©゙doubtnut

CHEMISTRY

BOOKS - MTG IIT JEE FOUNDATION

MOLE CONCEPT, STOICHIOMETRY AND BEHAVIOUR OF GASES

Illustrations

1. 5.975 g of the higher oxide of metal gave 5.575 g
lower oxide on heating. The quantity of the lower oxide gave 5.175 g of metal on reduction. Prove that
these results are in accordance with the law of multiple proportion.

D View Text Solution

2. 2.16 of copper metal when treated with nitric acid followed by ignition of the nitrate gave 2.70 g of copper oxide. In another experiment 1.15 g of copper oxide upon reduction with hydrogen gave 0.92 g of copper. Show that the above data illustrate the Law of Definite Proportions.

- Watch Video Solution

3. Explain Dalton's atomic theory of matter on the basis of law of chemical combination and other related chemical observations.

D Watch Video Solution

4. Calculate number of moles in 392 grams of sulphuric acid.

D Watch Video Solution

5. Calculate the mass of 0.1 mole of KNO_{3}.

6. Calculate the number of atoms in 52 moles of He .

- Watch Video Solution

7. Calculate the volume at STP occupied by 14 g of N_{2}.

D Watch Video Solution

8. A compound of $\mathrm{C}, \mathrm{H}, \mathrm{Cl}$ has molecular formula of
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$. Its vapour density is 49.5 . Calculate its total molecular mass without addition of mass of elements.
9. Calculate the atomic mass of chromium, in $\mathrm{K}_{2} \mathrm{CrO}_{4}$ having 26.78% of Cr .

D Watch Video Solution

10. A compound was found to have 78.2% boron and 21.8% of hydrogen. Its molar mass was determined to be $27.6 \mathrm{~g} \mathrm{~mol}^{-1}$. What is the empirical and molecular formula of the compound.

- Watch Video Solution

11. Determine the percentage composition of potassium nitrate $\left(\mathrm{KNO}_{3}\right)$.

D Watch Video Solution

12. Calculate the mass of iron which will be converted into its oxide $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ by the action of 18 g of steam on it.

D Watch Video Solution

13. Calculate The volume of oxygen at STP obtained by decomposing 12.26 of KClO_{3}.

- Watch Video Solution

14. 3.0 g of H_{2} reacts with 29.0 g of O_{2} to yield $\mathrm{H}_{2} \mathrm{O}$.

Which is the limiting reactant?

D Watch Video Solution

15. 3.0 g of H_{2} reacts with 29.0 g of O_{2} to yield $\mathrm{H}_{2} \mathrm{O}$.

Calculate the maximum amount of $\mathrm{H}_{2} \mathrm{O}$ that can be formed.

D Watch Video Solution

16. 3.0 g of H_{2} reacts with 29.0 g of O_{2} to yield $\mathrm{H}_{2} \mathrm{O}$.

Calculate the amount of one of the reactants which remains unreacted.

D Watch Video Solution

17. What is the concentration of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ in mol L^{-1} if its $20 g$ are dissolved in enough water to make a final volume up to $2 L$?

- Watch Video Solution

18. Calculate the mole fraction of ethanol if 9.2 g of it is mixed with 1.8 g water.

D Watch Video Solution

19. The volumes of ozone and chlorine diffusing in the
same time are $35 m L$ and $29 m L$, respectively. If the molecular weight of chlorine is 71 , calculate the molecular weight of ozone.

- Watch Video Solution

20. Which will diffuse faster, ammonia or CO_{2} ?

- Watch Video Solution

21. A 8 litre container has gas at 14 atm. Container is
connected to another empty vessel of volume 20 litres.
Find the pressure exerted by the gas in the new system at constant temperature.

D Watch Video Solution

22. At what temperature, the volume of a given amount of gas at $25^{\circ} \mathrm{C}$ becomes twice when pressure is kept constant?
23. 4 gram oxygen and 2 gram hydrogen are kept in a one-litre container at $0^{\circ} \mathrm{C}$. Calculate the total pressure.

