©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - MTG IIT JEE FOUNDATION

CHEMICAL EQUILIBRIUM

Illustrations

1. For the following reversible reaction, ${ }^{\mathrm{N}} 2 \mathrm{C}+3 \mathrm{H} 2$ represent the dynamic equilibrium graphically.

- View Text Solution

2. For the reactions,
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
and $\frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$
write down the expression for equilibrium constant K_{1} and K_{2}. How is K_{1} related to K_{2} ?

- View Text Solution

3. An equilibrium system for the reaction between hydrogen and iodine to give hydrogen iodide at 670 K in a 5 litre flask contains 0.4 mole of hydrogen, 0.4 mole of iodine and 2.4 moles of hydrogen iodide. Calculate the equilibrium constant.

- View Text Solution

4. In the following gaseous phase equilibrium in 5 L flask at constant temperature, number of moles of SO_{2} and SO_{3} are equal. Calculate number of moles of O_{2} at equilibrium.

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}, \mathrm{~K}_{c}=5
$$

5. For a reaction $X \rightarrow Y$, heat of reaction is $+83.68 k J$, energy of reactant X is 167.36 kJ and energy of activation is 209.20 kJ . Calculate (i) threshold energy (ii) energy of product Y and (iii) energy of activation for the reverse reaction $(Y \rightarrow X)$.

- View Text Solution

6. Classify the following reactions as endothermic or exothermic.
(1) $\mathrm{N}_{2(g)}+\mathrm{O}_{2(g)}+180.5 \mathrm{~kJ} \rightarrow 2 \mathrm{NO}_{(g)}$
(2) $4 \mathrm{NH}_{3(g)}+5 \mathrm{O}_{2(g)}-905.6 \mathrm{~kJ} \rightarrow 4 \mathrm{NO}_{(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(g)}$
(3) $\mathrm{N}_{2} \mathrm{O}_{4}\left(\mathrm{H}^{\circ}=9.16 \mathrm{kJmol}^{-1}\right) \rightarrow 2 \mathrm{NO}_{2}\left(H^{\circ}=33.2 \mathrm{kJmol}^{-1}\right)$
(4) $\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightarrow 2 \mathrm{NH}_{3(g)}\left(H_{N H_{3}}^{\circ}=-46.1 \mathrm{kJmol}^{-1}\right)$

Note : Enthalpy of element is taken as zero $\left(H_{N_{2}}^{\circ}=0\right),\left(H_{H_{2}}^{\circ}=0\right)$

- View Text Solution

7. Consider the following reversible reaction at equilibrium
`2H_(2)O_((g)) What conditions will lead to maximum decomposition of

D View Text Solution

8. For the water-gas shift reaction :
$\left.{ }^{`} \mathrm{CO}_{-}(\mathrm{g})\right)+\mathrm{H}_{-}(2) \mathrm{O}_{-}((\mathrm{g}))$ does the amount of H_{2} in an equilibrium mixture increase or decrease when the temperature is increased? How does K change when the temperature is decreased?

- View Text Solution

9. Does the number of moles of reaction products increase, decrease or remain the same when each of the following equilibria is subjected to a decrease (\downarrow) in pressure (by increasing (\uparrow) volume)?
(a) 2 CO _((g))
(b) ${ }^{\mathrm{N}}$ _2O_(4(g))
(c) `CaO_((s)) + CO_(2(g)) (d) `3Fe_((s)) + 4H_2O_((g))
10. For the water gas reaction,
$C_{(s)}+H_{2} O_{(g)} \rightarrow \mathrm{CO}_{(g)}+H_{2(g)}$ the standard Gibbs energy for the reaction at 1000 K is $-8.1 \mathrm{kJmol}^{-1}$. Calculate its equilibrium constant.

D View Text Solution

Solved Examples

1. For the following chemical equation, write expression for equilibrium constants K_{c} and ${ }^{K}$ K_p $2 \mathrm{NO} _2$ Also write their proper units.

- View Text Solution

2. Calculate the equilibrium concentration ratio of C to A , if 2.0 mol each of A and B were allowed to come to equilibrium at 300 K .

- View Text Solution

3. In the industrial synthesis of hydrogen, mixtures of CO and H_{2} are enriched in H_{2} by allowing the $C O$ to reacts with steam. The chemical equation for this so called water - gas shift reaction is
`CO_((g)) + H_2O_((g)) If at $200^{\circ} \mathrm{C}, p_{\mathrm{CO}_{2}}=0.2 \mathrm{~atm}, p_{\mathrm{H}_{2}}=0.1 \mathrm{~atm}, p_{\mathrm{CO}}=2 \mathrm{~atm}, p_{\mathrm{H}_{2} \mathrm{O}}=0.01 \mathrm{~atm}$. Calculate K_{c}.

- View Text Solution

4. Classify the following reactions according to their extent of taking place.
(a) $2 \mathrm{H}_{-} 2+\mathrm{O}_{-} 2$
(b) ${ }^{2} \mathrm{H}_{-} 2 \mathrm{O}$
(c) 'H_2 + I_2
(d) 'N_2O_4

- View Text Solution

5. At $46^{\circ} C, K_{p}$ for the reaction,
'N_2O_(4(g))
6. 0.15 mole of $C O$ taken in 2.5 L flask is maintained at 750 K along with a catalyst so that the following reaction can take place.
${ }^{`} \mathrm{CO}_{-}((\mathrm{g}))+2 \mathrm{H}_{-}(2(\mathrm{~g}))$ Hydrogen is introduced until the total pressure of the system is 8.5 atm at equilibrium and 0.08 mole of methanol is formed. Calculate K_{c} for the above equilibrium.

