©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - AGRAWAL PUBLICATION

TRIANGLES

Example

1. In the given figure, $M N \| B C$ and $A M: M B=1$

3, then $\frac{\operatorname{ar}(\triangle A M N)}{\operatorname{ar}(\triangle A B C)}=\ldots$.

Fig 1.

D Watch Video Solution

2. In a triangle $A B C, A B=6 \sqrt{3} \mathrm{~cm}, A C=12 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$. Then measure of $\angle B$ is equal to

एक त्रिभुज $A B C$ में, $A B=6 \sqrt{3} \mathrm{~cm}, \mathrm{AC}=12 \mathrm{~cm}$ और BC
$=6 \mathrm{~cm} \mid \angle B$ का माप ज्ञात करे

- Watch Video Solution

3. Two triangles are similar if their corresponding sides are.

D Watch Video Solution
4. A ladder 10 m long reaches a window 8 m above the ground. The distance of the foot of the ladder from the base of the wall is. m.

D Watch Video Solution

5. If $\triangle A B C$ is an equilateral triangle of side
$2 a$, then length of one of its altitude is.

D Watch Video Solution
6. The perimeter of two similar triangles
$\triangle A B C$ and $\triangle P Q R$ are 35 cm and 45 cm respectively, then the ratio of the areas of the two triangles is.

D Watch Video Solution

7. The length of an altitude in an equilateral triangle of side 'a' cm is.

D Watch Video Solution

8. If areas of two similar triangles are equal, then these triangles are............

D Watch Video Solution

9. Diagonals of a parallelogram separate it into two triangles of.........
10. If S is a point on side PQ of a $\triangle P Q R$ such that $\mathrm{PS}=\mathrm{QS}=\mathrm{RS}$, then: $P R^{2}+Q R^{2}=$

D Watch Video Solution

11. $B C$ and $B D E$ are two equilateral triangles such that D is the mid point of $B C$. Find the ratio of the areas of triangle $A B C$ and BDE..............
12. It is given that $\triangle D E F \sim \triangle R P Q$. Is it true to say that $\angle D=\angle R$ and $\angle F=\angle P$? Why?

- Watch Video Solution

13. In the givne figure $\triangle A B C$ is an isosceles triangle right angled at C with $\mathrm{AC}=4 \mathrm{~cm}$. find
the length of $A B$.

- Watch Video Solution

14. In the given figure, $D E|\mid B C$. Find the length
of side $A D$, given that $A E=1.8 \mathrm{~cm}, B D=7.2 \mathrm{~cm}$
and $C E=5.4 \mathrm{~cm}$.

- Watch Video Solution

15. Is the following statement true?Why?
"Two quadrilaterals are similar, if their corrresponding angles are equal".
16. In the figure, if $\angle A C B=\angle C D A, \mathrm{AC}=6 \mathrm{~cm}$ and $A D=3 \mathrm{~cm}$, then find the length of $A B$.

- Watch Video Solution

17. The ratio of the corresponding altitudes of two similar triangles is $\frac{3}{5}$. Is it correct to say that the ratio of their areas is $\frac{6}{5}$?Why?

D Watch Video Solution

18. For a rhombus $A B C D$ prove the following:
$4 A B^{2}=A C^{2}+B D^{2}$.

D Watch Video Solution
19. The area of two similar triangles are 25 sq.
m and 121 sq . cm. find the ratio of their corresponding sides.

D Watch Video Solution

20. In the given figure, if $\angle D=\angle C$, then it is true that $\triangle A D E \sim \triangle A C B$?Why?

D Watch Video Solution

21. A and B are respectivley the points on the
sides PQ and PR of a $\triangle P Q R$ such that $\mathrm{PQ}=$
$12.5 \mathrm{~cm}, \mathrm{PA}=5 \mathrm{~cm}, \mathrm{BR}=6 \mathrm{~cm}$ and $\mathrm{PB}=4 \mathrm{~cm}$ is
$A B \| Q R$? Give reasons for your answer.

D Watch Video Solution
22. $\triangle A B C$ and $\triangle D E F$ are similar and their areas be respectively $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $E F=15.4 \mathrm{~cm}, \mathrm{BC}$ is.

