# d'doubtnut 

India's Number 1 Education App

MATHS

# BOOKS - MTG IIT JEE FOUNDATION 

## TRIANGLES

Illustrations

1. In figure , $\angle A=\angle B$ and $D E|\mid A B$. Prove that $\mathrm{AD}=\mathrm{BE}$


## - Watch Video Solution

2. $A B C D$ is a trapezium with $A B \| D C$. $E$ and $F$ are points on non-parallel sides $A D$ and $B C$ respectively such that $E F$ is parallel to $A B$. Show that $\frac{A E}{E D}=\frac{B F}{F C}$.
3. In a $A B C, D$ and $E$ are points on sides $A B a n d A C$ respectively such that $B D=C E$. If $\angle B=\angle C$, show that $D E B C$.

## - Watch Video Solution

4. $A B C D$ is a parallelogram. $P$ is a point on the side $B C D P$ when produced meets AB produced at L. Prove that $\frac{D P}{P L}=\frac{D C}{B L}$ (ii) $\frac{D L}{D P}=\frac{A L}{D C}$

## - Watch Video Solution

5. 

In
the
given
figure,
$D E||\mid B C, A D=2 \mathrm{~cm}, B D=2.5 \mathrm{~cm}, A E=3.2 \mathrm{~cm}$ and $D E=4 \mathrm{~cm}$.

Find $A C$ and $B C$.


- Watch Video Solution

6. In the given figure, $\angle A C B=90^{\circ}$ and $C D \perp A B$. Prove that $C D^{2}=B D \cdot A D$


## - Watch Video Solution

7. Prove that the line segments joining the mid-points of the sides of a triangle from four triangles, each of which is similar to the original triangle.

## - Watch Video Solution

8. In Fig. 4.132, if $A D \perp B C$ and $\frac{B D}{D A}=\frac{D A}{D C}$, prove that $A B C$ is a right triangle. (FIGURE)
9. Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

## - Watch Video Solution

10. Two isosceles triangles have equal vertical angles and their areas are in the ratio 16:25. Find the ratio of their corresponding heights.

## - Watch Video Solution

11. The areas of two similar triangles are $121 \mathrm{~cm}^{2}$ and $64 \mathrm{~cm}^{2}$ respectively. If the median of the first triangle is 12.1 cm , then the corresponding median of the other is :
12. Prove that the area of an equilateral triangle described on a side of a right-angled isosceles triangle is half the area of the equilateral triangle described on its hypotenuse.

## - Watch Video Solution

13. In a triangle $A B C, B=90^{\circ}$ and $D$ is the mid-point of $B C$ then prove that $A C^{2}=A D^{2}+3 C D^{2}$

## - Watch Video Solution

14. $B L$ and $C M$ are medians of a triangle $A B C$ right angled at $A$. Prove that $4\left(B L^{2}+C M^{2}\right)=5 B C^{2}$

## - Watch Video Solution

1. One angle of a triangle is equal to one angle of another triangle and the bisectors of these two equal angles divide the opposite sides in the same ratio, prove that the triangles are similar.

## - Watch Video Solution

2. In figure,$D E| | B C$.If $A D=x+1, D B=x-2, A E=x+2 a n d E C=x+3$, find the value of $x$.

3. In figure, if $P Q \| B C$ and $P R \| C D$. Prove that $\frac{A R}{A D}=\frac{A Q}{A B}$.


## - Watch Video Solution

4. ABC is a triangle in which $A B=A C$ and $D$ is a point on AC such that $B C^{2}=A C \times C D$. Prove that $B D=B C$.

## - Watch Video Solution

5. In Fig. 4.176, $X Y A C$ and $X Y$ divides triangular region $A B C$ into two parts equal in area. Determine $\frac{A X}{A B}$.

## - Watch Video Solution

6. In an isosceles $\triangle A B C, A B=A C$ and $B D \perp A C$. Prove that $\left(B D^{2}-C D^{2}\right)=2 C D \cdot A D$.

7. Equilateral triangles are drawn on the sides of a right triangle. Show that the area of the triangle on the hypotenuse is equal to the sum of the areas of triangles on the other two sides.

## - Watch Video Solution

8. P and Q are points on sides AB and AC respectively of $\triangle A B C$. If $\mathrm{AP}=3$ $\mathrm{cm}, \mathrm{PB}=6 \mathrm{~cm}, \mathrm{AQ}=5 \mathrm{~cm}$ and $\mathrm{QC}=10$, show that $\mathrm{BC}=3 \mathrm{PQ}$.

## - Watch Video Solution

9. In Fig. 4.192, $A B C$ is a right triangle right-angled at $B . A D$ and $C E$ are the two medians drawn from $A$ and $C$ respectively. If $A C=5 \mathrm{~cm}$ and $A D=\frac{3 \sqrt{5}}{2} \mathrm{~cm}$, find the length of $C E$. (FIGURE)
10. In $\triangle A B C, D E| | B C$ such that $\frac{A D}{D B}=\frac{3}{5}$. If $A C=5.6 \mathrm{~cm}$ then, $\mathrm{AE}=$ ?


## - Watch Video Solution

11. $A B C D$ is a quadrilateral; $P, Q$, RandS are the points of trisection of side $A B, B C, C D a n d D A$ respectively and are adjacent to $A a n d C$; prove that $P Q R S$ is parallelogram.

## - Watch Video Solution

12. If three or more parallel lines are intersected by two transversal; Prove that the intercepts made by them on tranversal are propotional.
13. $\triangle A B C$ and $\triangle D B C$ lie on the same side of BC , show in the figure. From a point on $B C \cdot P Q \| A B$ and $P R \| B D$ are drawn, meeting $A C$ at Q , and CD at R respectively. Prove that $Q A|\mid A D$.


## - Watch Video Solution

14. Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.
15. $O$ is any point inside a rectangle $A B C D$. Prove that $O B^{2}+O D^{2}=O A^{2}+O C^{2}$.

## - Watch Video Solution

16. In right-angled triangle $A B C$ in which $\angle C=90 o$, if $D$ is the midpoint of $B C$, prove that $A B^{2}=4 A D^{2}-3 A C^{2}$.

## - Watch Video Solution

## Ncert Section Exercise 61

1. Fill in the blanks using the correct word given in brackets: All circles are ......... (congruent, similar) All squares are ....... (similar, congruent) (iii) All ...... triangles are similar (isosceles, equilaterals):
2. Fill in the blanks using the correct word given in bracket: (i) All circles are $\qquad$ (congruent, similar) (ii) All squares are $\qquad$ . (similar, congruent)
(iii) All_____triangles are similar, (isosceles, equilateral) (iv) Two polygons of the

## - Watch Video Solution

3. Fill in the blanks using the correct word given in brackets: All circles are ......... (congruent, similar) All squares are ....... (similar, congruent) (iii)

All ..... triangles are similar (isosceles, equilaterals):

## - Watch Video Solution

4. Fill in the blanks using the correct word given in brackets: Two triangles are similar, if their corresponding angles are ...... (proportional, equal) Two triangles are similar, if their corresponding sides are (proportional, equal) (iii) Two polygons of the same number of sides are
similar, if (a) their corresponding angles are and (b) their corresponding sides are ........ (equal, proportional).