- View Text Solution

7. The equilibrium constant for the reaction :2SO_(2(g)) + O_(2(g)) Find the value of K_{p} for each of the following reactions at the same temperature :
(i) 'sO_(2(g)) + 1/2 O_(2(g)) (ii) `SO_(3(g)) (iii) '3SO_(2(g)) + O_(2(g))

D View Text Solution

8. A mixture of $\mathrm{H}_{2}, \mathrm{~N}_{2}$ and NH_{3} with molar is concentrations $5.0 \times 10^{-3} \mathrm{molL}^{-1}, 4.0 \times 10^{-3} \mathrm{molL}^{-1} \quad$ at and $2.0 \times 10^{-3} \mathrm{molL}^{-1}$
respectively was prepared and heated to 500 K . The value of K_{c} for the reaction :
‘3H_(2(g)) + N_(2(g))

- View Text Solution

9. The degree of dissociation of $P C l_{5}$ at a certain temperature and under atmospheric pressure is 0.2 . Calculate the pressure at which it will be half dissociated at the same temperature.

- View Text Solution

10. Calculate ΔG° and the equilibrium constant for the formation of NO_{2} from NO and O_{2} at '298 K NO_((g)) $+1 / 2 \mathrm{O}_{-}(2(\mathrm{~g}))$ Where $\Delta_{f} G^{\circ}\left(N O_{2}\right)=52.0 \mathrm{kmol}^{-1}$
$\Delta_{f} G^{\circ}(N O)=87.0 \mathrm{kJmol}^{-1}$
$\Delta_{f} G^{\circ}\left(O_{2}\right)=0 \mathrm{kJmol}^{-1}$

Exercise Multiple Choice Questions

1. For a reaction in the equilibrium state, the rate constants for the forward and backward reactions are 2.38×10^{4} and 8.15×10^{-5} respectively. What is the value of the equilibrium constant?
A. 2.92
B. 3.84
C. 3.05
D. 10^{-3}

Answer: A

- View Text Solution

2. The equilibrium constant for the reaction, ${ }^{\prime} \mathrm{N}$ _(2(g)) $+\mathrm{O}_{-}(2(\mathrm{~g})$)
A. 40×10^{-4}
B. 4×10^{-4}
C. 4×10^{-3}
D. the data is insufficient.

Answer: B

- View Text Solution

3. A quantity of $P C l_{5}$ was heated in a $10 \mathrm{dm}^{3}$ vessel at $250^{\circ} \mathrm{C}$. At equilibrium, the vessel contains 0.1 mole of $P C l_{5}$ and 0.2 mole of $C l_{2}$. The equilibrium constant for the reaction is
A. 0.05
B. 0.02
C. 0.03
D. 0.04

Answer: D

- View Text Solution

4. Nitric oxide reacts with bromine and gives nitrosyl bromide as per reaction given below:
${ }^{`} 2 \mathrm{NO}_{-}((\mathrm{g}))+\mathrm{Br}_{-}(2(\mathrm{~g}))$ When 0.087 mol of NO and 0.0437 mol of $\mathrm{Br} r_{2}$ are mixed in a closed container at constant temperature, 0.0518 mol of $N O B r$ is obtained at equilibrium. The equilibrium amount of nitric oxide and bromine are respectively
A. $0.0352 \mathrm{~mol}, 0.0352 \mathrm{~mol}$
B. $0.0718 \mathrm{~mol}, 0.0178 \mathrm{~mol}$
C. $0.0352 \mathrm{~mol}, 0.0178 \mathrm{~mol}$
D. $0.0718 \mathrm{~mol}, 0.0352 \mathrm{~mol}$

Answer: C

- View Text Solution

5. Sulphide ion in alkaline solution reacts with solid sulphur to form polysulphide ions having formula $S_{2}^{2-}, S_{3}^{2-}, S_{4}^{2-}$ and so on. The equilibrium constant for the formation of S_{2}^{2-} is 12 and for the formation of S_{3}^{2-} is 136 , both from S and S^{2-}. What is the equilibrium constant for the formation of S_{3}^{2-}. from S_{2}^{2-} and S ?
A. 12
B. 11
C. -0.094
D. 16

Answer: B

- View Text Solution

6. For the reaction, ${ }^{\text {'2NO_(2(g)) } R=0.0831 \mathrm{~kJ} / \mathrm{mol} \mathrm{K}}$

When K_{p} and K_{c} are compared at $184^{\circ} \mathrm{C}$ it is found that
A. K_{p} is greater than K_{c}
B. K_{p} is less than K_{c}
C. $K_{p}=K_{c}$
D. whether K_{p} is greater than, less than or equal to K_{c} depends upon the total gas pressure.

Answer: A

D View Text Solution

7. At constant temperature, the equilibrium constant $\left(K_{p}\right)$ for the decomposition reaction, 'N_2O_(4(g)) $K_{p}=\left(4 x^{2}+P\right) /\left(1-x^{2}\right)$, where $\mathrm{P}=$ pressure, $\mathrm{x}=\mathrm{extent}$ of decomposition. Which one of the following statements is true?
A. K_{p} increases with increase of P .
B. K_{p} increases with increase of x .
C. K_{p} increases with decrease of x .
D. K_{p} remains constant with change in P and x .

Answer: D

- View Text Solution

8. Favourable conditions for manufacture of ammonia by the reaction, 'N_2 + 3H_2
A. low temperature and low pressure
B. low temperature and high pressure
C. high temperature and low pressure
D. high temperature and high pressure.