D Watch Video Solution

Solved Examples

1. Why do atomic masses of most of the elements in atomic mass units involve fractions?
2. Silver is a very precious metal and is used in Jewellery. One million atoms of silver weigh $1.79 \times 10^{-16} \mathrm{~g}$. Calculate the atomic mass of silver.

D Watch Video Solution

3. The density d of a gas is doubled due to compression. What is the pressure after compression if the initial pressure is in P units?

D Watch Video Solution

4. In three moles of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$, calculate :

Number of moles of carbon atoms

- Watch Video Solution

5. In three moles of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$, calculate :

Number of moles of hydrogen atoms

- Watch Video Solution

6. In three moles of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$, calculate :

Number of molecules of ethane.

D Watch Video Solution
7. Volume of a solution chagnes with chagne in temperature, then what will the molality of the solution be affected by temperature? Give reason for your answer.

D Watch Video Solution

8. An atom of an element weighs $6.644 \times 10^{-23} \mathrm{~g}$.

Calculate g atoms of element in 40 kg -

- Watch Video Solution

9. How many moles of nitrogen are needed to produce 8.2 moles of ammonia by reaction with hydrogen ?

D Watch Video Solution

10. At fixed temperature and 600 mm pressure, the density of a gas is 42 . At the same temperature and 700 mm pressure, what is the density of the gas?

- Watch Video Solution

11. A polymer containing iron has 0.165% by weight of metal in it. Its molecular weight is 67200 . Find out the
number of iron atoms present in each molecule of it.

D Watch Video Solution

12. 2.82 g of glucose (molar mass $=180$) is dissolved in

30 g of water. Calculate (a) the molality.

- Watch Video Solution

13. 2.82 g of glucose (molar mass $=180$) is dissolved in

30 g of water. Calculate (b) mole fraction of glucose and water.

Exercise Mcq

1. One mole of helium gas represents
A. $6.023 \times 10^{23} \mathrm{He}$
B. $6.023 \times 10^{23} H e_{2}$
C. $3.011 \times 10^{23} H e_{2}$
D. $12.069 \times 10^{23} \mathrm{He}$

Answer: A

- Watch Video Solution

2. The modern basis of expressing atomic and molecular masses is based on
A. O-16
B. H-1
C. C-12
D. $\mathrm{Cl}-35.5$

Answer: C

- Watch Video Solution

3. One mole of glucose contains _____ moles of carbon.
A. one
B. six
C. twelve
D. two

Answer: B

- Watch Video Solution

A. 6.023×10^{23} atoms of C
B. 6.023×10^{23} atoms of O
C. 18.1×10^{23} molecules of CO_{2}
D. 3 g atoms of CO_{2}

Answer: A

D Watch Video Solution

5. The number of molecules in 4.25 g of ammonia is approximately
A. 1×10^{23}
B. 1.5×10^{23}
C. 2.0×10^{23}
D. 2.5×10^{23}

Answer: B

D Watch Video Solution

6. Number of mole of $1 m^{3}$ gas at $N T P$ are:
A. 4.46
B. 44.6
C. 446
D. 4460

Answer: B

- Watch Video Solution

7. An organic compound made of C, H and N contains
20% of nitrogen. Its molecular weight is
A. 70
B. 140
C. 100
D. 65

Answer: A
8. Percentage by weight of ' M ' in MCl_{3} is 20%. Atomic weight of that element M is
A. 26.6
B. 13
C. 40
D. 10.4

Answer: A
9. 2.3×10^{22} atoms of an element weigh 6.9 g . Atomic weight of that element is
A. 290 g
B. 180 g
C. 34.4 g
D. 10.4 g