- Watch Video Solution

23. In the given figure $D E|\mid B C, \mathrm{AD}=1 \mathrm{~cm}$
and $B D=2 \mathrm{~cm}$. what is the ratio of the area
($\triangle A B C$) to the area $(\triangle A D E)$?

- Watch Video Solution

24. Is the triangle with sides $25 \mathrm{~cm}, 5 \mathrm{~cm}$ and

24 cm a right triangle? Give reasons for your answer.

D Watch Video Solution

25. The perimeter of two similar triangles are

30 cm and 20 cm respectively. If one side of the
first triangle is 9 cm . Determine the corresponding side of the second triangle.
26. In the figure, $\triangle P Q R$ is right angled at P .
M is point on $Q R$ such that $P M$ is
perpendicular to QR. Show that
$P Q^{2}=Q M \times Q R$.
\cdots - $\cdots \cdots$ -

27. In triangles $\triangle P Q R$ and $\triangle M S T$,
$\angle P=55^{\circ}, \angle Q=25^{\circ}, \angle M=100^{\circ}$ and
$\angle S=25^{\circ}$. Is $\triangle Q P R \sim \triangle T S M$? Why?

- Watch Video Solution

28. In the figure, $A B C$ and $D B C$ are two triangles on the same base $B C$. If $A D$ intersects BC at O, show that:
$\frac{\operatorname{area}(\triangle A B C)}{\operatorname{area}(\triangle D B C)}=\frac{A O}{D O}$

- Watch Video Solution

29. If $A D \perp B C$, then prove that
$A B^{2}+C D^{2}=B D^{2}+A C^{2}$.

- Watch Video Solution

30. Two sides and the perimeter of one triangle are respectivley three times the corresponding sides and the perimeter of the other triangle. Are the two triangles similar? Why?
31. If in two right triangles, one of the acute angles of one triangle is equal to an acute angle of the other triangles, can you say that two triangles will be similar?Why?

D Watch Video Solution

32. D is a point on side QR of $\triangle P Q R$ such
that $P D \perp Q R$. Will it be correct to say that
$\triangle P Q D \sim \triangle R P D ?$ Why?

- Watch Video Solution

33. In the figure, $D E|\mid A C$ and $D C| \mid A P$.

Prove that $\frac{B E}{E C}=\frac{B C}{C P}$

- Watch Video Solution

34. Is it true to say that if in two triangles, an
angle of one triangle is equal to an angle of another triangle and two sides of one triangle are proportional to the two sides of the other triangle, then the triangles are similar?Give reason for your answer.

D Watch Video Solution

35. In an equilateral triangle, prove that three
times the square of one side is equal to four times the square of one of its altitudes.
36. Kitchen garden of Ms. Sanjana is in the form of a triangle as shown. She wants to divide it in two parts, one triangle and one trapezium.

She takes $\mathrm{PE}=4 \mathrm{~m}, \mathrm{QE}=4.5 \mathrm{~m}$ PF $=8 \mathrm{~m}$ and $\mathrm{RF}=$ 9 m.

Is $E F|\mid Q R$? Justify your answer.

- Watch Video Solution

37. Two spotlights, P and Q are mounted on a
verticl pole $A B$ as shown.

Light beams from P and Q shine to two points on the ground,
H and K respectively, given that $P Q=16 \mathrm{~m}, \mathrm{~KB}=$

16 m
$\mathrm{PH}=35 \mathrm{~m}$ and $\mathrm{QK}=20 \mathrm{~m}$ find

BQ, the height above the ground at which the spotlight Q is mounted.