Answer: B

- View Text Solution

9. The reaction quotient (Q) at equilibrium is
A. $=1$
B. $=K$
C. $>K$
D. $<K$

Answer: B

- View Text Solution

10. For the reaction ` $a+b$
A. 2
B. 9
C. 4
D. 3

Answer: C

D View Text Solution

11. K_{c} for $A+B \Leftrightarrow C+D$ is 10 at $25^{\circ} C$. If a container contains $1,2,3$, $4 \mathrm{~mol} /$ litre of A, B, C and D respectively at $25^{\circ} C$, the reaction shell proceed:
A. proceed from left to right
B. proceed from right to left
C. be at equilibrium
D. none of the above.

Answer: A

- Watch Video Solution

12. At equilibrium, the amount of HI in a 3 litre vessel was 12.8 g . Its equilibrium concentration is
A. 4.267 M
B. 0.033 M
C. 0.1 M
D. 0.2 M

Answer: B

- Watch Video Solution

13. Which one is correct representation for
'2SO_3
A. $K_{p}=\frac{\left(p_{\mathrm{SO}_{2}}\right)^{2}\left(p_{O_{2}}\right)}{\left(p_{\mathrm{SO}_{3}}\right)^{2}}$
B. $K_{c}=\frac{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{SO}_{3}\right]^{2}}$
C.

$$
K_{p}=\frac{\left(\text { mole of } S O_{2}\right)^{2} \times\left(\text { mole of } O_{2}\right)}{\left(\text { mole of } S O_{3}\right)^{2}} \times\left[\frac{p}{\text { total mole at equilibrium }}\right]
$$

D. All of the above

Answer: D

- View Text Solution

14. If K_{1} and K_{2} are the respective equilibrium constants for the two reactions,

$$
\mathrm{XeF}_{6(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \rightarrow \mathrm{XeOF}_{4(g)}+2 \mathrm{HF}_{(g)}
$$

$$
\mathrm{XeO}_{4(g)}+\mathrm{XeF}_{6(g)} \rightarrow \mathrm{XeOF}_{4(g)}+\mathrm{XeO}_{3} F_{2(g)}
$$

The equilibrium constant for the reaction,

$$
\mathrm{XeO}_{4(g)}+2 \mathrm{HF}_{(g)} \rightarrow \mathrm{XeO}_{3} \mathrm{~F}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \text { is }
$$

A. K_{1} / K_{2}
B. $K_{1} K_{2}$
C. K_{2} / K_{1}
D. $K_{1} K_{2}^{2}$

Answer: C

- View Text Solution

15. Which one is reversible process?
A. Melting of ice at $10^{\circ} \mathrm{C}$
B. Mixing of two gases by diffusion
C. Evaporation of water at $100^{\circ} \mathrm{C}$ and 1 atm pressure
D. None of the above

Answer: C

16. The equilibrium constant of the reaction, $H_{2}+I_{2} \Leftrightarrow 2 H I$ is 50 . If the volume of the container is reduced to half of its original value, the value of equilibrium constant will be
A. 25
B. 50
C. 75
D. 100

Answer: B

- Watch Video Solution

17. In an-aqueous solution of volume 500 ml , when the reaction of $2 \mathrm{Ag}^{+}+\mathrm{Cu} \Leftrightarrow \mathrm{Cu}^{2+}+2 \mathrm{Ag}$ reached equilibrium, the $\left[\mathrm{Cu}^{2+}\right]$ was x M . when 500 ml of water if further a added at the equilibrium $\left[\mathrm{Cu}^{2+}\right]$ will be
A. $2 x M$
B. $x M$
C. between $x M$ and $\frac{x}{2} M$
D. less than $\frac{x}{2} M$

Answer: D

- Watch Video Solution

18. Which of the following relative value of k_{f} (rate constant of forward reaction) and k_{b} (rate constant of backward reaction) results in an equilibrium mixture that contain large amount of reactants and small amounts of products?
A. $k_{f}>k_{b}$
B. $k_{b}=k_{f}$
C. $k_{f}<k_{b}$
D. $k_{b} \ggg k_{f}$

- Watch Video Solution

19. The degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}, \mathrm{~N}_{2} \mathrm{O}_{4(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$, at temperature T and total pressure P is α. Which of the following expressions is correct for the equilibrium constant of this reaction at this temperature and pressure?
A. $2 \alpha /\left(1-\alpha^{2}\right)$
B. $\alpha^{2} P /(1-\alpha)$
C. $4 \alpha^{2} /\left(1-\alpha^{2}\right)$
D. $4 \alpha^{2} P /\left(1-\alpha^{2}\right)$

Answer: D

D View Text Solution

20. Equilibrium constant for the reaction,
$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{CO}_{(\mathrm{g})} \rightarrow \mathrm{H}_{2(g)}+\mathrm{CO}_{2(g)}$ is 81 . If the velocity constant of the forward reaction is $162 \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$, what is the velocity constant (in $L \mathrm{~mol}^{-1} s^{-1}$) for the backward reaction?
A. 13122
B. 2
C. 261
D. 243

Answer: B

- View Text Solution

21. 5 moles of PCl_{5} are heated in a closed vessel of 5 litre capacity. At equilibrium 40% of $P C l_{5}$ is found to be dissociated. What is the value of K_{c} ?
A. 0.266 M
B. 0.133 M
C. 2.5 M
D. 0.20 M

Answer: A

D Watch Video Solution

22. For the reaction,
$\mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \Leftrightarrow \mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)}$
at a given temperature, the equilibrium amount of $C O_{2(g)}$ can be increased by:
A. adding a suitable catalyst
B. adding an inert gas
C. decreasing the volume of the container
D. increasing the amount of $C O_{g}$

D Watch Video Solution

23. What is the equilibrium expression for the reaction

$$
P_{4}(s)+50_{2}(g) \Leftrightarrow P_{4} O_{10}(s)
$$

A. $K_{c}=\frac{\left[P_{4} O_{10}\right]}{\left[P_{4}\right]\left[O_{2}\right]^{5}}$
B. $K_{c}=\frac{1}{\left[O_{2}\right]^{5}}$
C. $K_{c}=\left[O_{2}\right]^{5}$
D. $K_{c}=\frac{\left[P_{4} O_{10}\right]}{5\left[P_{4}\right]\left[O_{2}\right]}$

Answer: B

D Watch Video Solution

24. When an inert gas is introduced into the system $2 \mathrm{HI} \rightarrow \mathrm{H}_{2}+I_{2}$, the degree of dissociation of HI gets'
A. suppressed
B. unchanged
C. increased
D. doubled.