## - Watch Video Solution

5. Give two different examples of pair of (i) similar figures. (ii) non-similar figures.

## D Watch Video Solution

6. Give two different examples of pair of (i) similar figures. (ii) non-similar figures.

## - Watch Video Solution

7. State whether the following quadrilaterals non similar or not :


## - Watch Video Solution

## Ncert Section Exercise 62

1. In Figure (i) and (ii), $D E|\mid B C$. Find $E C$ in (i) and $A D$ in (ii).

## - Watch Video Solution

2. E and F are points on the sides PQ and PR respectively of $\triangle P Q R$. For each of the following cases, state whether $E F \| Q R$ : (i) $P E=3.9 \mathrm{~cm} . E Q=3$ $\mathrm{cm} . \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4(\mathrm{ii}) \mathrm{PE}=4 \mathrm{~cm} . \mathrm{QE}=4.5 \mathrm{~cm} . \mathrm{PF}=\mathrm{Scm}$ and $\mathrm{RF}=9$

## (D) Watch Video Solution

3. E and F are points on the sides PQ and PR respectively of $\triangle P Q R$. For each of the following cases, state whether $\mathrm{EF} \| \mathrm{QR}$ : (i) $\mathrm{PE}=3.9 \mathrm{~cm} . \mathrm{EQ}=3$ $\mathrm{cm} . \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4$ (ii) $\mathrm{PE}=4 \mathrm{~cm} . \mathrm{QE}=4.5 \mathrm{~cm} . \mathrm{PF}=\mathrm{Scm}$ and $\mathrm{RF}=9$ cm(iii)

## - Watch Video Solution

4. E and F are points on the sides PQ and PR respectively of $\triangle P Q R$. For each of the following cases, state whether $E F \| Q R$ : (i) $P E=3.9 \mathrm{~cm} . E Q=3$ $\mathrm{cm} . \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4$ (ii) $\mathrm{PE}=4 \mathrm{~cm} . \mathrm{QE}=4.5 \mathrm{~cm} . \mathrm{PF}=\mathrm{Scm}$ and $\mathrm{RF}=9$ cm(iii)

## - Watch Video Solution


5.

In the fig. if $\mathrm{LM} \| \mathrm{CB}$ and $\mathrm{LN} \| \mathrm{CD}$, prove that $\frac{A M}{A B}=\frac{A N}{A D}$

## - Watch Video Solution

6. In the given figure, $D E \| A C$ and $D F \| A E$.

Prove that $\frac{B F}{F E}=\frac{B E}{E C}$


## - Watch Video Solution

7. In figure $D E \| O Q$ and $D F$ || OR. Show that $E F|\mid Q R$.

## - Watch Video Solution

8. In figure $A, B$ and $C$ are points on $O P, O Q$ and $O R$ respectively such that $A B|\mid P Q$ and $A C$ || PR. Show that $B C \| Q R$.

## - Watch Video Solution

9. Theorem 8.10 : The line drawn through the mid-point of one side of a triangle, parallel to another side bisects the third side.

## - Watch Video Solution

10. Prove that the line joining the middle points of the two sides of a triangle is parallel to the third side.

## - Watch Video Solution

11. $A B C D$ is a trapezium in which $A B \| D C$ and its diagonals intersect each other at the point O . Show that $\frac{A O}{B O}=\frac{C O}{D O}$.

## - Watch Video Solution

12. The diagonals of a quadrilateral $A B C D$ intersect each other at the point O such that $\frac{A O}{B O}=\frac{C O}{D O}$. Show that ABCD is a trapezium.

## Ncert Section Exercise 63

1. State which pairs of triangles in Figure are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

## - Watch Video Solution

2. State which pairs of triangles in Figure are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

## - Watch Video Solution

3. State which pairs of triangles in the given figures are similar .Write the similarity criterion used by you for answering the question and also write
the pairs of similar triangles in the symbolic form :


## - Watch Video Solution

4. State which pairs of triangles in Figure are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

## - Watch Video Solution

5. State which pairs of triangles in Figure are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

## Watch Video Solution

6. State which pairs of triangles in Figure are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

## - Watch Video Solution

7. In the figure , $\triangle O D C \sim \triangle O B A, \angle B O C=125^{\circ}$ and $\angle C D O=70^{\circ}$.

Find $\angle D O C, \angle D C O$ and $\angle O A B$.

8. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B|\mid D C$ intersect each other at the point O . Using a similarity criterion for two triangles, show that $\frac{O A}{O C}=\frac{O B}{O D}$

## - Watch Video Solution

9. In the given figure, $\frac{Q R}{Q S}=\frac{Q T}{P R}$ and $\angle 1=\angle 2$ then prove that $\triangle P Q S \sim \triangle T Q R$.

10. In the given figure, S and T are points on sides PR and QR of $\triangle P Q R$ such that $\angle P=\angle R T S$. Show that $\triangle R P Q \sim \Delta R T S$.


- Watch Video Solution

11. In the figure ,if $\triangle A B E \cong \triangle A C D$, Show that $\triangle A D E \sim \triangle A B C$.


## - Watch Video Solution

12. In the figure, altitudes AD and CE of $\triangle A B C$ intersect each other at the point P. Show that:


## $\triangle A E P \sim \Delta C D P$

## - Watch Video Solution

13. In Figure altitudes $A D$ and CE of DABC intersect each other at the point P. Show that: (i) $\triangle A E P \Delta C D P$ (ii) $\triangle A B D \Delta C B E$
$\triangle A E P \triangle A D B$ (iv) $\triangle P D C \triangle B E C$

## - Watch Video Solution

14. In Figure altitudes $A D$ and CE of DABC intersect each other at the point P. Show that: (i) $\triangle A E P \Delta C D P$ (ii) $\triangle A B D \Delta C B E$
$\triangle A E P \triangle A D B$ (iv) $\triangle P D C \Delta B E C$

## - Watch Video Solution

15. In Figure altitudes AD and CE of DABC intersect each other at the point P. Show that: (i) $\triangle A E P \Delta C D P$ (ii) $\triangle A B D \Delta C B E$
$\triangle A E P \triangle A D B$ (iv) $\triangle P D C \triangle B E C$

## - Watch Video Solution

16. E is a point on the side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects CD at F . Show that $\triangle A B E \sim \Delta C F B$.

## - Watch Video Solution

17. In figure $A B C$ and $A M P$ are two right triangles, right angles at $B$ and $M$ respectively. Prove that (i) $\triangle A B C \triangle A M P$ (ii) $\frac{C A}{P A}=\frac{B C}{M P}$

## - Watch Video Solution

18. CD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE of $\triangle A B C$ and $\triangle E F G$ respectively. If $\triangle A B C \Delta F E G$, show that:(i) $\frac{C D}{G H}=\frac{A G}{F G}$ (ii) 'DeltaD

## - Watch Video Solution

19. In figure $E$ is a point on side $C B$ produced of an isosceles triangle $A B C$ with $\mathrm{AB}=\mathrm{AC}$. If $A D \perp B C$ and $E F \perp A C$, prove that $\triangle A B D \triangle E C F$.

## - Watch Video Solution

20. Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively propor-/ tional to sides PQ and QR and median PM of $\triangle P Q R$ (see Fig. 6.41). Show that $\triangle A B C \sim \triangle P O R$.

## - Watch Video Solution

21. In the given figure, D is a point on the side BC of $\triangle A B C$ such that $\angle A D C=\angle B A C$. Prove that $C A^{2}=C B \times C D$.

22. Sides $A B$ and $A C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Show that $\triangle A B C \triangle P Q R$.

## - Watch Video Solution

23. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

## - Watch Video Solution

24. If $A D$ and $P M$ are medians of triangles $A B C$ and $P Q R$, respectively where $\triangle A B C \triangle P Q R$, prove that $\frac{A B}{P Q}=\frac{A D}{P M}$

## - Watch Video Solution

1. Let $\triangle A B C-\triangle D E F$ and their areas be , respectively , $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=15.4 \mathrm{~cm}$, find BC .

## - Watch Video Solution

2. Diagonals of a trapezium $A B C D$ with $A B|\mid D C$ intersect each other at the point $O$. If $A B=2 C D$, find the ratio of the areas of triangles $A O B$ and COD.

## - Watch Video Solution

3. In Fig. 6.44, $A B C$ and DBC are two triangles on the same base $B C$. If $A D$ intersects BC at O , show that $\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(D B C)}=\frac{A O}{D O}$

## - Watch Video Solution

4. If the areas of two similar triangles are equal, prove that they are congruent.

## - Watch Video Solution

5. D, E and F are respectively the mid-points of sides $A B$. BC and CA of $\triangle A B C$. Find the ratio of the areas of DDEF and $\triangle A B C$.

## - Watch Video Solution

6. Theorem 6.6 : The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

## - Watch Video Solution

7. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on
one of its diagonals.