Answer: B

D Watch Video Solution

10. Number of atoms present in 1.6 g of methane is
A. 6.02×10^{23}
B. 3.01×10^{23}
C. 3.01×10^{22}
D. 6.02×10^{22}

Answer: D

D Watch Video Solution

11. The vapour density of a gas is 11.2. The volume occupied by 11.2 g of the gas at STP will be
A. 22.4 L
B. 11.2 L
C. 1 L
D. 2.25 L

Answer: B

D Watch Video Solution

12. If ' M ' is the molecular weight of a gas, what volume in L at STP would be occupied by M/4 of that gas
A. 11.2
B. 22.4
C. 5.6
D. 22.4

Answer: C

- Watch Video Solution

13. Number of moles of CaCO_{3} which contain 1.5 moles of oxygen atoms is
A. 1.5
B. 1.0
C. 0.5
D. 2.0

Answer: C
14. The empirical formula of hydrogen peroxide is
A. HO
B. $\mathrm{H}_{2} \mathrm{O}_{2}$
C. HO_{2}
D. $(\mathrm{HO})_{2}$

Answer: A

- Watch Video Solution

15. Which of the following is independent of temperature of a gas?
A. Volume
B. Rate of diffusion
C. Vapour density
D. Pressure

Answer: C

- View Text Solution

16. The absolute temperature of a gas
A. is a measure of number of molecules of the gas
B. indicates nature of the gas
C. is a measure of volume of the gas
D. none of these

Answer: C

D Watch Video Solution

17. Which of the following graphs relates V and T ?

A.

Answer: A

- Watch Video Solution

18. The mass of carbon present in 0.5 mole of $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is -
A. 1.8 g
B. 18 g
C. 3.6 g
D. 36 g

Answer: D

- Watch Video Solution

19. How is pressure related to volume at constant temperature?
A. $P \propto V$
B. $P \propto \frac{1}{V}$
C. $P=V$
D. No relation

Answer: B

- Watch Video Solution

20. Equal volumes of different gases at any definite temperature and pressure have.
A. equal atoms
B. equal masses
C. equal densities
D. equal molecules

Answer: D

- Watch Video Solution

21. The value of gas contant per degree per mol is approximately :
A. 1 cal
B. 2 cal
C. 3 cal
D. 4 cal

Answer: B

D Watch Video Solution

22. The total pressure of a mixture of two gases is
A. sum of partial pressures of the gases
B. difference in partial pressures of the gases
C. product of partial pressures of the gases.
D. ratio of partial pressures of the gases

Answer: A

D Watch Video Solution

23. A gas is found to have a formula $[C O]_{x}$. If its
vapour density is 70 , then value of x is
A. 2.0
B. 3.0
C. 5.0
D. 6.0

Answer: C

D Watch Video Solution

24. In the gas equation, $\mathrm{PV}=\mathrm{nRT}$
A. V denotes volume of one mole
B. n is the number of molecules of a gas
C. n moles of gas have volume V

D. P is pressure of gas when only one mole of gas is

present

Answer: C

D Watch Video Solution

25. Which one of the following plots will be a parabola at constant temperature?
A. $P v s \frac{1}{V}$
B. PV vs P
C. V vs P
D. none of these

Answer: D

D Watch Video Solution

26. The kinetic theory of gases predicts that total
kinetic energy of a gaseous assembly depends on
A. pressure of the gas
B. volume of the gas
C. temperature of the gas
D. P, V, T of the gas

Answer: C
27. Volume occupied by an ideal gas at one atmospheric pressure and $0^{\circ} \mathrm{C}$ is V ml . Its volume at 273 K will be
A. $V \mathrm{~mL}$
B. $\mathrm{V} / 2 \mathrm{~mL}$
C. 2 VmL
D. none of these

Answer: A

D Watch Video Solution
28. When gases are heated from 20° to $40^{\circ} \mathrm{C}$ at constant pressure their volumes
A. increase by same magnitude
B. become double
C. increase in the ratio of their molecular masses
D. increase but to different extent