Answer: B

D View Text Solution

25. Consider the reaction $A_{2(g)} \rightarrow 2 A_{(g)}$. The equilibrium constants for the reaction at 500 K and 600 K are 2×10^{-70} and 3.1×10^{-5} respectively. The above reaction will be
A. fast
B. slow
C. endothermic
D. exothermic.

Answer: C

- View Text Solution

26. If a chemical reaction is at equilibrium, it means that
A. the reactants are completely transformed into the products
B. product formation is minimum
C. equal amounts of reactants and products are present
D. the rates of forward and backward reactions are equal.

Answer: D

- View Text Solution

27. The active mass of a solid
A. is always zero
B. is always infinity
C. is always one
D. would depend on the nature of the solid.

Answer: C

- View Text Solution

28. A reaction flask contained 0.01 mole of $A s_{2} S_{3}$ and 0.01 mole of H_{2} to attain equilibrium at 700 K .
$A s_{2} S_{3(g)} \rightarrow 2 A s_{(s)}+3 H_{2} S_{(g)}$
Evolved $\mathrm{H}_{2} \mathrm{~S}$ gas when passed through excess of CuSO_{4} solution gives 0.005 moles of CuS precipitate. What is the K_{p} for the given reaction?
A. 0.05
B. $(0.005)^{3}$
C. 1
D. 2

Answer: C

D View Text Solution

29. In a reversible chemical reaction having two reactants in equilibrium, if the concentration of the reactants are doubled then the equilibrium constant will :
A. also be doubled
B. be halved
C. become one fourth
D. remain the same.

Answer: D

- Watch Video Solution

30. The equilibrium constant $K_{p_{1}}$ and $K_{p_{2}}$ for the reactions $X \Leftrightarrow 2 Y$ and $Z \Leftrightarrow P+Q$, respectively are in the ratio of $1: 9$. If the degree of dissociation of X and Z be equal, then the ratio of total pressure at these equilibrium is:
A. 1:1
B. 1:3
C. 1:9
D. $1: 36$

Answer: D

- Watch Video Solution

31. The equilibrium constant for the following reaction $a A+b B \rightarrow c C+d D$ is K . The equilibrium constant of the reaction $n c C+n d D \rightarrow n a A+n b B$, will be
A. K^{n}
B. $\frac{n}{K}$
C. n. K
D. $\frac{1}{K^{n}}$

Answer: D

D View Text Solution

32. At 550 K , the Kc for the following reaction is $10^{4} \mathrm{~mol}^{-1} L . X(g)+Y(g) \rightarrow Z(g)$ At equilibrium, it was observed that $[X]=\frac{1}{2}[Y]=\frac{1}{2}[Z]$. What is the value of $[Z]\left(\right.$ in $\left.\mathrm{mol}^{-1} L\right)$ at equilibrium ?
A. 2×10^{-4}
B. 10^{-4}
C. 2×10^{4}
D. 10^{4}

- Watch Video Solution

33. At constant temperature, mole number of which equation does not change on increasing volume?
A. $N_{2(g)}+O_{2(g)} \Rightarrow 2 N O_{(g)}$
B. $2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(g)} \Rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
C. $N_{2(g)}+3 H_{2(g)} \Rightarrow 2 \mathrm{NH}_{3(g)}$
D. $2 \mathrm{SO}_{2(g)}+O_{2(g)} \Rightarrow \mathrm{SO}_{3(g)}$

Answer: A

D View Text Solution

34. According to law of mass action, the rate of a reaction is directly proportional to
A. molarities of the reactants
B. normalities of the reactants
C. molalities of the reactants
D. mole fractions of the reactants

Answer: A

D View Text Solution

35. In which of the following reactions, the equilibrium constant will have no units of concentration?
A. $N O_{(g)} \Rightarrow \frac{1}{2} N_{2(g)}+\frac{1}{2} O_{2(g)}$
B. $H_{2(g)}+I_{2(g)}<\Rightarrow 2 H I_{(g)}$
C. $\mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)}<\Rightarrow \mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)}$
D. In all the above reactions.
36. In an exothermic reaction, a 10° rise in temperature will
A. decrease the value of equilibrium constant
B. double the value of K_{c}
C. not produce any change in K_{c}
D. produce some increase in K_{c}

Answer: A

- Watch Video Solution

37. If pressure is increased on the equilibrium

Ice \Leftrightarrow Water
which of the following occurs?
A. More of the ice melts
B. More of the ice is formed.
C. There is no change in the amounts of ice and water.
D. Some water gets vaporised

Answer: A

- View Text Solution

38. In a chemical equilibrium, the rate constant for the backward reaction is 7.5×10^{-4} and the equilibrium constant is 1.5 the rate constant for the forward reaction is:
A. 5×10^{-4}
B. 2×10^{-3}
C. 1.125×10^{-3}
D. 9.0×10^{-4}

Answer: C

39. At $448^{\circ} \mathrm{C}$, the equilibrium constant (K) for the reaction ${ }^{`} \mathrm{H}_{-}(2(\mathrm{~g}))+$ I_(2(g))
A. reaction is in equilibrium
B. reaction will proceed in the forward direction
C. reaction will proceed in the backward direction
D. no reaction will take place.

