©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - NAGEEN PRAKASHAN

ENGLISH

REAL NUMBERS

Solved Examples

1. Use Euclid's division algorithm to find the

HCF of (i) 135 and 225 (ii) 196 and 38220 (iii)

D Watch Video Solution

2. Use Euclid's algorithm to find the H.C.F. of 4052 and 12576.

D Watch Video Solution

3. Find the HCF of 55 and 210 . express it as a
linear combinaton of 55 and 210 , i.e. HCF of 55
and $210=210 a+55 b$, for some a andb
4. Find HCF 65 and 117and express it in the form of $65 m+117 n$.

- Watch Video Solution

5. The decimal expansion of the rational number $43 / 2^{\wedge}(4) 5^{\wedge}(3)$ will terminate after how many places of decimals?

- Watch Video Solution

6. Find the largest number, which divides 246 and 1030 leaving remainder 6 in each case.

D Watch Video Solution

7. Find the largest number that will divide 546,437 , and 400 leaving remainders 12 19 ,and 9 respecting.

D Watch Video Solution

8. Show that every positive even integer is of
the form $2 q$, and that every positive odd integer is of the form $2 q+1$, where q is some integer.

D Watch Video Solution

9. Use Euclid's division lemma to show that the
square of any positive integer is either of the form 3 mor $3 m+1$ for some integer m.[Hint:

Let x be any positive integer then it is of the
form $3 q, 3 q+1$ or $3 q+2$ Now square each of these and sho

D Watch Video Solution

10. Use Euclids division Lemma to show that
the cube of any positive integer is either of
the form $9 m, 9 m+1$ or, $9 m+8$ for some integer m.
11. Show that one and only one out of $n,(n+2)$
and ($\mathrm{n}+4$) is divisble by 3 , where n is any positive interger.

D Watch Video Solution

12. Show that the square of an odd positive integer is of the form $8 q+1$, for some integer q.
13. Any contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?

- Watch Video Solution

14. There are 156,208 and 260 students in group A, B and C respectively. Buses are to be hired to take them for a field trip. Find the
minimum number of buses to be hired, if the same number of students should be accommodated in each bus and separate bus for separate group is needed.

D Watch Video Solution

15. A sweet seller has 420 kaju barfis and 130
badam barfis. She wants to stack them in such
a way that each stack has the same number and they take up the least area of the tray.

What is the maximum number of barfis that can be placed in each sta

D Watch Video Solution

16. An electronic device makes a beep after every 60 sec. Another device makes a beep after every 62 sec . They beeped together at 10
a.m. The next time, when they would beep together at the earliest is

- Watch Video Solution

17. Express each of the following as a product of prime factors:
(i) 140 (i)156 (iii) 3825

- Watch Video Solution

18. Find the missing numbers in the following
prime factorisation

- Watch Video Solution

19. Show that $5 \times 11 \times 17+17$ is a composite

 number.D Watch Video Solution
20. Find the HCF and LCM of the following pairs using prime factorisation method:
(i) 140 and 154 (ii) 504 and 735

D Watch Video Solution
21. Find the HCF and LCM of the following by prime factorisation method:
(i) $12,18,24$ (ii) $15,25,45$

D Watch Video Solution

22. Find the LCM and HCF of the 26 and 91 and
verify that

HCF \times LCM $=$ product of the given two numbers.
23. The HCF of two numbers is 23 and their

LCM is 1449 . If one number is 207 , find the other number.

D Watch Video Solution

24. The HCF of 2472,1284 and a third number

$$
N \quad \text { is } \quad 12 . \quad \text { If their } \mathrm{LCM} \text { is }
$$

$2^{3} \times 3^{2} \times 5 \times 103 \times 107$. Find the number N.
25. Given that $\operatorname{HCF}(306,657)=9$. Find $L C M(306,657)$

D Watch Video Solution
26. Show that $12^{\text {th }}$ cannot end with the digit 0 or 5 for any natural number n.
27. In a morning walk, three persons step off together and their steps measure $40 \mathrm{~cm}, 42 \mathrm{~cm}$ and 45 cm , respectively. What is the minimum distance each should walk so that each can cover thesame distance in complete steps?

D Watch Video Solution

28. What is the smallest number that, when divided by 35,56 and 91 leaves remainder of 7 .
29. Find the greatest number of 5 digits exactly divisible by 35,56 and 91 .

- Watch Video Solution

30. Three bells ring at intervals of 4,7 and 14
minutes. All three range at 6 am . When will they ring together again?
31. Amar visits the recreation club after every 5days, Akbar visit after every 24 days, while

Anthony goes there after every 9 days. If all three of them met at the club last on a Sunday, then tall me O' student, on which day of the week will all three meet again ?