## - Watch Video Solution

8. $A B C$ and $B D E$ are two equilateral triangles such that $D$ is the midpoint of $B C$. The ratio of the areas of the triangles $A B C$ and $B D E$ is
$2: 1$ (b) $1: 2$ (c) $4: 1$ (d) $1: 4$
A. 2:1
B. 1:2
C. $4: 1$
D. 1:4

Answer: C
9. Sides of two similar triangles are in the ratio 4:9. Areas of these triangles are in the ratio. $2: 3$ (b) $4: 9$ (c) $81: 16$ (d) $16: 81$
A. $2: 3$
B. $4: 9$
C. 81: 16
D. 16: 81

## Answer: D

## - Watch Video Solution

## Ncert Section Exercise 65

1. Sides of triangle are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse.
(i) $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$ (ii) $3 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$
2. Sides of triangle are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse.
(i) $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$ (ii) $3 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$

## - Watch Video Solution

3. Sides of triangles are given below. Determine which of them right triangles are. In case of a right triangle, write the length of its hypotenuse. (i) 7 cm 24 cm 25 cm (ii) 3 cm .8 cm 6 cm (iii) $50 \mathrm{~cm}, 80 \mathrm{~cm}$ 100 cm (iv) 13 cm 12 cm 5 cm

## - Watch Video Solution

4. Sides of triangle are given below .Determine which of them are right triangles .In case of a right triangle, write the length of its hypotenuse . $13 \mathrm{~cm}, 12 \mathrm{~cm}, 5 \mathrm{~cm}$
5. $P Q R$ is a triangle right angled at $P$ and $M$ is a point on $Q R$ such that $P M \perp Q R$. Show that $P M^{2}=Q M \dot{M} R$.

## - Watch Video Solution

6. In Figure 2, Delta ABD is a right triangle, right-angled at A and AC _ _
$B D$. Prove that $A B^{*}=B C . B D$.

## - Watch Video Solution

7. In the figure , ABD is a triangle right angled at A and $\mathrm{AC} \perp \mathrm{Bd}$. Show that

$A D^{2}=B D \cdot C D$

## - Watch Video Solution

8. ABC is an isosceles triangle right angled at C . Prove that $A B^{2}=2 A C^{2}$.
9. ABC is an isosceles triangle with $\mathrm{AC}=\mathrm{BC}$. If $A B^{2}=2 A C^{2}$, prove that $A B C$ is a right triangle.

## - Watch Video Solution

10. $A B C$ is an equilateral triangle of side $2 a$. Find each of its altitudes.

## - Watch Video Solution

11. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

## - Watch Video Solution

12. In figure, $O$ is a point in the interior of a triangle $A B C$, $O D \perp B C, O E \perp A C$ and $O F \perp A B$. Show that
$O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+B D^{2}+C E^{2}($ ii $)$
$A F^{2}+B D^{2}+C E^{2}=A W^{2}+C D^{2}+B F^{2}$

## - Watch Video Solution

13. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.

## - Watch Video Solution

14. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

## - Watch Video Solution

15. An aeroplane leaves an airport and flies due north at a speed of 1000 km per hour. At the same tune, another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour. |How far apart will be the two planes after $1^{1} 1 / 2$
16. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m , find the distance between their tops.

## - Watch Video Solution

17. $D$ and $E$ are points on the sides $C A$ and $C B$ respectively of a triangle ABC right angled at C . Prove that $A E^{2}+B D^{2}=A B^{2}+D E^{2}$.

## - Watch Video Solution

18. The perpendicular from $A$ on side $B C$ of a $A B C$ intersects $B C$ at $D$ such that $\mathrm{DB}=3 \mathrm{CD}$. Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$.
19. In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $B D=\frac{1}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$.

## - Watch Video Solution

20. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

## - Watch Video Solution

21. Tick the correct answer and justify: $\operatorname{In} \Delta A B C \cdot A B=6 \sqrt{3} \mathrm{~cm} . \mathrm{AC}=12 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$. The angle $B$ is:(A) 120 (B) 60 (C) 90 (D) 45
A. $120^{\circ}$
B. $60^{\circ}$
C. $90^{\circ}$
D. $45^{\circ}$

## D Watch Video Solution

Ncert Section Exercise 66

1. In the figure, PS is the bisector of $\angle Q P R$ of $\triangle \mathrm{PQR}$. Prove that $\frac{Q S}{S R}=\frac{P Q}{P R}$.

2. In Fig. 4.121, $A B C$ is a right triangle right angled at $B$ and $D$ is the foot of the the perpendicular drawn from $B$ on $A C$. If $D M \perp B C$ and $D N \perp A B \quad, \quad$ prove that: $\quad$ (FIGURE) $\quad D M^{2}=D N \times M C$ $D N^{2}=D M \times A N$

## - Watch Video Solution

3. In the given figure, $\Delta A B C$ is an obtuse triangle, obtuse-angled at B . If $A D \perp C B$ (produced) prot that $A C^{2}=A B^{2}+B C^{2}+2 B C \cdot B D$

4. In the figure, ABC is triangle in which $\angle A B C<90^{\circ}$ and $A D \perp B C$. Prove that $A C^{2}=A B^{2}+B C^{2}-2 B C \cdot B D$.


## - Watch Video Solution

5. In the given figure (not to scale), AC is the median as well as altitude to BD . In $\triangle A C E$, AD is the median to CE . Which of the following is true?


## - Watch Video Solution

6. In the given figure (not to scale), AC is the median as well as altitude to BD . In $\triangle A C E$, AD is the median to CE . Which of the following is true?


## - Watch Video Solution

7. In the given figure (not to scale), AC is the median as well as altitude to BD . In $\triangle A C E$, AD is the median to CE . Which of the following is true?


## - Watch Video Solution

8. Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.
9. In Figure, two chords $A B$ and $C D$ intersect each other at the point $P$. Prove that: (i) $\triangle A P C \Delta D P B$ (ii) $A P \cdot P B=C P \cdot D P$

## - Watch Video Solution

10. In Figure two chords $A B$ and $C D$ of a circle intersect each other at the point P (when produced) outside the circle. Prove that(i) $\triangle P A C \Delta P D B$
(ii) $P A \dot{P} B=P C \dot{P} D$

## - Watch Video Solution

11. In figure D is a point on side BC of a $\triangle A B C$ such that $\frac{B D}{C D}=\frac{A B}{A C}$. Prove that AD is the bisector of $\angle B A C$.

## - Watch Video Solution

12. Nazinia is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests
on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that $h$

## - Watch Video Solution

## Exercise Multiple Choice Questions Level 1

1. 

In
$\triangle A B C, D E| | B C$
so
that
$A D==2.4 \mathrm{~cm}, A E=3.2 \mathrm{~cm}$ and $E C=4.8 \mathrm{~cm}$, then, $\mathrm{AB}=$ ?

A. 3.6 cm
B. 6 cm
C. 6.4 cm
D. 1.6 cm

## Answer: B

## - Watch Video Solution

> 2. In $\Delta A B C, D E| | B C$ $A D=(7 x-4) c m, A E=(5 x-2) c m, D B=(3 x+4) c m$ and $E C=3 x$
.Then, we have

A. 3
B. 5
C. 4
D. 25

## Answer: C

## - Watch Video Solution

3. In $\triangle A B C, A D$ is the inernal besector of $\angle A$. If $\mathrm{BD}=5 \mathrm{~cm}, \mathrm{BC}=7.5 \mathrm{~cm}$, then $A B: A C=$

A. $2: 1$
B. $1: 2$
C. $4: 5$
D. $3: 5$

Answer: A
4. In the given fig., $A B|\mid D C$ and diagonals $A C$ and $B D$ intersects at $O$. If $O A$ $=3 x-1$ and $O B=2 x+1, O C=5 x-3$ and $O D=6 x-5$, find the value of $x$.

A. 2
B. 3
C. 2.5
D. 3.5

## Answer: A

## - Watch Video Solution

5. In $\triangle A B C$ it is given that $\frac{A B}{A C}=\frac{B D}{D C}$. If $\angle B=70^{\circ}$ and $\angle C=50^{\circ}$ then $\angle B A D=$ ?