Answer: D

D Watch Video Solution

29. In the equation of state of an ideal gas ${ }^{`} \mathrm{PV}=\mathrm{nRT}$,
the value of universal gas constant would depend only
A. nature of the gas
B. pressure of the gas
C. temperature of the gas
D. units of measurements

Answer: D

D Watch Video Solution

30. If the absolute temperature of a gas is doubled and the pressure is reuced to one-half, the volume of the gas will
A. remain unchanged
B. be doubled
C. increase four-fold
D. get reduced to $1 / 4$ th

Answer: C

D Watch Video Solution

31. The percentage of nitrogen in urea is about:
A. 46
B. 85
C. 18
D. 28

Answer: A

D Watch Video Solution

32. To neutralise 100 mL of $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$, amount of 2 N

NaOH required is
A. 5 mL
B. 0.5 mL
C. 0.1 mL
D. 100 mL

Answer: A

D Watch Video Solution

33. A metal oxide contains 60% metal . The equivalent weight of metal is
A. 12
B. 24
C. 40
D. 48

Answer: A
34. The simplest formula of a compound containing 50% of element X (atomic mass 10) and 50% of element Y (atomic mass 20) is
A. XY
B. $X_{2} Y$
C. $X Y_{3}$
D. $X_{2} Y_{3}$

Answer: B

- Watch Video Solution

35. In a hydrocarbon the mass ratio of hydrogen to
carbon is $1: 3$. The empirical formula of the hydrocarbon is
A. CH
B. CH_{2}
C. CH_{4}
D. CH_{3}

Answer: C
(D) Watch Video Solution
36. The molecular mass of a compound is 88 amu having empirical formula of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$. Its molecular formula will be
A. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
B. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
C. $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{2}$
D. $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{O}_{2}$

Answer: B

- Watch Video Solution

37. If 0.56 g KOH is present in 100 mL of solution, then
its normality will be
A. 1 N
B. 0.1 N
C. 2 N
D. 0.2 N

Answer: B

- Watch Video Solution

38. To prepare 600 mL of 2 N solution of $\mathrm{NH}_{4} \mathrm{OH}$, volume of $10 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}$ required is
A. 60 mL
B. 120 mL
C. 300 mL
D. 600 mL

Answer: B

D Watch Video Solution
39. Normality of an acid is equal to
A. $M \times$ acidity
B. $M \times$ basicity
C. $m \times$ acidity
D. $m \times$ basicity

Answer: B

D Watch Video Solution

40. Number of moles of solute dissolved per litre of solution is
A. normality
B. molarity

C. molality

D. none of these

Answer: B

D Watch Video Solution

41. Under similar conditions of P and T, equal volume of all gases contains equal number of molecules. It is
A. Boyle's law
B. Charles' law
C. Gay Lussac's
D. Avogadro's law

Answer: D

- Watch Video Solution

42. Which of the following is independent of temperature?
A. normality
B. molarity
C. molality
D. All of above

Answer: C
43. The number of moles of NaCl in $250 \mathrm{~cm}^{3}$ of 0.50 M

NaCl is
A. 0.250 mol
B. 2 mol
C. 0.125 mol
D. 1 mol

Answer: C

44. A solution is prepared by dissolving 10 g of NaOH in 100 mL of solution. Its molarity is
A. 1.0 M
B. 2.5 M
C. 1.5 M
D. 4.0 M

Answer: B

D Watch Video Solution

45. The empirical formula of sucrose is :
A. $\mathrm{CH}_{2} \mathrm{O}$
B. CHO
C. $C_{12} H_{22} O_{11}$
D. $\mathrm{C}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$

Answer: C

D Watch Video Solution

46. Which one of the following is not the standard for atomic mass?
A. ${ }_{1}^{1} H$
B. ${ }_{6}^{12} C$
C. ${ }_{6}^{14} C$
D. ${ }_{8}^{16} \mathrm{O}$