D Watch Video Solution

32. Five bells begins to toll together and toll respectively at intervals $6,7,8,9$ and 12 seconds.

How many times will they toll together in one hour, excluding the one at the start?

D Watch Video Solution

Solved Example

1. Without actual performing the long division, state whether the following rational numbers
will have a terminating decimal expansion or a non-terminationg repeating
expansion :
(i) $\frac{12}{125}$ (ii) $\frac{7}{1600}$ (iii) $\frac{11}{3125}$

- Watch Video Solution

2. Show that :
(i) $\frac{3}{250}$ (ii) $\frac{11}{50}$
are terminating decimals. Express each of them in decimal form without actual division
(long division).

D Watch Video Solution

3. Show that each of the following are nonterminating repeating decimal :
(i) $\frac{5}{12}$ (ii) $\frac{7}{75}$

- Watch Video Solution

4. The decimal expansion of the rational
number $\frac{43}{2^{4} \times 5^{3}}$ will terminate after how many places of decimals?

- Watch Video Solution

5. Express each of the following in the simplest form :
(i) $0 . \overline{6}$ (ii) $3 . \overline{3}$

- Watch Video Solution

6. Express each of the following in the simplest form :
(i) $0 . \overline{36}$ (ii) $1 . \overline{046}$

- Watch Video Solution

7. A rational number in its decimal expansion
is 327.7081 . What can you say about the prime
factors of q, when this number is expressed in the from $\frac{p}{q}$? Give reason.

- Watch Video Solution

8. Prove that $\sqrt{2}$ is an irrational number.

- Watch Video Solution

9. Prove that $\sqrt{11}$ is irrational.

- Watch Video Solution

10. Prove that for any prime positive integer p, \sqrt{p} is an irrational number.

- Watch Video Solution

11. Show that $(2+\sqrt{3})$ is an irrational number.

- Watch Video Solution

12. Prove that $5 \sqrt{7}$ is irrational.

- Watch Video Solution

13. Show that the following numbers are
irrational. $\frac{1}{\sqrt{2}}$ (ii) $7 \sqrt{5}$

- Watch Video Solution

14. A rational number in its decimal expansion
is 327.7081 . What can you say about the prime
factors of q, when this number is expressed in
the from $\frac{p}{q}$? Give reason

- Watch Video Solution

15. Show that $12^{\text {th }}$ cannot end with the digit 0 or 5 for any natural number n .

- Watch Video Solution

1. Write whether every positive integer can be of the form $4 q+2$ where q is an integer, Justify your answer

- Watch Video Solution

2. The number 525 and 3000 are both divisible only $3,5,15,25,75$. What is $\operatorname{HCF}(525,3000)$? Justify your answer.
3. Can two number have 18 as their HCF and 380 as their LCM? Give reason

D Watch Video Solution

4. Show that the square of any positive integer cannot be of the form $6 m+2$ or $6 m+5$ for some integer q.
5. Show that any positive odd integer is of the form $6 q+1$ or $6 q+3$ or $6 q+5$, where q is some integer.

D Watch Video Solution

6. Show that the cube of a positive integer of
the form $6 q+r, q$ is an integer and $r=0,1,2,3,4,5$ is also of the form $6 m+r$

D Watch Video Solution

7. If n is an odd positive integer, show that $\left(n^{2}-1\right)$ is divisible by 8 .

- Watch Video Solution

8. Using Euclid's division algorithm, find the
largest number that divides 1251, 9377 and
15628 leaving remainders 1,2 and 3 , respectively.

D Watch Video Solution
9. Prove that $\sqrt{p}+\sqrt{q}$ is an irrational, where p and q are primes.

D Watch Video Solution

10. For any positive integer n, prove that $n^{3}-n$ divisible by 6 .
(Watch Video Solution
11. Use Euclid division algorithm to find the HCF of 441, 567 and 693.

D Watch Video Solution

Exercise 1 A

1. Use Euclid's division algorithm, to find the H.C.F. of the following : (i) 70 and 40

18 and 45

D Watch Video Solution
2. If the HCF of 408 and 1032 is expressible in the form $1032 m-408 \times 5$, find m.

D Watch Video Solution

3. Express the H.C.F. of 18 and 24 in the form of
$18 x+24 y$.

- Watch Video Solution

4. Express the H.C.F. of 30 and 36 in the form of $30 x+36 y$.

D Watch Video Solution
5. Find the largest number that divides 1989 and 967 and leaves a remainder of 5 and 7 respectively.

D Watch Video Solution
6. Find the largest number that divides 189 and 249 leaving remainder 9 in each case .

- Watch Video Solution

7. Find the largest number that divides 280 and 1248 leaving remainders 4 and 6 respectively.

- Watch Video Solution

8. Find the greartest number that divides 699 and 572 leaving remainders 6 and5 respectively .

D Watch Video Solution

9. Show that any positive odd integer is of the
form $4 q+1$ or $4 q+3$, where q is some integer.
10. Show that any positive integer is of the form $3 q$ or, $3 q+1$ or, $3 q+2$ for some integer q.