A. $30^{\circ}$
B. $40^{\circ}$
C. $50^{\circ}$
D. $45^{\circ}$

Answer: A

Watch Video Solution
6. In $\triangle A B C, A D$ is the bisector of $\angle A$. Then , $\frac{\operatorname{ar}(\triangle A B D)}{\operatorname{ar}(\triangle A C D)}=$
A. $\frac{A B^{2}}{A C^{2}}$
B. $\frac{A B}{A C}$
c. $\frac{B M}{C M}$
D. None of these

## Answer: B

## - Watch Video Solution

7. $\triangle A B C \sim \triangle D E F$ and the perimeters of $\triangle A B C d$ and $\triangle D E F$ are 30 cm and 18 cm respectively. If $B C=9 \mathrm{~cm}$, then $\mathrm{EF}=$ ?
A. 6.3 cm
B. 5.4 cm
C. 7.2 cm
D. 4.5 cm

## - Watch Video Solution

8. $\Delta A B C \sim \Delta D E F$ such that $\mathrm{AB}=9.1 \mathrm{~cm}$ and $\mathrm{DE}=6.5 \mathrm{~cm}$. If the perimeter of $\triangle D E F$ is 25 cm , what is the perimeter of $\triangle A B C$ ?
A. 35 cm
B. 28 cm
C. 42 cm
D. 40 cm

## Answer: A

9. A vertical stick 20 m long casts a shadow 10 m long on the ground. At the same time, a tower casts a shadow 50 m long on the ground. The
height of the tower is (a) 100 m (b) 120 m (c) 25 m (d) 200 m
A. 100 m
B. 120 m
C. 25 m
D. 200 m

## Answer: A

## - Watch Video Solution

10. Two isosceles triangles have equal angles and their areas are in the ratio $36: 81$.The ratio of their corrersponding heights is
A. $2: 3$
B. 5:4
C. 3:2
D. 1:4

## - Watch Video Solution

11. If $A B C$ and $D E F$ are similar such that $2 A B=D E$ and $B C=8 \mathrm{~cm}$, then $E F=($ a) 16 cm (b) 12 cm (c) 8 cm (d) 4 cm .
A. 16 cm
B. 12 cm
C. 8 cm
D. 4 cm

## Answer: A

Watch Video Solution
12. In $A B C$, a line $X Y$ parallel to $B C$ cuts $A B$ at $X$ and $A C$ at $Y$. If $B Y$ bisects $\angle X Y C$, then $B C=C Y$
(b) $B C=B Y$
(c) $B C \neq C Y$

## $B C \neq B Y$

A. $B C=C Y$
B. $B C=B Y$
C. $B C \neq C Y$
D. None of these

## Answer: A

## - Watch Video Solution

13. Let ABC be an equilateral triangel. Let $B E \perp C A$ meeting CA at E , then $\left(A B^{2}+B C^{2}+C A^{2}\right)$ is equal to :
A. $3 B E^{2}$
B. $B E^{2}$
C. $B E^{2}$
D. $6 B E^{2}$

## Answer: C

## D Watch Video Solution

14. A right triangle has hypotenuse of length $p \mathrm{~cm}$ and one side of length $q c m$. If $p-q=1$, find the length of the third side of the triangle.
A. $\sqrt{2 q+1}$
B. $\sqrt{2 p+1}$
C. $2 p$
D. $1+q$

## Answer: A

15. ABC is an isosceles triangle with $\mathrm{AC}=\mathrm{BC}$. If $A B^{2}=2 A C^{2}$, prove that $A B C$ is a right triangle.
A. A
B. B
C. C
D. None of these

## Answer: C

## - Watch Video Solution

16. $\triangle A B C$ is a right triangle, right angled at A and $A D \perp B C$. If $\mathrm{AB}=\mathrm{c}$ and $\mathrm{AC}=\mathrm{b}$, then AD is equal to

A. $\frac{b c}{\sqrt{b^{2}+c^{2}}}$
B. $\frac{b c}{b^{2}+c^{2}}$
C. $\frac{b^{2} c}{\sqrt{b^{2}+c^{2}}}$
D. None of these

Answer: A

- Watch Video Solution

17. $\triangle A B C$ is right-angled at A and $A D \perp B C$. If $B C=13 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}, \quad$ find the ratio of areas of $\triangle A B C$ and $\triangle A D C$.

A. $25: 169$
B. 169: 25
C. 5: 12
D. $13: 5$

## Answer: B

18. L and M are the mid points of AB and BC respectively of $\triangle A B C$, right angled at B. $4 L C^{2}=$

A. $A B^{2}+4 B C^{2}$
B. $B C^{2}+4 A B^{2}$
C. $A C^{2}+4 A B^{2}$
D. None of these

## - Watch Video Solution

19. In the given figure, $x$ in terms of $a, b$ and $c$ is

A. $x=\frac{a c}{b+c}$
B. $x=\frac{a b}{b+c}$
C. $x=\frac{a c}{a+b}$
D. $x=\frac{b c}{a+c}$
20. In figure, two line segments $A C$ and $B D$ intersects each other at the point $P$ such that $P A=6 \mathrm{~cm}, P B=3 \mathrm{~cm}, P C=2.5 \mathrm{~cm}, P D=5 \mathrm{~cm}$, $\angle A P B=50^{\circ}$ and $\angle C D P=30^{\circ}$. Then, $\angle P B A$ is equal to

A. $50^{\circ}$
B. $30^{\circ}$
C. $60^{\circ}$
D. $100^{\circ}$
21. In the given figure, value of $x$ is

A. 8 cm
B. 4 cm
C. 10 cm
D. None of these

## Answer: C

22. In the given figure, if $\frac{A B}{A C}=\frac{B D}{C D}$, then $\angle A B D=$

A. $50^{\circ}$
B. $40^{\circ}$
C. $30^{\circ}$
D. $70^{\circ}$

## Answer: B

23. The point in the plane of a triangle which is at equal perpendicular distance from the sides of the triangle is :
A. just one such point (b)
B. three such points
C. four such points
D. None of these

## Answer: A

## - Watch Video Solution

24. PSR is a triangle right angled at s.D is the mid -point of SR .If the bisector of $\angle P S R$ and perpendicular bisector of SR meet at O , then $\triangle O S D$ is
A. scalene
B. equilateral
C. isosceles right angled
D. acute -angled

## Answer: C

## - View Text Solution

25. An isosceles triangle has a 10 inches base and two 13 inches sides What other value can the base have and still yields a triangle with the same areas ?
A. 18 inches
B. 19 inches
C. 24 inches
D. 27 inches

## Answer: C

26. If the ratio of the perimeter of two similar triangles is $4: 25$, then find the ratio of the areas of the similar triangles.
A. $16: 625$
B. $2: 5$
C. $5: 2$
D. $625: 16$

## Answer: A

## - Watch Video Solution

27. In $\triangle A B C, \angle B=90^{\circ}$ and $B D \perp A C$. If $\mathrm{DC}=7 \mathrm{~cm}$ and $\mathrm{AD}=3 \mathrm{~cm}$, then the length of $B D$ is
A. $\sqrt{23} \mathrm{~cm}$
B. $\sqrt{21} \mathrm{~cm}$
C. $\sqrt{7} \mathrm{~cm}$
D. 21 cm

## Answer: B

## - Watch Video Solution

28. In which of the following options ,DE \|AB where $D$ and $E$ lie on the sides AC and BC of $\triangle A B C$ respectively ?
A. $A D=6, E C=14, B C=18, D C=21$
B. $B E=20, D C=10, A C=25, B C=36$
C. $A C=10, D C=4, E C=2, B C=6$
D. None of these

## Answer: A

29. In the given figure, $\triangle A B C \sim \triangle P Q R$, PM is median of $\triangle P Q R$. If ar $(\triangle A B C)=289 \mathrm{~cm}^{2}, B C=17 \mathrm{~cm}, M R=6.5 \mathrm{~cm}$, then the area of $\triangle P Q M$ is

A. $169 \mathrm{~cm}^{2}$
B. $13 \mathrm{~cm}^{2}$
C. $84.5 \mathrm{~cm}^{2}$
D. $144.5 \mathrm{~cm}^{2}$

Answer: C

## - Watch Video Solution

30. In a rectangle $A B C D, E$ is the mid -point of $A B$. If $A B=16 \mathrm{~m}$ and $A D=6$ m , then find ED.
A. 15 cm
B. 10 cm
C. 12 m
D. 14 m

## Answer: B

## - Watch Video Solution

31. In the given figure, PQRS is a parallelogram with $\mathrm{PQ}=16 \mathrm{~cm}$ and $\mathrm{QR}=$ $10 \mathrm{~cm} . \mathrm{L}$ is a point on $P R$ such that $\mathrm{RL}: L P=2: 3 Q \mathrm{~L}$ is produced to meet RS at $M$ and PS produced at $N$. Find the length of $P N$ and $R M$ (in cm )
respectively.