Answer: C

D Watch Video Solution

47. Mole fraction of sugar, if 34.2 g of sugar is dissolved in 180 g of water is
A. 0.0099
B. 0.099
C. 0.99
D. 9.90

- Watch Video Solution

48. Which of the following contains more molecules?
A. 1 g CO 2
B. $1 \mathrm{~g} N_{2}$
C. $1 \mathrm{~g} H_{2}$
D. 1 g CH 4

Answer: C

- Watch Video Solution

49. One mole of $\mathrm{H}_{2} \mathrm{O}$ corresponds to
A. 22.4 L at 1 atm and $25^{\circ} \mathrm{C}$
B. 6.023×10^{23} atoms of hydrogen
C. 18 g
D. 1 g

Answer: C

D Watch Video Solution

50. The volume of 0.5 mole of gas at 1 atm pressure and $273^{\circ} \mathrm{C}$ temperature is
A. 22.4 L
B. 11.2 L
C. 44.8 L
D. 5.6 L

Answer: A

D Watch Video Solution

Exercise Match The Following
List-I
List-II
(P) Charles' law
(1) $V \propto n$

1. (Q) Boyle's law
(2) $P \propto T$
(R) Avogadro's law
(3) $P \propto 1 / V$
(S) Gay Lussac's law
(4) $V \propto T$
A. P-1, Q-3, R-2, S-4
B. P-4, Q-3, R-1, S-2
C. P-3, Q-2, R-4, S-1
D. P-2, Q-1, R-4, S-3

Answer: B

List-I
(P) 12 g of carbon
(1) Atomic mass unit
2. (Q) 28 g of nitrogen
(2) Gram atom
(R) 22400 cc
(S) $1.67 \times 10^{-24} g$
(3) Gram molar volume
(4) Gram molecule
A. P-2, Q-4, R-3, S-1
B. P-1, Q-4, R-3, S-2
C. P-3, Q-2, R-1, S-4
D. P-4, Q-1, R-2, S-3

Answer: A
List-I
List-II
(P) Mass of one atom of C
3. (Q) Number of atoms in 144 g C
(R) 24 g of magnesium
(1) $12 \times N_{A}$
(2) $12 / N_{A}$
(3) $1 / N_{A}$
(S) 1 atomic mass unit
(4) N_{A}
A. P-3, Q-2, R-4, S-1
B. P-4, Q-3, R-1, S-2
C. P-2, Q-1, R-3, S-4
D. P-2, Q-1, R-4, S-3

Answer: D

D Watch Video Solution

4.

List-I
List-II
(P) 0.1 mole
(1) 9 g of water
(Q) 0.2 mole
(2) 0.1 g atom of iron
(R) 0.25 mole
(3) 1.5×10^{23} molecules of oxygen gas
(S) 0.5 mole (4) 4480 mL of CO_{2} at STP
A. P-1, Q-3, R-2, S-4
B. P-2, Q-4, R-1, S-3
C. P-2, Q-4, R-3, S-1
D. P-3, Q-1, R-4, S-2

Answer: C

List-I
(P) Molarity
5. (Q) Normality
(R) Molality
(3) $n_{A} /\left(n_{A}+n_{B}\right)$
(S) Mole fraction
A. P-4, Q-1, R-3, S-2
B. P-4, Q-1, R-2, S-3
C. P-1, Q-3, R-4, S-2
D. P-2, Q-4, R-3, S-1

Answer: B

D Watch Video Solution

1. Assertion : The empirical mass of ethene is half of its molecular mass.

Reason : The empirical formula represents the simplest whole number ratio of various atoms present in a compound.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false
D. If both assertion and reason are false

Answer: A

- View Text Solution

2. Assertion : One atomic mass unit is defined as one twelfth of the mass of one C-12 atom.

Reason: C-12 is the least abundant isotope of carbon and has been choosen as the standard.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false
D. If both assertion and reason are false