- Watch Video Solution

11. Show that every even positive integer is of
the form $6 q$ or $6 q+2$ or $6 q+4$ for some integer q.

- Watch Video Solution

12. Prove that every positive integer different from 1 can be expressed as a product of a nonnegative power of 2 and an odd number.

D Watch Video Solution

13. Show that the square of any positive integer is either of the form $4 q$ or $4 q+1$ for some integer q.

D Watch Video Solution

14. Show that the square of any positive integer cannot be of the form $5 q+2$ or $5 q+3$ for some integer q.

D Watch Video Solution

15. Prove that one and only out of $n,(n+2)$ and
$(\mathrm{n}+4)$ is divisible by 3 , where n is any positive integer.
16. There are 576 boys and 448 girls in a school
that are to be divided into equal sections of either boys or girls alone . Find the total number of sections thus formed.

D Watch Video Solution

17. The length, breadth and height of a room
are 8 m and $25 \mathrm{~cm}, 6 \mathrm{~m}$ and 75 cm and 4 m 50 cm , respectively. Determine the longest rod which can measure the three dimensions of the room exactly.

- Watch Video Solution

18. A sweet seller has 420 kaju barfis and 130
badam barfis. She wants to stack them in such
a way that each stack has the same number and they take up the least area of the tray. What is the maximum number of barfis that can be placed in each sta

19. about to only mathematics

D Watch Video Solution

20. In a group there are 21 childrens, 35 ladies
and 49 gents. They all want to stay in same
hotel. Find the minimum number of rooms
required for their stay so that in each room
equal number of members stay with the condition that children, female and male stay
in separate rooms.
21. Three sets of English, Hindi and Mathematics books have to be stacked in such a way that all the books are stored topic wise and the height of each stack is the same. The number of English books is 96, the number of Hindi books is 240 and the number of Mathematics books is 336 . Assuming that the books are of the same thickness, determine the number of stacks of English, Hindi and Mathematics books.

Watch Video Solution

22. Find the HCF of 81 and 237 and express it as a linear combination of 81 and 237.

- Watch Video Solution

23. Find the polynomials $u(x)$ and $v(x)$ such
that
$\left(x^{4}-1\right) \cdot u(x)+\left(x^{7}-1\right) \cdot v(x)=(x-1)$
24. Six bells commence tolling together and toll at interval of $2,4,6,8,10,12$ minutes respectively . In 30 hours, how many times do they toll together?

- Watch Video Solution

25. Find the greatest number of 4 digits which is exactly divisible by 15,24 and 36 .
26. A number when divided by 143 leaves 31 as
remainder. What will be the remainder, when the same number is divided by 13 ?

- Watch Video Solution

27. p and q are two positive integers such that
the least prime factor of p is 3 and the least prime factor of q is 5 . Find the least prime factor of $(p+q)$.
28. Express each of the following as a product of prime factors:
(i)96(ii)84(iii)150(iv)240(v)3072(vi)324

- Watch Video Solution

Exercise 1 B

1. Explain why $7 \times 11 \times 13+13$ and
$7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1+5$ are composite
numbers.

D Watch Video Solution

2. Show that $5 \times 7 \times 11+11$ is a composite number.

D Watch Video Solution

3. Find the HCF and LCM of the following by prime factorisation method:
(i) 12 and 15 (ii) 20 and 25 (iii) 28 and 42

- Watch Video Solution

4. Using prime factorisation method, find the

HCF and LCM of the following pairs. Hence,
verify $H C F \times L C M=$ product of two numbers. (i) 96 and 120 (ii) 16 and 20

- Watch Video Solution

5. The HCF and LCM of two numbers are 145 and 2175 respectively. If the first number is 435 ,
find the second number.

- Watch Video Solution

6. The HCF and LCM of two numbers are 18 and

720 respectively. Find the product of two numbers.

D Watch Video Solution

7. Is it possible to have two numbers whose HCF is 20 and LCM is 630? Give reason.
8. Given that LCM $(252,594)=8316$. Find HCF
$(252,594)$.

- Watch Video Solution

9. The LCM of two number is 192 and their product is 3072 . Find the HCF of two numbers.
10. Check whether 6^{n} can end with the digit 0
for any natural number n.

- Watch Video Solution

11. Prove that there is no natural number for which 4^{n} ends with the digit zero.

- Watch Video Solution

12. Three pieces of timber of lengths $63 \mathrm{~m}, 42 \mathrm{~m}$
and 35 m , have to be divided into planks of the
same length. What is the greatest possible length of each plank?