A. $16,10 \frac{2}{3}$
B. $10,10 \frac{2}{3}$
C. $15,10 \frac{2}{3}$
D. $15, \frac{1}{3}$

## Answer: C

32. The perimeters of two similar triangles are 30 cm and 20 cm . If one altitude of the former triangle is 12 cm , then the length of the

## corresponding altitude of the latter triangle is

A. 8 cm
B. 10 cm
C. 12 cm
D. 15 cm

## Answer: A

## - Watch Video Solution

33. The length of the diagonal of a square is $7 \sqrt{2} \mathrm{~cm}$. Then, the area of the square in $\mathrm{cm}^{2}$ is
A. 28
B. $14 \sqrt{2}$
C. 21
D. 49

## D Watch Video Solution

34. A man goes 15 m due east and then 20 m due north .find his distance from the starting point.
A. 35 m
B. 5 m
C. 25 m
D. 15 m

## Answer: C

## - Watch Video Solution

35. | In |
| :---: |
| $\angle A B C$ and |$\quad \Delta D E F$,

$\angle A 0^{\circ}, \angle B=70^{\circ}, \angle C=60^{\circ}, \angle D=60^{\circ}, \angle E=70^{\circ}$ and $\angle F=50^{\circ}$
, then
A. $\triangle A B C \sim \triangle D E F$
B. $\triangle A B C \sim \triangle E D F$
C. $\triangle A B C \sim \triangle D E F$
D. $\triangle A B C \sim \triangle F E D$

## Answer: D

## - Watch Video Solution

## Exercise Multiple Choice Questions Level 2

1. In a $\triangle A B C$, point D is on side AB and point E is on side Ac , such that BCED is a trapezium. If $\mathrm{DE}: \mathrm{BC}=3: 5$, then area $(\triangle A D E)$ : area $(\triangle B C E D)=$
A. 3:4
B. 9:16
C. $3: 5$
D. $9: 25$

## Answer: B

## - Watch Video Solution

2. $A B C D$ is a trapezium such that $B C A D$ and $A B=4 \mathrm{~cm}$. If the diagonals $A C$ and $B D$ intersect at $O$ such that $\frac{A O}{O C}=\frac{D O}{O B}=\frac{1}{2}$, then $B C=7 \mathrm{~cm}$ (b) 8 cm (c) 9 cm (d) 6 cm
A. 7 cm
B. 8 cm
C. 9 cm
D. 6 cm

## Answer: C

3. In Fig. 4.142, $P A, Q B$ and $R C$ are each perpendicular to $A C$. Prove that $\frac{1}{x}+\frac{1}{z}=\frac{1}{y}$. (FIGURE)
A. $1 / 5 y$
B. $1 / 2 y$
C. $1 / y$
D. None of these

## Answer: C

## - Watch Video Solution

4. The area of a right angled triangle is $6 \mathrm{sq} . \mathrm{Cm}$ and its perimeter is 12 cm . The length of its hypotenuse is
A. 6 cm
B. 5 cm
C. 2 cm
D. Data insufficient

## Answer: B

## - Watch Video Solution

5. If $A$ be the area of a right triangle and $b$ one of the sides containing the right angle, prove that the length of the altitude on the hypotenuse is $\frac{2 A B}{\sqrt{b^{4}+4 A^{2}}}$
A. $\frac{2 b}{\sqrt{b^{4}+4 x^{2}}}$
B. $\frac{2 b x}{\sqrt{b^{4}-4 x^{2}}}$
C. $\frac{4 b x}{\sqrt{b^{2}+4 x^{2}}}$
D. $\frac{2 b x}{\sqrt{b^{4}+4 x^{2}}}$

## Answer: D

6. In the figure, $\angle B E D=\angle B D E$ and $E$ divides BC in the ratio $2: 1$. Then , $A F \times B E=$

A. $A D \times C F$
B. $2 B D \times C E$
C. $2 A D \times A C$
D. $2 A D \times C F$

## Answer: D

## - View Text Solution

7. In $\triangle A B C$ (in the figure), $\angle B=90^{\circ}, \mathrm{AE}=\mathrm{CD}=13 \mathrm{~cm}, \mathrm{BE}=\mathrm{AD}=5 \mathrm{~cm}$.

Then $\mathrm{BC}=$

A. $2 \sqrt{30} \mathrm{~cm}$
B. $\sqrt{30} \mathrm{~cm}$
C. $3 \sqrt{30} \mathrm{~cm}$
D. None of these

## Answer: A

## - Watch Video Solution

8. In the Fig. given below, $O B$ is the perpendicular bisector of the line segment $\mathrm{DE}, F A \perp O B$ and FE intersects OB at the point C . Prove that
$\frac{1}{O A}+\frac{1}{O B}=\frac{2}{O C}$

A. 0
B. $\frac{1}{O C}$
C. $\frac{2}{O C}$
D. None of these

Answer: C

- Watch Video Solution

9. In right angled $\triangle A B C, \angle C=90^{\circ}$ and $D, E, F$ are three points on $B C$ such that they divide it in equal parts. Then $8\left(A F^{2}+A D^{2}\right)=$

A. $A C^{2}+A B^{2}$
B. $11 A C^{2}+5 A B^{2}$
C. $10 A C^{2}+5 A B^{2}$
D. None of these

## Answer: B

10. In $\triangle D E F, L$ is a point on side DE such that LM||DDFandLN||EF. If $M N$ meets ED in O when produced, then $O D \times O E=$
A. $O L^{2}$
B. $L D^{2}$
C. $D N^{2}$
D. None of these

## Answer: A

## - View Text Solution

11. S and U are two points on the side PQ of $\triangle P Q R$, such that $\mathrm{QU}=\mathrm{PS}$. If ST||QR and $U V|\mid P R$, then
A. TV||PQ
B. $T V \perp P Q$
C. TV and PQ intersect at $60^{\circ}$
D. TV and PQ intersect at $45^{\circ}$

## Answer: A

## - View Text Solution

12. A girl of height 90 cm is walking away from the base of a lamp post at a speed of $1.2 \mathrm{~m} / \mathrm{sec}$. If the lamp post is 3.6 m above the ground, find the length of her shadow after 4 seconds.
A. 1 m
B. 1.2 m
C. 1.6 m
D. 2 m

## Answer: C

13. In a trapezium $A B C D, A B| | C D a n d D C=3 A B . E F| | A B$ intersects $D A$ and $C B$ at E and F such that $\frac{B F}{F C}=\frac{2}{3}$. Then $3 \mathrm{DC}=$
A. 4 EF
B. 2 EF
C. 5Ef
D. EF

## Answer: C

## - View Text Solution

14. Two triangles $A B C$ and DBC are on the same base $B C$ and on the same side of BC in which $\angle A=\angle D=90^{\circ}$. If $C A$ and $B D$ meet each other at E , show that $A E . E C=B E . E D$.
A. $B E \times E D$
B. $B E \times B D$
C. $B E \times C E$
D. None of these

## Answer: A

## - Watch Video Solution

15. If S is a point on side PQ of a $\triangle P Q R$ such that $\mathrm{PS}=\mathrm{QS}=\mathrm{RS}$, then
A. $P R \cdot Q R=R S^{2}$
B. $Q S^{2}+R S^{2}=Q R^{2}$
C. $P R^{2}+Q R^{2}=P Q^{2}$
D. $P S^{2}+R S^{2}=P R^{2}$