Answer: B

- View Text Solution

40. In the given reaction
'2X_((g)) + Y_((g)) which combination of pressure and temperature will give the highest yield of Z at equilibrium?
A. 1000 atm and $200^{\circ} \mathrm{C}$
B. 500 atm and $500^{\circ} \mathrm{C}$
C. 500 atm and $100^{\circ} \mathrm{C}$
D. 1000 atm and $500^{\circ} \mathrm{C}$

Answer: A

- View Text Solution

41. An endothermic reaction $A \rightarrow B$ has activation energy equal to $40 \mathrm{kcalmol}^{-1}$ and heat of reaction is $15 \mathrm{kcal} \mathrm{mol}^{-1}$. The activation energy of the reaction $B \rightarrow A$ is
A. 25 kcal
B. 45 kcal
C. 65 kcal
D. 30 kcal

D View Text Solution

42. Reversible reaction is studied graphically as shown in the given figure.
'N_2O_4

Select the correct statements out of I, II and III.
I. Reaction quotient has maximum value at point A.
II. Reaction proceeds left to right at a point when

$$
\left[N_{2} O_{4}\right]=\left[N O_{2}\right]=0.1 M
$$

III. $K_{c}=Q$ when point D or F is reached.
A. I, II
B. II, III
C. I, III
D. I, II, III

Answer: B

- View Text Solution

43. For a reaction $2 A \rightarrow P$, which of the equilibrium concentration correspond to K_{c} value for 0.01 moles of P and 0.1 moles of A at equilibrium?
A. $0.04,0.2$
B. $0.18,0.3$
C. $0.08,0.2$
D. $0.16,0.8$
44. In a reversible reaction, catalyst
A. increases the rate of the forward reaction
B. decreases the rate of the backward reaction
C. increases the rates of forward and backward reactions equally
D. alters the equilibrium constant of the reaction.

Answer: C

- View Text Solution

45. The equilibrium constant K for the reaction, ${ }^{\text {' }} \mathrm{HA}+\mathrm{B}$
A. 10^{-3}
B. 10^{-5}
C. 10^{7}
D. 10^{3}

Answer: D

- View Text Solution

46. In the equilibrium reaction, ${ }^{\prime} A+B$
A. The reaction is exothermic.
B. The reaction is endothermic.
C. The reaction has ΔH of $20 \mathrm{kcalmol}^{-1}$.
D. Both (a) and (c).

Answer: B

- View Text Solution

47. Which one of the following is homogeneous?
A. $\mathrm{H}_{2} \mathrm{O}_{(l)}<\Rightarrow \mathrm{H}_{2} \mathrm{O}_{(g)}$
B. $\mathrm{H}_{2} \mathrm{O}_{(s)}<\Rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}$
C. $N_{2(g)}+3 H_{2(g)}<\Rightarrow 2 \mathrm{NH}_{3(g)}$
D. $\mathrm{CaCO}_{3(s)}<\Rightarrow \mathrm{CaO}_{(s)}+\mathrm{CO}_{2(g)}$

Answer: C

- View Text Solution

48. The value of $\log K_{p}$ for the reaction ${ }^{\prime} \mathrm{N}_{-}(2(\mathrm{~g}))+3 \mathrm{H}_{-}(2(\mathrm{~g}))$
A. 4.3
B. 5.8
C. 6.5
D. 3.3

Answer: B

49. What concentration of CO_{2} be in equilibrium with $2.5 \times 10^{-2} \mathrm{~mol}$ litre $^{-1}$ of $C O$ at $100^{\circ} \mathrm{C}$ for the reaction ‘FeO_((s)) + CO_((g))
A. 1×10^{-4}
B. 2.5×10^{-2}
C. 5×10^{-2}
D. 12.5×10^{-2}

Answer: D

- View Text Solution

50. The reaction $H_{2(g)}+I_{2(g)} \rightarrow 2 H I_{(g)}$ does not proceed to completion because it is
A. exothermic
B. endothermic
C. reversible
D. HI formed is unstable.

Answer: C

- View Text Solution

Exercise Match The Following

1.

(1) Heterogeneous
A. $P-1, Q-4, R-2, S-1,3$
B. $P-1,2, Q-3, R-1,3 S-2$
C. $P-3,4, Q-2,4, R-2,4, S-3$
D. $P-1,3, Q-3, R-2, S-4$

Answer: D

- View Text Solution

$$
\begin{aligned}
& \text { List-I } \\
& \text { (P) } \mathrm{N}_{2(x)}+\underset{\sim}{\rightleftarrows} \mathrm{H}_{2(x)} \mathrm{NH}_{3(x)} \\
& \text { (endothermic) } \\
& \text { (Q) } 2 \mathrm{SO}_{2(x)}+\mathrm{O}_{2(x)} \\
& 2 \mathrm{SO}_{3(\mathrm{x})} \\
& \text { (exothermic) } \\
& \text { (R) } \mathrm{N}_{2(x)}+\mathrm{O}_{2(x)} \\
& 2 \mathrm{NO}_{(x)} \\
& \text { (endothermic) } \\
& \text { (S) } \mathrm{PCl}_{4(x)}+\mathrm{Cl}_{2(x)} \\
& \rightleftharpoons \mathrm{PCl}_{s(s)} \\
& \text { (endothermic) } \\
& \text { List-II } \\
& \text { (1) Forward shift by } \\
& \text { rise in pressure } \\
& \text { (2) Unaffected by } \\
& \text { change in pressure } \\
& \text { (3) Forward shift by } \\
& \text { rise in temperature } \\
& \text { (4) Forward shift by } \\
& \text { lowering the } \\
& \text { temperature } \\
& 2 . \\
& \text { List-I } \\
& \text { (P) } \mathrm{N}_{2(x)}+3 \mathrm{H}_{2(x)} \mathrm{NH}_{4(x)} \\
& \text { (Q) } 2 \mathrm{SO}_{2(5)}+\mathrm{O}_{2(5)} \\
& \begin{array}{l}
\text { (exothermic } \\
\mathrm{N}_{2(x)}+\mathrm{O}_{2(x)}
\end{array} \\
& \mathrm{O}_{(x)}
\end{aligned}
$$