- Watch Video Solution

13. Two tanks contain 735 litres and 504 litres
of water resepectively. Find the maximum capacity of a container which can measure the water of either tank an exact number of times.
14. A circular field has a circumference of 360km. Three cyclists start together and can cycle 48,60 and 72 km , a day, round the field. When will they meet again?

- Watch Video Solution

15. Write the missing numbers in the following factor tree :

- Watch Video Solution

16. Find the greastest number of 5 digits exactly divisible by 24,15 and 36 .

D Watch Video Solution

Exercise 1 C

1. By actual division, show that each of the
following rational numbers is a terminating decimal. Express each in the decimal form :
(i) $\frac{17}{2^{2} \times 5^{3}}$ (ii) $\frac{24}{625}$
2. With out actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion :
(i) $\frac{17}{8}$ (ii) $\frac{64}{455}$ (iii) $\frac{29}{343}$ (iv) $\frac{129}{2^{2} 5^{7} 7^{2}}$ (v) $\frac{6}{15}$ (vi)
$\frac{27}{210}$

D Watch Video Solution

3. The decimal expansion of the rational number $\frac{27}{2^{2} \cdot 5^{3}}$, will terminate after how many places of decimals ?

D Watch Video Solution

4. Express each of the following as a fraction in simplest form : (i) $0 . \overline{5}$ (ii) $1 . \overline{4}$ (iii) $0 . \overline{15}$
5. What can you say about the prime factors of
their denominators ? (i) 12.123456789
(ii)
6. $\overline{123456789}$

- Watch Video Solution

6. Prove that $\sqrt{3}$ is irrational.

D Watch Video Solution
7. about to only mathematics

- Watch Video Solution

8. Verify by the method of contradiction that $\sqrt{7}$ is irrational.

- Watch Video Solution

9. If the HCF of 408 and 1032 is expressible in
the form $1032 \times 2+408 \times p$, then find the value of p.
10. State whether the given statements are true or false :
(i) The sum of two rationals is always rational.
(ii) The sum of two irrationals is always irrational.
(iii) The product of two rationals is always rational.
(iv) The product of two irrationals is always irrational.
(v) The sum of a rational and an irrational is
always rational.
(vi) The product of a rational and an irrational is always irrational.

D Watch Video Solution

11. Give an example of :
(i) Two rationals whose sum is rational.
(ii) Two irrationals whose sum is rational.
(iii) Two irrationals whose product is rational.

D Watch Video Solution

12. Find the $\operatorname{HCF}(865,255)$ using Euclid's division lemma

D Watch Video Solution

Revision Exercise Very Short Answer Questions

1. State Euclid Division Iemma

2. State division algorithm to calculate HCF.

D Watch Video Solution

3. Express 120 as the product of prime factors.

D Watch Video Solution

4. Express 75 as the product of prime factors.

5. Find : H.C.F. $(3,5)$

D Watch Video Solution

6. Find : L.C.M. $(3,5)$

D Watch Video Solution
7. If a and b are relatively prime numbers, then what is their HCF?
8. Write the H.C.F. of the smallest composite number and the smallest prime number.
(Watch Video Solution
9. What is the decimal expansion of $\frac{13}{2 \times 5^{2}}$?

- Watch Video Solution

10. If a and b are relatively prime numbers, then what is their LCM?

D Watch Video Solution
11. Give an example of two irrationals whose sum is rational.

- Watch Video Solution

12. Give an example of two irrational numbers whose sum is rational

- Watch Video Solution

Revision Exercise Short Answer Questions

1. Express $0 . \overline{7}$ in the simplest form.

2. Express $1 . \overline{2}$ in the simplest form.

- Watch Video Solution

3. about to only mathematics

- Watch Video Solution

4. Find the largest number which divides 320
and 458 leaving remainders 5 and 8 respectively.

- Watch Video Solution

5. The smallest number which when divided by

28 and 32 leaves remainders 8 and 12 respectively

D Watch Video Solution
6. Find the greatest number of 3 digits which is exactly divisible by 12 and 15 .

Short Answer Questions

1. Show that $1+\sqrt{2}$ is irrational.

D Watch Video Solution

2. Show that $\frac{1}{\sqrt{5}}$ is irrational.

D Watch Video Solution

1. Prove that if x and y are odd positive integers, then $x^{2}+y^{2}$ is even but not divisible by 4 .

D Watch Video Solution
2. about to only mathematics

D Watch Video Solution
3. Prove that if a positive integer is of the form
$6 q+5$, then it is of the form $3 q+2$ for some integer q, but not conversely.

- Watch Video Solution

4. Prove that the square of any positive integer is of the form $5 q, 5 q+1,5 q+4$ for some integer q.
5. Show that the square of an odd positive integer is of the form $8 q+1$, for some integer q.

- Watch Video Solution