Answer: C

D Watch Video Solution

3. Assertion : Empirical and molecular formula of
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ is same.
Reason : $\mathrm{Na}_{2} \mathrm{CO}_{3}$ does not form hydrate.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason
is not the correct explanation of assertion
C. If assertion is true but reason is false
D. If both assertion and reason are false

Answer: C

D View Text Solution

4. Assertion : Both 32 g of SO_{2} and 8 g of CH_{4} contain
same number of molecules.

Reason : Equal moles of two compounds contain same number of molecules.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false
D. If both assertion and reason are false

Answer: A

D View Text Solution

5. Assertion: $1 \mathrm{~g} O_{2}$ and $1 \mathrm{~g} O_{3}$ have equal number of atoms.

Reason : Mass of 1 mole atom is equal to its gram atomic mass.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false
D. If both assertion and reason are false

Answer: A

View Text Solution

6. Assertion : Avogadro's law holds good only under similar conditions of temperature and pressure.

Reason : Changes in temperature or pressure bring about changes in volume.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false
D. If both assertion and reason are false
7. Assertion : Gram atomic mass and gram molecular mass of all elemental substances are same.

Reason : All metallic elements are diatomic.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason
is not the correct explanation of assertion
C. If assertion is true but reason is false
D. If both assertion and reason are false

Answer: D

- View Text Solution

8. Assertion : One mole of oxygen gas occupies 22.4 L volume at STP.

Reason : Volume of a gas depends on temperature and pressure and also on nature of gas.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false
D. If both assertion and reason are false

Answer: C

D View Text Solution

9. Assertion : Plot of P vs $1 / \mathrm{V}$ is a straight line.

Reason : Pressure is directly proportional to volume.
A. If both assertion and reason are true and reason
is the correct explanation of assertion
B. If both assertion and reason are true but reason
C. If assertion is true but reason is false
D. If both assertion and reason are false

Answer: C

D View Text Solution

10. Assertion : Kinetic energy of a gas is independent of temperature.

Reason : Absolute temperature of gas is not always $0^{\circ} C$.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false
D. If both assertion and reason are false

Answer: D

D View Text Solution

Exercise Comprehension Type

1. PASSAGE-I : Earlier the concept of equivalent weights
was very common and the concentrations of the
solutions were expressed in terms of normalities. The convenience was that the substances react in the ratio of their gram equivalents. So, there was no need to write balanced equation to determine the amounts of
the substances reacted. However, determination of equivalent weights posed difficulty in certain cases.

Moreover, the equivalent weight of the same
substance is not same in different reactions. For
example, KMnO_{4} has different equivalent weight in
the basic medium than in the acidic medium. Hence,
now-a-days, mole concept is more common and the concentrations of the solutions are generally expressed in terms of molarities, though some other methods like molality, mole fraction etc. are also used.

The equivalent weight of Cu
A. will be same in CuO and $\mathrm{Cu}_{2} \mathrm{O}$
B. will be double in $\mathrm{Cu}_{2} \mathrm{O}$ than in CuO
C. will be double in CuO than in $\mathrm{Cu}_{2} \mathrm{O}$
D. depends upon whether copper is pure or impure

Answer: B

D View Text Solution

2. PASSAGE-I : Earlier the concept of equivalent weights was very common and the concentrations of the solutions were expressed in terms of normalities. The convenience was that the substances react in the ratio of their gram equivalents. So, there was no need to
write balanced equation to determine the amounts of
the substances reacted. However, determination of equivalent weights posed difficulty in certain cases.

Moreover, the equivalent weight of the same substance is not same in different reactions. For example, KMnO_{4} has different equivalent weight in
the basic medium than in the acidic medium. Hence,
now-a-days, mole concept is more common and the concentrations of the solutions are generally expressed in terms of molarities, though some other methods like molality, mole fraction etc. are also used.