D Watch Video Solution

38. Two spotlights, P and Q are mounted on a verticl pole $A B$ as shown.

Light beams from P and Q shine to two points
on the ground,
H and K respectively, given that $P Q=16 \mathrm{~m}, \mathrm{~KB}=$ 16 m
$\mathrm{PH}=35 \mathrm{~m}$ and $\mathrm{QK}=20 \mathrm{~m}$ find

HK, the distance between the projections of the light beams.
39. $\triangle A B C \sim \triangle D E F$ such that $\mathrm{DE}=3 \mathrm{~cm}, \mathrm{EF}$
$=2 \mathrm{~cm}, \mathrm{DF}=2.5 \mathrm{~cm}$ and $\mathrm{BC}=4 \mathrm{~cm}$, find the perimeter of $\triangle A B C$

D Watch Video Solution

40. P and Q are the points on the sides DE and

DF of a triangle DEF such that $D P=5 \mathrm{~cm}, \mathrm{DE}=$
$15 \mathrm{~cm}, \mathrm{DQ}=6 \mathrm{~cm}$ and $\mathrm{QF}=18 \mathrm{~cm}$. Is
$P Q|\mid E F ?$ Give reasons for your answer.

D Watch Video Solution

41. Given that $\triangle P Q R$ is similar to $\triangle B A R$,
find:
the value of y,

- Watch Video Solution

42. In the given figure, find the value of x in terms of a, b and c.

- Watch Video Solution

43. R and S are points on the sides DE and EF respectively of a $\triangle D E F$ such that $E R=5 \mathrm{~cm}$,
$\mathrm{RD}=2.5 \mathrm{~cm}, \mathrm{SE}=1.5 \mathrm{~cm}$ and $\mathrm{FS}=3.5 \mathrm{~cm}$. Find whether $R S|\mid D F$ or not.

D Watch Video Solution

44. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

D Watch Video Solution
45. Areas of two similar triangles are $36 \mathrm{~cm}^{2}$ and $100 \mathrm{~cm}^{2}$. If the length of a side of the larger triangle is 20 cm . Find the length of the corresponding side of the smaller triangle.

- Watch Video Solution

46. In $\triangle A B C \sim \triangle D E F, \mathrm{AB}=4 \mathrm{~cm}$, DE
$=6 \mathrm{~cm}, \mathrm{EF}=9 \mathrm{~cm}$ and $\mathrm{FD}=12 \mathrm{~cm}$, then find the perimeter of $\triangle A B C$.
47. In the figure if $\triangle A B C \sim \triangle D E F$ and their sides of lengths (in cm) are marked along them, them find the lengths of sides of each triangle.

- Watch Video Solution

48. In the figure, if $\angle 1=\angle 2$ and $\triangle N S Q=$
$\triangle M T R$, then prove that
$\triangle P T S \sim \triangle P R Q$.

D Watch Video Solution

49. Three $30^{\circ}-60^{\circ}-90^{\circ}$ set squares are together as shown in the diagram.

Find the value of P.

D Watch Video Solution

50. Three $30^{\circ}-60^{\circ}-90^{\circ}$ set squares are together as shown in the diagram.

Find the value of length $A B$.
51. In the figure, $\angle D=\angle E$ and $\frac{A D}{D B}=\frac{A E}{E C}$, prove that BAC is an isosceles triangle.

52. In $\triangle A B C, \angle B=90^{\circ}$ and D is the mid

 point of BC . Prove that $A C^{2}=A D^{2}+3 C D^{2}$.
D Watch Video Solution

53. Diagonals of a trapezium PQRS intersect each other at the point $\mathrm{O}, P Q| | R S$ and PQ
$=3$ Rs. Find the ratio of the areas of $\triangle P O Q$ and $\triangle R O S$.

- Watch Video Solution

54. In the figure, if $A B|\mid D C$ and AC, PQ intersect each other at the point 0 , prove that OA.CQ = OC.AP

- Watch Video Solution

55. In the given figure, if $D E|\mid B C$, then find
the ratio of $\operatorname{ar}(\triangle A D E)$ and $\operatorname{ar}(D E C B)$.

- Watch Video Solution

56. ABCD is a trapezium in which $A B|\mid D C$
and P, Q are points on $A D$ and $B C$ respectively,
such that $P Q|\mid D C$, if $\mathrm{PD}=18 \mathrm{~cm}, \mathrm{BQ}=35$
cm and $\mathrm{QC}=15 \mathrm{~cm}$, find AD .

