watch Video Solution

88. Using prime factorisation, find the LCM of 150 and 210.

- Watch Video Solution

89. Prove that $\sqrt{2}$ is an irrational number
90. Solve for x and y :
$3 x+2 y=11$,
$2 x+3 y=4$

- Watch Video Solution

91. Two poles of height 'a' metres and 'b' meters are ' p ' meters apart. Prove that the height of the point of intersection of the lines joining the top
of each pole to the foot of the opposite pole is given by $\frac{a b}{a+b}$ meters.

D Watch Video Solution

92. If two adjacent vertices of a parallelogram are
$(3,2)$ and $(-1,0)$ and the diagonals intersect at (2,
$-5)$, then find the coordinates of the other two vertices.
93. In a circle of radius 7 cm , a chord makes an
angle of 60° at the centre of the circle. Find (a)
area of the circle (b) area of sector AOB and (c) area of minor segment APB.

(Take $\sqrt{3}=1.73$)

- Watch Video Solution

94. A solid wooden toy is in the shape of a right circular cone mounted on a hemisphere. If the radius of the hemisphere is 4.2 cm and the total height of the toy is 10.2 cm , find the volume of the wooden toy.

- Watch Video Solution

95. In Fig. 10.13, $X Y$ and $X^{\prime} Y^{\prime}$ are two parallel tangents to a circle with centre O and another tangent $A B$ with point of contact C intersecting
$X Y$ at A and $X^{\prime} Y^{\prime}$ at B. Prove that
$\angle A O B=90 \circ$

(D) Watch Video Solution

96. Find the zeroes of the polynomial $p(x)=$
$4 x^{2}-7 x+3$ by factorising it and verify the relationship between the zeroes and coefficients of $p(x)$.

(D) Watch Video Solution

97. State and prove the Pythagoras theorem.

- Watch Video Solution

98. If $\angle B$ of $\operatorname{Delat} A B C$ is an acute angle and
$A D \perp B C ;$ provet $^{\wedge}(\mathrm{AC})^{\wedge} 2=(\mathrm{AB})^{\wedge} 2+(\mathrm{BC})^{\wedge} 2-2$ $B C . C D$

(D) Watch Video Solution

99. In a $\triangle \mathrm{ABC}, \angle B$ is an acute-angle and
$A D \perp B C$. Prove that:
$A B^{2}+C D^{2}=A C^{2}+B D^{2}$