The chloride of an element is found to contain 52.8%
chlorine. The equivalent weight of the element is
A. 63.4
B. 31.7
C. 47.2
D. 18.7

Answer: B

- View Text Solution

3. PASSAGE-I : Earlier the concept of equivalent weights
was very common and the concentrations of the solutions were expressed in terms of normalities. The convenience was that the substances react in the ratio
of their gram equivalents. So, there was no need to write balanced equation to determine the amounts of
the substances reacted. However, determination of equivalent weights posed difficulty in certain cases.

Moreover, the equivalent weight of the same substance is not same in different reactions. For example, KMnO_{4} has different equivalent weight in the basic medium than in the acidic medium. Hence, now-a-days, mole concept is more common and the concentrations of the solutions are generally expressed in terms of molarities, though some other methods like molality, mole fraction etc. are also used.

A $40 \% \mathrm{w} / \mathrm{w}$ hydrochloric acid is found to have a density of $1.20 \mathrm{~g} m L^{-1}$. The molality of the above solution will be nearly.
A. 15.3 m
B. 16.3 m
C. 17.3 m
D. 18.3 m

Answer: D

- View Text Solution

4. PASSAGE-II : Empirical formula is the simplest formula of the compound which gives the atomic ratio of various elements present in one molecule of the compound. However, the molecular formula of the compound gives the number of atoms of various elements present in one molecule of the compound.

Molacular formula $=($ Empirical formula) $\times n$
implies $n=\frac{\text { Molecular mass }}{\text { Empirical formula mass }}$
A compound may have same empirical and molecular
formula. Both these formulae are calculated using percentage composition of constituent elements.

Which of the following compounds have the same empirical formula as that of formaldehyde?
A. Formic acid
B. Glucose
C. Sucrose
D. Ethanol

Answer: B
5. PASSAGE-II : Empirical formula is the simplest formula of the compound which gives the atomic ratio of various elements present in one molecule of the compound. However, the molecular formula of the compound gives the number of atoms of various elements present in one molecule of the compound.

Molacular formula $=($ Empirical formula) $\times n$
implies $n=\frac{\text { Molecular mass }}{\text { Empirical formula mass }}$
A compound may have same empirical and molecular
formula. Both these formulae are calculated using percentage composition of constituent elements.

An oxide of iodine (Atomic mass of $\mathrm{I}=127 \mathrm{u}$) contains
25.4 g of iodine and 8 g of oxygen. Its formula could be
A. $I_{2} O_{3}$
B. $\mathrm{I}_{2} \mathrm{O}$
C. $I_{2} O_{5}$
D. $I_{2} O_{7}$

Answer: C

D Watch Video Solution

6. PASSAGE-II : Empirical formula is the simplest
formula of the compound which gives the atomic ratio
of various elements present in one molecule of the compound. However, the molecular formula of the compound gives the number of atoms of various elements present in one molecule of the compound.

Molacular formula $=($ Empirical formula $) \times n$
implies $n=\frac{\text { Molecular mass }}{\text { Empirical formula mass }}$
A compound may have same empirical and molecular
formula. Both these formulae are calculated using percentage composition of constituent elements.

10 g of hydrofluoric acid gas occupies 5.6 litre of volume at STP. If the empirical formula of the gas is HF,
then its molecular formula in the gaseous state will be A. HF
B. $H_{2} F_{2}$
C. $H_{3} F_{3}$
D. $H_{4} F_{4}$

Answer: B

D Watch Video Solution

7. PASSAGE-III : In chemistry, 'mole' is an essential tool
for the chemical calculations. It is a basic SI unit adopted by the $14^{\text {th }}$ general conference on weights and measurements in 1971. A mole contains as many elementary particles as the number of atoms present in 12 g of ${ }^{12} C .1$ mole of a gas at STP occupies 22.4 litre volume. Molar volume of solids and liquids is not
definite. Molar mass of a substance is also called gram-
atomic mass or gram molar mass. The virtual meaning of mole is plenty, heap or the collection of large numbers. 1 mole of a substance contains 6.023×10^{23}
elementary particles like atom or molecule. Atomic mass unit (amu) is the unit of atomic mass, e.g., atomic mass of single carbon is 12 amu .