D. $P-3, Q-1,2, R-4, S-2$

Answer: A

- View Text Solution

(P) $\begin{array}{r}\text { List-1 } \\ Q-K\end{array}$
(P) $\begin{array}{r}\text { List-1 } \\ Q-K\end{array}$
(Q) $Q<K$
(R) $Q>K$
(S) $Q \ggg 1$
3.
A. $P-1,3, Q-2, R-3, S-4$
B. $P-2,3, Q-4, R-2, S-3$
C. $P-4, Q-2,3, R-2, S-1,2$
D. $P-3, Q-1,3, R-4, S-2$

Answer: C

List-1
 (P) Reaction is reversed
 (Q) Reaction is divided by 2
 (R) Reaction is multiplied by 2
 (S) Reaction is divided into 2 steps

4.

A. $P-3, Q-1, R-2, S-4$
B. $P-3, Q-2, R-1, S-4$
C. $P-4, Q-2, R-3, S-1$
D. $P-2, Q-3, R-1, S-4$

Answer: A

- View Text Solution

List-I
(P) $\mathrm{N}_{2(x)}+\mathrm{O}_{2(g)}$ $2 \mathrm{NO}_{(s)}$ - heat
(Q) $\mathrm{PCl}_{s(y)} \rightleftharpoons \mathrm{PCl}_{3_{(s)}}$ $+\mathrm{Cl}_{2(\mathrm{~g})}$ - heat
$(\mathrm{R}) \mathrm{N}_{2(s)}+3 \mathrm{H}_{2(s)} \rightleftharpoons$
$2 \mathrm{NH}_{3(s)}+$ heat
(S) $\mathrm{C}_{(x) 1}+\mathrm{H}_{2} \mathrm{O}_{(x)}$

$$
\mathrm{CO}_{(s)}+\mathrm{H}_{2(s)} \text { - heat }
$$

5.

List-II
(1) $K_{c}<K_{p}$
(2) Units of $K_{\text {F }}$ are (atm)
(3) With increase in temperature, K_{δ} increases
(4) Equilibrium is unaffected by pressure
A. $P-1,2, Q-3, R-4, S-2$
B. $P-3,4, Q-1,3, R-2, S-1,3$
C. $P-1,3, Q-2,3, R-1, S-3,4$
D. $P-1,4, Q-1,2, R-2, S-1$

Answer: B

- View Text Solution

1. Assertion : The equilibrium of the reaction `A_((g)) Reason : Change of volume, changes the activation energy.
A. If both assertion and reason are true and is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

- View Text Solution

2. Assertion: Greater the value of K_{p} for a reaction lesser is the ΔG value.

Reason : ΔG value determines the spontaneity of the reactions.
A. If both assertion and reason are true and is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

- View Text Solution

3. Assertion : Chemical equilibrium represents a state of a reversible reaction in which properties of the system (pressure, concentration etc.) become constant under the given set of conditions.

Reason : The chemical equilibrium is a state of rest in which opposite reactions stop.
A. If both assertion and reason are true and is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

- View Text Solution

4. Assertion : If $Q_{c}<K_{c}$ the reaction proceeds in forward direction.

Reason : K_{c} is independent of initial concentrations of reactants.
A. If both assertion and reason are true and is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

- View Text Solution

5. Assertion : ${ }^{\mathrm{H}}$ _(2(g)) $+\mathrm{I}_{-}(2(\mathrm{~g}))$ Increase in pressure does not cause a shift in equilibrium for the formation of HI .

Reason : Formation of HI is an endothermic reaction.
A. If both assertion and reason are true and is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

- View Text Solution

6. Assertion : For a gaseous reaction, $2 A \rightarrow B$, the equilibrium constant K_{p} is less than K_{c}.

Reason : K_{p} is related to K_{c} as $K_{p}=K_{c}(R T)^{\Delta n_{g}}$
A. If both assertion and reason are true and is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

- View Text Solution

7. Assertion : Equilibrium is dynamic in nature.

Reason : Equilibrium can be attained from either direction.
A. If both assertion and reason are true and is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D View Text Solution

8. Assertion: Reaction quotient of a reaction at any time decides the direction in which the reaction will proceed.

Reason : The value of reaction quotient cannot be greater than the equilibrium constant.
A. If both assertion and reason are true and is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

- View Text Solution

9. Assertion : If standard free energy change of a reaction is zero, this implies that equilibrium constant of the reaction D is unity.

Reason : For a reaction in equilibrium, in equilibrium constant is always unity.
A. If both assertion and reason are true and is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

D View Text Solution

10. Assertion : The equilibrium constant is fixed and characteristics for any given chemical reaction at a specified temperature.