## Answer: C

1. List -I and List -II are given as options (a) , (b) , (c) and (d) out of which one is correct.

## List-I

(P) All circles are
(Q) If the areas of two similar triangles are equal they are
(R) If a line divides any two sides of a triangle in the same ratio, then the line is
(S) Diagonals of a trapezium

## List-II

(1) parallel to
third side
(2) similar
(3) divide each other proportionally
(4) congruent
A. P-2,Q-4,R-1,S-3
B. P-1, Q-2 , R-3, S-4
C. P-4 , Q-3,R-2 , S-1
D. P-1 ,Q-3, R-2 , S-4
2. If in a $\triangle A B C, D E| | B C$ and intersects AB at D and AC at E , then match the lists:
List-I
(P) $\frac{A D}{D B}$
(1) $\frac{A C}{A E}$
(Q) $\frac{A B}{A D}$
(R) $\frac{D B}{A B}$
(S) $\frac{A D}{A E}$
(2) $\frac{A E}{E C}$
(3) $\frac{A B}{A C}$
(4) $\frac{E C}{A C}$
A. P-1, Q-2 , R-3, S-4
B. P-4, Q-3, R-2, S-1
C. P-2, Q-1,R-4, S-3
D. P-1, Q-3, R-2, S-4

## - Watch Video Solution

3. Match the lists

List-I
(P) In $\triangle A B C$ and $\triangle P Q R$

$$
\begin{aligned}
& \frac{A B}{P Q}=\frac{A C}{P R}, \angle A=\angle P \\
& \Rightarrow \triangle A B C-\triangle P Q R
\end{aligned}
$$

(Q) In $\triangle A B C$ and $\triangle P Q R$

$$
\begin{aligned}
& \angle A=\angle P, \angle B=\angle Q \\
& \Rightarrow \triangle A B C \sim \triangle P Q R
\end{aligned}
$$

(R) In $\triangle A B C$ and $\triangle P Q R$

$$
\frac{A B}{P Q}=\frac{A C}{P R}=\frac{B C}{Q R}
$$

$$
\Rightarrow \triangle A B C \sim \triangle P Q R
$$

(S) In $\triangle A B C, D E \| B C$

$$
\Rightarrow \frac{A D}{B D}=\frac{A E}{C E}
$$

A. P-1, $\mathrm{Q}-2, \mathrm{R}-3, \mathrm{~S}-4$
B. P-2, Q-1 , R-3, S-4

## List-II

(1) AA similarity criterion
(2) SAS similarity criterion
(3) SSS similarity criterion
(4) BPT
C. P-4, Q-3, R-2, S-1
D. P-1, Q-3, R-2, S-4

## Answer: B

## - Watch Video Solution

## Exercise Assertion Reason Type

1. Assertion : All regular polygons of the same number of sides such as equilateral triangles, squares etc. Are similar .

Reason : Two polygons are said to be similar if their corresponding angles are equal and lengths of corresponding sides are proportional .
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not the correct explanation of assertion .
C. If assertion is true reason is false .
D. If assertion is false but reason is true .

## Answer: A

## - View Text Solution

2. Assertion : If the areas of two similar triangles are equal, they are congruent.

Reason : Area of similar triangles are proportiona to their corresponding sides .
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion .
C. If assertion is true reason is false .
D. If assertion is false but reason is true .

## Answer: C

## - View Text Solution

3. Any line parallel to the parallel sides of a trapezium divides the nonparallel sides proportionally.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true reason is false .
D. If assertion is false but reason is true .

## Answer: A

## - Watch Video Solution

4. Assertion : If a line divides any two sides of a triangle in the same ratio , then the line is paralle to third side .

Reason : Line segment joining the mid -point of any two sides of a triangle is parallel to the third side .
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not the correct explanation of assertion .
C. If assertion is true reason is false .
D. If assertion is false but reason is true .

## Answer: B

## - View Text Solution

5. Prove that the internal bisector of the angle $A$ of a triangle $A B C$ divides $B C$ in the ratio $A B: A C$
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion .
C. If assertion is true reason is false .
D. If assertion is false but reason is true .

## Answer: C

## - Watch Video Solution

## Exercise Comprehension Type

1. The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides .

If $\quad \triangle A B C \sim \triangle D E F, B C=3 \mathrm{~cm}, E F=4 \mathrm{~cm} \quad$ and $\quad$ area $\quad$ of
$\triangle A B C=54 \mathrm{~cm}^{2}$, then the area of $\triangle D E F$ is
A. $96 \mathrm{~cm}^{2}$
B. $106 \mathrm{~cm}^{2}$
C. $86 \mathrm{~cm}^{2}$
D. $76 \mathrm{~cm}^{2}$

## Answer: A

## - View Text Solution

2. The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides .

If $\triangle A B C \sim \triangle D E F$, the area of $\triangle A B C$ is $9 \mathrm{~cm}^{2}$, the area of $\triangle D E F$ is $16 \mathrm{~cm}^{2}$ and $B C=2.1 \mathrm{~cm}$, then the length of EF is
A. 2.5 cm
B. 2.8 cm
C. 3.2 cm
D. 3.5 cm

## D View Text Solution

3. Sides of two similar triangles are in the ratio 7:8.Areas of these triangles are in the ratio
A. $8: 7$
B. $49: 64$
C. $7: 15$
D. 64: 49

## Answer: B

4. In the given figure AD is the bisector of $\angle A$. If $\mathrm{BD}=4 \mathrm{~cm}, \mathrm{DC}=3 \mathrm{~cm}$ and $A B=6 \mathrm{~cm}$. Find $A C$.

A. 4.5 cm
B. 3.5 cm
C. 4.8 cm
D. 3.2 cm

Answer: A
5. In the given figure, Ad is the bisector of $\angle B A C$. If $\mathrm{AB}=10 \mathrm{~cm}, \mathrm{AC}=14$ cm and $B C=8 \mathrm{~cm}$, find $B D$ and $D C$ respectively .

A. $4.7 \mathrm{~cm}, 3.3 \mathrm{~cm}$
B. $3.3 \mathrm{~cm}, 4.7 \mathrm{~cm}$
C. $4.3 \mathrm{~cm}, 3,5 \mathrm{~cm}$
D. $3.5 \mathrm{~cm}, 4.3 \mathrm{~cm}$

## Answer: B

6. The internal /external bisector of an angled of a triangle divides the opposite side internally / externally in the ratio of the sides containing the angle .

In the given figure ,Ae is the bisector of the exterior $\angle C A D$ meeting BC produced in $E$. If $A B=15 \mathrm{~cm}, A C=8 \mathrm{~cm}$ and $B C=14 \mathrm{~cm}$, find $C E$.

A. 12 cm
B. 16 cm
C. 20 cm
D. 18 cm

## Answer: B

## - View Text Solution

7. The perimeters of two similar triangles $A B C$ and $P Q R$ are respectively 36 cm and 24 cm . If $P Q=10 \mathrm{~cm}$, find $A B$.
A. 12 cm
B. 15 cm
C. 18 cm
D. 20 cm

## Answer: B

8. Two sides of a triangle are 10 cm and 15 cm and the base is 20 cm long . If another triangle similar to the first triangle has the base measuring 32 cm , then other two sides of the triangle are
A. $16 \mathrm{~cm}, 24 \mathrm{~cm}$
B. $12 \mathrm{~cm}, 28 \mathrm{~cm}$
C. $15 \mathrm{~cm}, 25 \mathrm{~cm}$
D. $18 \mathrm{~cm}, 22 \mathrm{~cm}$

## Answer: A

## - Watch Video Solution

9. If ratio of areas of two triangles are 64:121, then the ratio of corresponding perimeter is
A. $8: 11$
B. 11: 8
C. 9: 121
D. 8:9

## Answer: A

## - Watch Video Solution

Exercise Subjective Problems Very Short Answer Type

1. In a $\triangle A B C, D E| | B C$, the find the value of x .

2. In $\triangle A B C, \angle A D E=\angle B$, then find DE if $\mathrm{AD}=7.6 \mathrm{~cm}, \mathrm{BD}=4.2 \mathrm{~cm}$ and $B C=8.4 \mathrm{~cm}$.