The mass of one amu is approximately
A. 1 g
B. 0.5 g
C. $1.66 \times 10^{-24} g$
D. $3.2 \times 10^{-24} g$
8. PASSAGE-III : In chemistry, 'mole' is an essential tool
for the chemical calculations. It is a basic SI unit adopted by the $14^{\text {th }}$ general conference on weights and measurements in 1971. A mole contains as many elementary particles as the number of atoms present in 12 g of ${ }^{12} C .1$ mole of a gas at STP occupies 22.4 litre volume. Molar volume of solids and liquids is not definite. Molar mass of a substance is also called gramatomic mass or gram molar mass. The virtual meaning of mole is plenty, heap or the collection of large numbers. 1 mole of a substance contains 6.023×10^{23}
elementary particles like atom or molecule. Atomic
mass unit (amu) is the unit of atomic mass, e.g., atomic mass of single carbon is 12 amu .
5.6 litre of a gas at STP is found to have a mass of 22 g .

The molecular mass of the gas is
A. 22
B. 44
C. 88
D. 33

Answer: C

D Watch Video Solution
9. In chemistry, 'mole' is an essential tool for the chemical calculations. It is a basic SI unit adopted by
the $14^{\text {th }}$ general conference on weights and measurements in 1971. A mole contains as many elementary particles as the number of atoms present in 12 g of ${ }^{12} \mathrm{C} .1$ mole of a gas at STP occupies 22.4
litre volume. Molar volume of solids and liquids is not definite. Molar mass of a substance is also called gram-
atomic mass or gram molecular mass. The virtual meaning of mole is plenty, heap or the collection of large numbers. 1 mole of a substance contains 6.022×10^{23} elementary particles like atom or molecule. Atomic mass unit (amu) is the unit of atomic
mass, e.g., atomic mass of single carbon is 12 amu .

The mass of one molecule of water is approximately
A. 1 g
B. 0.5 g
C. $1.66 \times 10^{-24} g$
D. $3 \times 10^{-23} g$

Answer: D

- Watch Video Solution

10. PASSAGE-IV : 10 g of NaOH required certain amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ for complete neutralisation.

Calculate the amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
A. 10 g
B. 12.24 g
C. 24.5 g
D. 49 g

Answer: B

D Watch Video Solution

11. PASSAGE-IV : 10 g of NaOH required certain amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ for complete neutralisation.

Calculate the number of mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in it.
A. 1 mole
B. 0.1 mole
C. 0.5 mole
D. 0.125 mole

Answer: D

D Watch Video Solution

12. PASSAGE-IV : 10 g of NaOH required certain amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ for complete neutralisation.

Calculate the absolute mass of one molecule of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
A. $1.67 \times 10^{-27} g$
B. $9.2 \times 10^{-28} g$
C. $16.27 \times 10^{-23} g$
D. $3.4 \times 10^{-20} g$

Answer: C

D Watch Video Solution

Exercise Integer Numerical Value Type

1. Molecular formula of acetic acid is $\mathrm{CH}_{3} \mathrm{COOH}$. The number of atoms present in its empirical formula is
2. The value of n in molecular formula $\mathrm{Be}_{n} A l_{2} \mathrm{Si}_{6} \mathrm{O}_{18}$
(molecular mass $=537$) is
Given : Atomic mass of $\mathrm{Be}=9, \mathrm{Al}=27$
$\mathrm{Si}=28$ and $\mathrm{O}=16$

D Watch Video Solution
3. If 1.8 g of glucose (molar mass $=180$) is dissolved in 60 g of water the mole fraction of glucose is
4. Mass of 3.011×10^{23} molecules of methane in grams is

- Watch Video Solution

5. The normality (N) of 500 mL of 1 M hydrochloric acid is