- Watch Video Solution

57. Two right triangles $A B C$ and $D B C$ are drawn
on the same hypotenuse BC and on the same side of $B C$. If $A C$ and $B D$ intersect at P, prove that $A P \times P C=B P \times D P$.
58. Diagonals of a trapezium PQRS intersect each other at the point $\mathrm{O}, P Q| | R S$ and PQ
$=3$ Rs. Find the ratio of the areas of $\triangle P O Q$ and $\triangle R O S$.

D Watch Video Solution

59. In the given figure, if $\angle A C B=\angle C D A, \mathrm{AC}=$ 8 cm and $A D=3 \mathrm{~cm}$, then find $B D$.

- Watch Video Solution

60. A 15 metres high tower coasts a shadow 24 metres long at a certain time and at the same
time, a telephone pole casts a shadow 16
metres long. Find the height of the telephone pole.

D Watch Video Solution

61. If P and Q are the points on side $C A$ and $C B$, respectively of $\triangle A B C$, right angled at C , prove that $\left(A Q^{2}+B P^{2}\right)=\left(A B^{2}+P Q^{2}\right)$.

D Watch Video Solution

62. If the area of two similar triangles are equal, prove that they are congrent.

D Watch Video Solution

63. There is a circular park of radius 24 m and there is a pole at a distance of 26 m from the centre of the park as shown in the figure. It is planned to enclose the park by planting trees along line segments $P Q$ and $P R$ tangential to the park.

Find the length of $P Q$ and $P R$,

D Watch Video Solution

64. There is a circular park of radius 24 m and
there is a pole at a distance of 26 m from the centre of the park as shown in the figure. It is
planned to enclose the park by planting trees
along line segments $P Q$ and $P R$ tangential to
the park.

If six trees are to be planted along each tangential line segments at equal distances,
find the distance between any two consecutive trees.

D Watch Video Solution

65. D, E and F are respectively the mid points of the sides $A B, A C$ and $B C$ of triangle $A B C$ respectively. Find the ratio of areas of triangle DEF and triangle $A B C$.

D Watch Video Solution

66. A flag pole 18 m high casts a shadow 9.6 m
long. Find the distance of the top of the pole from the far end of the shadow.

D Watch Video Solution

67. If a line is drawn parallel to one side of a triangle to intersect other two sides in distinct points, then prove that the other two sides are divided in the same ratio.

D Watch Video Solution

68. In the given figure, if PQRS is a parallelogram and $A B|\mid P S$, then prove
that $O C|\mid S R$.

D Watch Video Solution
69. $\triangle A B C$ figure, $A D \perp B C$. Prove that $A C^{2}=A B^{2}+B C^{2}-2 B C \times B D$

- Watch Video Solution

70. Prove that in a right angle triangle, the square of the hypotenuse is equal to the sum of squares of the other two sides.
71. For going to city B from city A, there is a route via city C such that $A C \perp C B$,
$A C=2 x k m$ and $C B=2(\mathrm{x}+7) \mathrm{km}$. It is proposed to construct a 26 km highway which directly connects the two cities A and B.Find how much distance will be saved in reaching city B from city A aftr the construction of the highway.

D Watch Video Solution

72. In $\triangle P Q R, P D \perp Q R$ such that D lies on
$Q R$. If $P Q=a, P R=b, Q D=c$ and $D R=d$, prove that $(a+b)(a-b)=(c+d)(c-d)$.

- Watch Video Solution

73. In an equilateral $\triangle A B C, \mathrm{D}$ is a point on side $B C$ such that $B D=\frac{1}{3} B C$. Prove that $9(A D)^{2}=7(A B)^{2}$.
74. In the given figure, $l|\mid m$ and line segments AB, CD and EF are concurrent at point P.
Prove that $\frac{A E}{B F}=\frac{A C}{B D}=\frac{C F}{F D}$

75. In the given figure, $\mathrm{PA}, \mathrm{QB}, \mathrm{RC}$ and SD are all perpendiculars to a line ' $\mathrm{I} . \mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=9 \mathrm{~cm}$,
$C D=12 \mathrm{~cm}$ and $S P=36 \mathrm{~cm}$. Find the $P Q, Q R$ and

RS.

L. - .

- Watch Video Solution

76. Prove that the area of the semicircle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the semicircles drawn on the other two sides of the triangle.

- Watch Video Solution