3. In figure, $\mathrm{DE}| | \mathrm{Bcand} \mathrm{CD} \| \mathrm{EF}$. Prove that $A D^{2}=A B \times A F$.


## - Watch Video Solution

4. $A B C$ is a right triangle right angled at $C$ and $A C=\sqrt{3} B C$. Prove that
$\angle A B C=60^{\circ}$.
5. In $\triangle A B C, A D \perp B C$ and $A D^{2}=B D \cdot C D$. Prove that $\angle B A C=90^{\circ}$.

## - Watch Video Solution

6. Two pillars of heights 70 m and 20 m are standing 120 m apart . Find the distance between their tops .

## - Watch Video Solution

7. $\triangle A B C \sim \Delta P Q R$ and $\operatorname{ar}(\triangle A B C)=4 a r(\triangle P Q R)$ IF $B C=12 \mathrm{~cm}$ then find $Q R$

## - Watch Video Solution

8. If the diagonal BD of a quadrillateral ABCD bisects both $\angle B$ and $\angle D$. Prove that $\frac{A B}{B C}=\frac{A D}{C D}$.
9. In a trapezium $A B C D, O$ is the point of intesection of $A C$ and $B D, A B \| C D$ and $A B=2 \times C D$. If the area of $\triangle A O B=84 \mathrm{~cm}^{2}$. Find the area of $\triangle C O D$.

## - Watch Video Solution

10. A point $D$ is on the side $B C$ of an equilateral triangle $A B C$ such that $D C=\frac{1}{4} B C$. Prove that $A D^{2}=13 C D^{2}$.

## - Watch Video Solution

## Exercise Subjective Problems Short Answer Type

1. P and Q are points on the sides AB and AC respectively of a $\triangle A B C$. If $A P=2 \mathrm{~cm}, P B=4 \mathrm{~cm} A Q=3 \mathrm{~cm}$ and $Q C=6 \mathrm{~cm}$. Show that $B C=3 P Q$.
2. In $A B C, D$ is the mid-point of $B C a n d E D$ is the bisector of the $\angle A D B a n d E F$ is drawn parallel to $B C$ cutting $A C$ in $F$. Prove that $\angle E D F$ is a right angle.

## - Watch Video Solution

3. In Figure, $\angle B A C=90^{\circ}, A D$ is its bisector. If $D E \perp A c$, prove that $D E x(A B+A C)=A B x A C$

## - Watch Video Solution

4. In given figure, $O P=5 \mathrm{~cm}$ and $\mathrm{OR}=12 \mathrm{~cm}$ and $Q R=85 \mathrm{~cm}$ find the area of $\triangle P Q R$.


## - Watch Video Solution

5. In Fig. 4.123, ABCD is a trapezium with $A B|\mid D C$. If $\triangle A E D$ is similar to $\triangle B E C$, prove that $A D=B C$.

## - Watch Video Solution

6. In a $\triangle A B C \mathrm{P}$ and Q are points on AB and AC respectively and $\mathrm{PQ} \| \mathrm{BC}$. Prove that the median AD bisects PQ.

## - Watch Video Solution

7. In figure , CD ||LA and DE||AC.find CL .


## - Watch Video Solution

8. In an isoscles $\triangle A B C, A B=A C$ and $D$ is a point on BC . Prove that $A B^{2}-A D^{2}=B D \cdot C D$.

## - Watch Video Solution

9. In the figure given below, $\triangle P Q R$ is right-angled at Q and the points S and $T$ trisect the side $Q$ R. Prove that $8 P T^{2}=3 P R+5 P S^{2}$
10. In trapezium $\mathrm{ABCD} . \mathrm{AB} \| \mathrm{DC}$ and $\mathrm{DC}=2 \mathrm{AB}$. A line segment EF drawn parallel to AB cuts AD in F and BC in E such that $\frac{B E}{E C}=\frac{3}{4}$. Diagonal DB intersects $E F$ at $G$. prove that \&EF=10AB.


## - Watch Video Solution

## Exercise Subjective Problems Long Answer Type

1. In trapezium $A B C D$. $A B|\mid D C$ and $D C=2 A B$. $A$ line segment $E F$ drawn parallel to AB cuts AD in F and BC in E such that $\frac{B E}{E C}=\frac{3}{4}$.

Diagonal DB intersects EF at G. prove that \&EF=10AB.


## - Watch Video Solution

2. In a right triangle $A B C$, right angled at $C, P$ and $Q$ are the points of the sides $C A$ and $C B$ respectively, which divide these sides in the ratio $2: 1$ Prove that $9 A Q^{2}=9 A C^{2}+4 B C^{2}$
3. In a right triangle $A B C$, right angled at $C, P$ and $Q$ are the points of the sides $C A$ and $C B$ respectively, which divide these sides in the ratio $2: 1$ Prove that $9 B P^{2}=9 B C^{2}+4 A C^{2}$

## - Watch Video Solution

4. In a right triangle $A B C$, right angled at $C, P$ and $Q$ are the points of the sides $C A$ and $C B$ respectively, which divide these sides in the ratio $2: 1$ Prove that

$$
9\left(A Q^{2}+B P^{2}\right)=13 A B^{2}
$$

## - Watch Video Solution

5. Two poles of height a metres and $b$ metres are $p$ metres apart. Prove that the height of the point of intersection of the lines joining the top of each pole to the foot of the opposite pole is given by $\frac{a b}{a+b}$ metres.
6. Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.

## Watch Video Solution

7. In Fig. $7.85, D E \| B C$ and $\mathrm{AD}: \mathrm{DB}=5$ : 4. Find $\frac{\operatorname{Area}(\Delta D E F)}{\operatorname{Area}(\Delta C F B)}$


Fig. 7.85

1. $\triangle A B C$ and $\triangle C D E$ are two equilateral triangles such that D is the mid -point of BC . The ratio of the areas of $\triangle C D E$ and $\triangle A B C$ is $1: \mathrm{k}$ then $\mathrm{k}=$

## - Watch Video Solution

2. If $\triangle A B C$ is an equilateral triangle such that $A D \perp B C, A D^{2}=k D C^{2}$, then k is

## - Watch Video Solution

3. If each side of a rhombus is 10 cm and one of its diagonals is 16 cm , then the length of the other diagonal is kcm . Find k .

## - Watch Video Solution

4. A girl of height 100 cm is walking away from the base of a lamp post at a speed of $1.9 \mathrm{~m} / \mathrm{s}$. If the lamp is 5 m above the ground, find the length of her shadow after 4 seconds (in metres )

## D Watch Video Solution

5. If in an isosceles triangle $a$ is the length of the base and $b$ the length of one of the equal sides, then its area is $\frac{a}{k} \sqrt{k b^{2}-a^{2}}$. Find k .

## - Watch Video Solution

6. If corresponding sides of two similar triangles are in the ratio 4:5, then corresponding medians of the triangles are in the ratio $4: k$. Find K
7. P and Q are the points on sides AB and AC respectively of a $\triangle A B C$, such that $\mathrm{PQ}|\mid \mathrm{BC}$.If $A P| P B=2: 3$ and $\mathrm{AQ}=4 \mathrm{~cm}$, then the length of AC is ..... Cm .

## - Watch Video Solution

8. XY is drawn parallel to the base BC of $\triangle A B C$ cutting AB at and AC at Y . If $A B=4 B X$ and $Y C=2 \mathrm{~cm}$, then $A Y$ is .... $C m$.

## - Watch Video Solution

9. In $\triangle A B C$, if $\mathrm{DE}|\mid \mathrm{BC}, \mathrm{AD}=\mathrm{x}, \mathrm{DB}=\mathrm{x}-2, \mathrm{AE}=\mathrm{x}+2$ and $\mathrm{EC}=\mathrm{x}-1$, then the value of $x$ is
10. The altitude of an equilateral triangle having the length of its side 10 cm is $K \sqrt{3} \mathrm{~cm}$. Find K .