Reason : The equilibrium constant for an exothermic reaction decreases as the temperature increases.
A. If both assertion and reason are true and is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

- View Text Solution

Exercise Comprehension Type

1. The numerical value of equilibrium constant is very important because it helps us to know whether we expect a reaction mixture at equilibrium to contain a high or a low concentration of products. Equilibrium constant helps us to predict the extent of reaction, direction of reaction
and to calculate equilibrium concentrations.
The equilibrium constant for a reaction
${ }^{\prime} \mathrm{H}_{-}(2(\mathrm{~g}))+1 / 2 \mathrm{O}_{-}(2(\mathrm{~g}))$
A. concentration of products will be high
B. concentrations of reactants will be high
C. concentration of both reactants and products will be equal.
D. reaction proceeds to very small extent.

Answer: A

- View Text Solution

2. The numerical value of equilibrium constant is very important because it helps us to know whether we expect a reaction mixture at equilibrium to contain a high or a low concentration of products. Equilibrium constant helps us to predict the extent of reaction, direction of reaction and to calculate equilibrium concentrations.

For the reaction ${ }^{`} \mathrm{H}_{-}(2(\mathrm{~g}))+\mathrm{I}_{-}(2(\mathrm{~g}))$
A. be at equilibrium
B. move in forward direction
C. move in backward direction
D. cannot predict.

Answer: B

- View Text Solution

3. The numerical value of equilibrium constant is very important because it helps us to know whether we expect a reaction mixture at equilibrium to contain a high or a low concentration of products. Equilibrium constant helps us to predict the extent of reaction, direction of reaction and to calculate equilibrium concentrations.

The equilibrium constant for the reaction ${ }^{\mathrm{N}} \mathrm{N}(2(\mathrm{~g}))+3 \mathrm{H} _(2(\mathrm{~g}))$
A. $0.25 \mathrm{~mol}^{-1}$
B. $0.11 \mathrm{~mol}^{-1}$
C. $2.5 \mathrm{~mol}^{-1}$
D. $3.84 \mathrm{~mol}^{-1}$

Answer: D

- View Text Solution

4. Ammonia is manufactured according to the following reaction
${ }^{\mathrm{N}} \mathrm{N}$ (2(g)) $+3 \mathrm{H}_{-}(2(\mathrm{~g}))$ During preparation the pressure and temperature are maintained at 200 atm and $500^{\circ} \mathrm{C}$ respectively inside the chamber. The reaction is carried out in presence of Fe catalyst and known as Haber's process.

If K_{c} for the reaction is $594.75 \mathrm{~mol}^{-1}$, then the value of K_{p} will be
A. 5.94×10^{-5}
B. 2.42×10^{-3}
C. 1.47×10^{-1}
D. 1.47×10^{-3}

D View Text Solution

5. Ammonia is manufactured according to the following reaction
${ }^{\prime} \mathrm{N}_{-}(2(\mathrm{~g}))+3 \mathrm{H}_{-}(2(\mathrm{~g}))$ During preparation the pressure and temperature are maintained at 200 atm and $500^{\circ} \mathrm{C}$ respectively inside the chamber.

The reaction is carried out in presence of Fe catalyst and known as Haber's process.

For the given reaction, yields of ammonia at temperature T_{1}, T_{2} and T_{3} are found to be $40 \%, 60 \%$ and 80%. Then for temperature T_{1}, T_{2} and T_{3} the correct option is
A. $T_{3}>T_{2}>T_{1}$
B. $T_{1}>T_{2}>T_{3}$
C. $T_{1}=T_{2}=T_{3}$
D. nothing could be predicted.

- View Text Solution

6. Ammonia is manufactured according to the following reaction
${ }^{\prime} \mathrm{N}_{-}(2(\mathrm{~g}))+3 \mathrm{H}_{-}(2(\mathrm{~g}))$ During preparation the pressure and temperature are maintained at 200 atm and $500^{\circ} \mathrm{C}$ respectively inside the chamber.

The reaction is carried out in presence of Fe catalyst and known as Haber's process.

If K_{c} for the reaction is $594.75 \mathrm{~mol} L^{-1}$, then the value of K_{c} for the decomposition of NH_{3},
`2NH_(3(g))
A. $\sqrt{594.75}$
B. $(594.75)^{2}$
C. $1 / 594.75$
D. $1 /(594.75)^{2}$

- View Text Solution

7. In heterogeneous equilibrium, involving gaseous constituents both K_{p} and K_{c} can be calculated. Consider a reaction
`aA_((g)) +bB_((g)) $\Delta n=(c+d)-(a+b)$
$K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}, K_{p}=\frac{p C^{c} \times P D^{d}}{p_{A}^{a} \times p B^{b}}$
K_{p} and K_{c} are related as, $K_{p}=K_{c}(R T)^{\Delta n_{g}}$

Which of the following have, $K_{p}=K_{c}$?
(i) `H_(2(g)) + I_(2(g)) (ii) \({ }^{\prime} \mathrm{N}_{-}(2(\mathrm{~g}))+\mathrm{O}_{-}(2(\mathrm{~g}))\) (iii) \({ }^{\prime} 2 \mathrm{NO}_{-}((\mathrm{g}))+\mathrm{Cl}_{-}(2(\mathrm{~g}))\) (iv) `2SO_(2(g)) + O_(2(g))
A. (i) and (ii)
B. (ii) and (iii)
C. (iii) and (iv)
D. (i) and (iv)

D View Text Solution

8. In heterogeneous equilibrium, involving gaseous constituents both K_{p} and K_{c} can be calculated. Consider a reaction
`aA_((g)) +bB_((g)) $\Delta n=(c+d)-(a+b)$
$K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}, K_{p}=\frac{p C^{c} \times P D^{d}}{p_{A}^{a} \times p B^{b}}$
K_{p} and K_{c} are related as, $K_{p}=K_{c}(R T)^{\Delta n_{g}}$
The unit of equilibrium constant for, ${ }^{\prime} H_{-}(2(g))+I_{-}(2(g))$
A. $m o l L^{-1}$
B. $m o l^{2} L^{-1}$
C. $L \mathrm{~mol}^{-1}$
D. none of these.

Answer: D

View Text Solution

9. In heterogeneous equilibrium, involving gaseous constituents both K_{p} and K_{c} can be calculated. Consider a reaction
${ }^{\mathrm{a}} \mathrm{A}_{-}((\mathrm{g}))+\mathrm{bB} _((\mathrm{g})) \Delta n=(c+d)-(a+b)$
$K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}, K_{p}=\frac{p C^{c} \times P D^{d}}{p_{A}^{a} \times p B^{b}}$
K_{p} and K_{c} are related as, $K_{p}=K_{c}(R T)^{\Delta n_{g}}$
For $\mathrm{CaCO}_{3(s)} \mathrm{CaO}{ }_{(s)}+\mathrm{CO}_{2(g)}, K_{p} / K_{c}$ is equal to
A. $R T$
B. $1 / R T$
C. $\frac{1}{(R T)^{2}}$
D. $(R T)^{2}$

Answer: A

- View Text Solution

10. In heterogeneous equilibrium, involving gaseous constituents both
K_{p} and K_{c} can be calculated. Consider a reaction
$` \mathrm{aA} _((\mathrm{g}))+\mathrm{bB} _((\mathrm{g})) \Delta n=(c+d)-(a+b)$
$K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}, K_{p}=\frac{p C^{c} \times P D^{d}}{p_{A}^{a} \times p B^{b}}$
K_{p} and K_{c} are related as, $K_{p}=K_{c}(R T)^{\Delta n_{g}}$
Which of the following have same units of K_{p} ?
(i) 'NH_3HS_((s)) (ii) 'PCl_(5(g)) (iii) 'AB_(2(g)) (iv)'2NH_(3(g))
A. (i) and (ii)
B. (ii) and (iii)
C. (iii) and (iv)
D. (i), (ii) and (iii)

Answer: B

- View Text Solution

11. Equilibrium is affected by several factors like concentration, pressure or temperature. The addition of catalyst or addition of inert gas can also affect the equilibrium. The effect of change in temperature, pressure and concentration on equilibrium can be explained and predicted by LeChatelier's principle.

Dilute HCl is added to the following equilibrium at constant temperature

'CH_3COOH

A. concentration of $\mathrm{CH}_{3} \mathrm{COO}^{-}$will increase
B. concentration of $\mathrm{CH}_{3} \mathrm{COO}^{-}$will decrease
C. equilibrium constant will increase
D. equilibrium constant will decrease.

Answer: B

- View Text Solution

12. Equilibrium is affected by several factors like concentration, pressure or temperature. The addition of catalyst or addition of inert gas can also affect the equilibrium. The effect of change in temperature, pressure and concentration on equilibrium can be explained and predicted by LeChatelier's principle.

The mixture containing the following equilibrium ' N _2O_4
A. increase in the concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$
B. increase in formation of NO_{2}
C. no change in the concentration of NO_{2} or $\mathrm{N}_{2} \mathrm{O}_{4}$
D. change in equilibrium constant.

Answer: A

- View Text Solution

13. Equilibrium is affected by several factors like concentration, pressure or temperature. The addition of catalyst or addition of inert gas can also
affect the equilibrium. The effect of change in temperature, pressure and concentration on equilibrium can be explained and predicted by LeChatelier's principle.

Consider the reaction,
${ }^{\prime} \mathrm{N}_{\mathrm{\prime}}(2(\mathrm{~g}))+3 \mathrm{H}_{\mathrm{L}}(2(\mathrm{~g}))$ If we increase the temperature,
A. concentration of N_{2} decreases
B. concentration of H_{2} decreases
C. concentration of NH_{3} decreases
D. concentration of NH_{3} increases.

Answer: C

- View Text Solution

14. Equilibrium is affected by several factors like concentration, pressure or temperature. The addition of catalyst or addition of inert gas can also affect the equilibrium. The effect of change in temperature, pressure and concentration on equilibrium can be explained and predicted by Le-

Chatelier's principle.
A and B are gaseous substances which react reversibly to give two gaseous substances C and D, accompanied by libration of heat. At equilibrium, it is observed that $K_{p}=K_{c}$. The equilibrium cannot be disturbed by
A. adding A
B. adding D
C. increasing temperature
D. increasing pressure.

Answer: D

- View Text Solution

Exercise Integer Numerical Value Type

1. For the reaction :
$2 A \rightarrow B+C$
At a given time, the concentration of reaction mixture is $[A]=[B]=[C]=3 \times 10^{-4} M$. The value of reaction quotient for the reaction is'

- View Text Solution

2. A sample of $H I(g)$ is placed in flask at a pressure of 0.2 atm . At equilibrium. The partial pressure of $H I(g)$ is 0.04 atm . What is K_{p} for the given equilibrium?
$2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$

- Watch Video Solution

3. For the reaction involving decomposition of ammonia to form hydrogen and nitrogen gases, the equilibrium constant has the units $(\mathrm{bar})^{n}$. Then n is

D View Text Solution

4. ΔG° for the reaction, $N_{2}+3 H_{2} \rightarrow 2 N H_{3}$ is $-33 k J$. The K_{p} (in atm^{-2}) for the reaction was found to be'

- View Text Solution

5. At $540 \mathrm{~K}, 0.10$ mole of $P C l_{5}$ are heated in a 8 litre flask. The pressure of the equilibrium mixture is found to be 1.0 atm. The value of K_{p} (in atm) for the reaction is