## - Watch Video Solution

## Olympiad Hots Corner

1. In the given figure (not drawn to scalse), AG is parallel to CD and $A G=\frac{2}{7} C D$. The point B on AC is such that $B C=\frac{2}{7} A C$. If the line $B G$ meets $A D$ at $F$ and the line through $C$ is parallel to $B G$ which meets $A D$
at E , then find the value of $\frac{F G}{E C}$.

A. $1 / 7$
B. $3 / 7$
C. $4 / 7$
D. $2 / 7$

Answer: D
2. In the given figure (not drawn to scalse), $A B C$ is on horizontal ground and $O$ is vertically above $A . M$ is the mid -point of $B C$. If $\angle B A C=90^{\circ}, A B=A C=16 \mathrm{~cm}$ and $\mathrm{OA}=12 \mathrm{~cm}$, calculate the length of $O B$.

A. 25 cm
B. 15 cm
C. 20 cm
D. 28 cm

## Answer: C

## - Watch Video Solution

3. 

In
the
given
diagram
$\angle A B C=\angle A E D, A D=3 \mathrm{~cm}, A E=5 \mathrm{~cm}$ and $E C=2 \mathrm{~cm}$. Find
(i) $B D$
(ii) $\frac{\text { Areaof } \triangle A E D}{\text { Area of } \triangle A B C}$

A. (i) $8 \frac{2}{3} \mathrm{~cm}$
(ii) $\frac{9}{49}$
B. (i) $8 \frac{2}{3} \mathrm{~cm}$
(ii) $\frac{9}{23}$
C. (i) $\frac{2}{5} \mathrm{~cm}$
(ii) $\frac{9}{49}$
D. (i) $\frac{2}{5} \mathrm{~cm}$
(ii) $\frac{9}{23}$

## Answer: A

Watch Video Solution
4. $A B C D$ is a parallelogram and $L$ is a point on $D B$. The produced line $A L$ meets $B C$ at $M$ and $D C$ produced at $N$.


Given that $\mathrm{DL}=3 \mathrm{LB}$, find $\frac{A B}{C N}$.
A. $3 / 2$
B. $1 / 2$
C. $4 / 5$
D. $1 / 4$

## Answer: B

5. $A B C D$ is a rectangle and $M$ is a point on $C D . A C$ and $B M$ meet at $X$.


It is given that $C M=3 M D$. Find
(i) area of $\triangle C X M$ : area of $\triangle A X B$
(ii) area of $\triangle B X C$ : area of rectangle ABCD
A. (i) $9: 16$
(ii) $3: 11$
B. (i) $9: 16$
(ii) $3: 14$
C. (i) $16: 9$
(ii) $14: 3$
D. (i) $16: 9$
(ii) $11: 3$

## Answer: B

## - View Text Solution

6. In $\triangle A B C, \angle A C B=90^{\circ}, A C=4$ and $B C=3$, then the value of $C D \times A B$ is

A. 20
B. 15
C. 12
D. 10

## Answer: C

## D Watch Video Solution

7. In the figure, AE is the bisector of the exterior $\angle C A D$ meeting BC produced in E. If $A B=10 \mathrm{~cm}, A C=6 \mathrm{~cm}$ and $B C=12 \mathrm{~cm}$, then CE is
A. 12 cm
B. 16 cm
C. 20 cm
D. 18 cm

## Answer: D

8. In $\triangle A B C, m \angle B=90^{\circ}, A B=4 \sqrt{5} . B D \perp A c, A D=4$, then area of $(\triangle A B C)=$
A. 96 sq . Units
B. 80 sq. Units
C. 120 sq. Units
D. 160 sq. Units

## Answer: B

## D Watch Video Solution

9. In the given figure, the value of $A B$ will be

A. 11 cm
B. 12 cm
C. 22 cm
D. 16 cm

## Answer: C

## D Watch Video Solution

10. In trapezium $A B C D . A B \| D C$ and $D C=2 A B$. $A$ line segment $E F$ drawn parallel to $A B$ cuts $A D$ in $F$ and $B C$ in $E$ such that $\frac{B E}{E C}=\frac{3}{4}$.

Diagonal DB intersects EF at G. prove that \&EF=10AB.

A. 7
B. 9
C. 10
D. 11

## Answer: D

## - Watch Video Solution

11. In Fig. 4.220, $D$ is the mid-point of side $B C$ and $A E \perp B C$. If $B C=a, \quad A C=b, \quad A B=c, \quad E D=x, A D=p$ and $A E=p$ and $A E=h \quad, \quad$ prove $\quad$ that: (FIGURE) $\quad b^{2}=p^{2}+a x+\frac{a^{2}}{4}$
$c^{2}=p^{2}-a x+\frac{a^{2}}{4}$ (iii) $b^{2}+c^{2}=2 p^{2}+\frac{a^{2}}{2}$
A. $\begin{array}{lll}P & Q & R \\ a^{2} x & a^{2} / 2 & 2 p^{2}\end{array}$
B. $\begin{array}{lll}P & Q & R \\ a x & a^{4} / 2 & 4 p^{2}\end{array}$
C. $\begin{array}{lll}P & Q & R \\ a x & a^{4} / 2 & 2 p^{2}\end{array}$
D.
$P \quad Q$
$R$
$a^{2} x \quad a^{2} / 2 \quad 2 p$

Answer: C

Watch Video Solution
12. In the given figure, if AD is the bisector of $\angle B A C$. If $\mathrm{AB}=10 \mathrm{~cm}, \mathrm{AC}=$ 14 cm and $B C=6 \mathrm{~cm}$, then find $B D$ and $D C$.

A. $2.5 \mathrm{~cm}, 3.5 \mathrm{~cm}$
B. $3 \mathrm{~cm}, 3 \mathrm{~cm}$
C. $3.5 \mathrm{~cm}, 4.5 \mathrm{~cm}$
D. $4 \mathrm{~cm}, 2 \mathrm{~cm}$

## Answer: A

## D Watch Video Solution

13. Read the statemenst carefully and state 'T' for true and ' $F$ ' for false .
14. If a line divides any two sides of a triangle in the same ratio , then the line is parallel to the third side of the triangle .
15. The internal bisector of an angle of a triangle divides the opposite side inernally in the ratio of the sides containing the angle .
16. If a line through one vertex of a triangle divides the opposite in the ratio of other two sides, then the line bisects the angle at the vertex .
4.Any line parallel to the parallel sides dividesproportionally .
17. Two times the sum of the squares of the sides of a triangle is equal to four times the sum of the squares of the medians of the triangle .
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
A. $\begin{array}{lllll}T & T & T & T & T\end{array}$
B. $\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ T & T & T & T & F\end{array}$
C. $\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ F & T & F & T & F\end{array}$
D. $\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ T & T & F & T & F\end{array}$

## Answer: B

## - Watch Video Solution

14. Fill in the blanks .
(i) In two similar triangles , ABC and PQR , if their corresponding altitudes AD and PS are in the ratio $4: 9$, then $\operatorname{ar}(\triangle A B C): \operatorname{ar}(\Delta P Q R)=\overline{(P)}$.
(ii) Area of an equilateral triangle described on the side of a square is
$\overline{(O)}$ the area of equilateral triangle described on its diagonal .
(iii) The altitude of an equilateral triangle with side 'a' equals oberline(( $R$ ))

$$
\begin{array}{lll}
P & Q & R \\
\text { A. } & Q: 81 & \text { Twice } \\
\frac{a}{2}
\end{array}
$$

B. $P \quad Q \quad R$

4:9 Half $2 a$
$P \quad Q \quad R$
C.

16:81 Half $\frac{\sqrt{3 a}}{2}$
$P \quad Q \quad R$
D. $4: 9$ Twice $\frac{\sqrt{3 a}}{2}$

## Answer: C

## - View Text Solution

15. 

In
the
given
figure
$A D \perp B C, A C=4, B D=2, A B=a$ and $C D=b$, then $a^{2}+b^{2}=$

A. 6
B. 8
C. 12

$$
\text { D. } 20
$$

## Answer: D

Watch Video Solution

