© 'doubtnut

 India's Number 1 Education App
CHEMISTRY

BOOKS - EVERGREEN CHEMISTRY (ENGLISH)

MOLE CONCEPT AND STOICHIOMETRY

Numerical Assignments

1. Calculate the volume occupied by 7 grams of nitrogen gas (molar mass $=28 \mathrm{~g})$

- Watch Video Solution

2. At STP, 14 g of nitrogen occupies 11.2 litres. Use this information
to determine the atomicity of nitrogen. It is given that molar

D Watch Video Solution

3. Calculate the mass of one molecule of oxygen. It is given that molar mass of O_{2} is 32 g and Avogadro's number is 6.022×10^{23}

- Watch Video Solution

4. A gas cylinder can hold 1 kg of hydrogen gas at room temperature and 1 atm pressure. Calculate the following:

The mass of carbon dioxide which the cylinder could hold under similar conditions of temperature and pressure. (Molar mass of $\mathrm{CO}=44 \mathrm{~g})$

- Watch Video Solution

5. A gas cylinder can hold 1 kg of hydrogen gas at room temperature and 1 atm pressure. Calculate the following:

The number of molecules of carbon dioxide in the cylinder. Give reasons to justify your answer. Mass of the substance

- Watch Video Solution

Illustrative Numericals On Percentage Composition

1. Calculate the mass percentage of each element in water $\left(\mathrm{H}_{2} \mathrm{O}\right)$

- Watch Video Solution

2. Compute the percentage composition of cane sugar $\left(C_{12} H_{22} O_{11}\right)$
3. The molecular formula of Mohr's salt is $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \mathrm{FeSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

Find the number of atoms of each element.

D Watch Video Solution

4. The molecular formula of Mohr's salt is $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \mathrm{FeSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

Find the number of atoms of each element.

D Watch Video Solution

5. The molecular formula of Mohr's salt is $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \mathrm{FeSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

What is the percentage of water of hydration in Mohr's salt?

Watch Video Solution

6. Calculate the total percentage of oxygen in magnesium nitrate crystals $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Atomic masses $\mathrm{H}=1, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Mg}$ $=24)$

- Watch Video Solution

7. Calculate the percentage of platinum in ammonium chloroplatinate $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtCI}_{6}$ (Give your answer correct to the nearest whole number).
(Atomic masses: $\mathrm{H}=1, \mathrm{~N}=14, \mathrm{CI}=35.5, \mathrm{Pt}=195$)

- Watch Video Solution

8. Calculate the percentage of phosphorus in the fertiliser superphosphate $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$
$(H=1,0=16, P=31, C a=40)$.

- Watch Video Solution

9. Calculate the mass of chromium atoms in 85 g of $\mathrm{Cr}_{2} S_{3}$.

D Watch Video Solution

Questions

1. Calculate the number of moles in 22 g of CO_{2}

- Watch Video Solution

2. Calculate the number of molecules in 8 grams of O_{2}.

- Watch Video Solution

3. Calcualte the number of molecules in 5.6 litres of a gas at STP

$$
\begin{aligned}
& \text { A. Mole }=\frac{\text { Volume of the gas at STP }}{\text { Molar volume of the gas at STP }} \\
& =\frac{5.6}{22.4 L}=0.25 \\
& \text { Numbers } \\
& =\frac{\text { Volume of the gas at STP }}{\text { Molar volume of the gas at STP }} \times \text { Avogadro's number } \\
& =\frac{5.6 L}{22.44 L} \times 6.022 \times 10^{23}=1.5 \times 10^{23} \\
& \text { B. } \\
& \text { C. } \\
& \text { D. }
\end{aligned}
$$

Answer:

(D) Watch Video Solution

4. Calculate the volume of 320 g of SO_{2} at STP. (Atomic mass $\mathrm{S}=32$ and $\mathrm{O}=16$)
A. Molar mass of $\mathrm{SO}_{2}=32+2 \times 16=64 g$

$$
V\left(S O_{2}\right)=\frac{320 g}{64 g} \times 22.4 L=112 L
$$

B.
C.
D.

Answer:

5. The vapour density of ethane is 8 . What is its molecular mass and gram molecular mass ?
A. Molecular mass $=2 \times$ Vapourn density $=2 \times 8=16$ Gram molecular mass $=2 g \times 8=16 g$
B.
C.
D.

Answer:

- Watch Video Solution

6. Atomic mass of oxygen is 16 What is its vapour density ?
A. Oxygen is a diatomic molecular. Therefore,

Vapoure density of $O_{2}=\frac{1}{2} \times$ Molecular mass of oxyge
=A Atomic mass of oxygen $=16$
B.
C.
D.

Answer:

D Watch Video Solution

7. The vapour density of carbon dioxide is 22 Explain this statement.
(i) The molecule of a given volume of CO_{2} is 22 times greater than the mass of the same volume of H_{2}.
(ii) The molecular mass of $\mathrm{CO}_{2}=2 \times 22=44$
A. A molecular of carbon dioxide is 22 this statement means that
B.
C.
D.

Answer:

D Watch Video Solution

8. A gas cylinder full of hydrogen gas contains 6 g of this gas. The same cylinder can hold 102 g of a gas X under the same conditions of temperature and pressure.

Calculate the vapour density of the gas X
9. A gas cylinder full of hydrogen gas contains 6 g of this gas. The same cylinder can hold 102 g of a gas X under the same conditions of temperature and pressure.

Calculate the vapour density of the gas X
A. Molecular mass $X=2 \times$ Vapour density of gas
$X=2 \times 17=34$
B.
C.
D.

Answer:

10. A gas cylinder of capacity of $20 \mathrm{dm}^{3}$ is filled with gas X, the mass of which is 10 g . When the same cylinder is filled with hydrogen gas at the same temperature and pressure, the mass of the hydrogen is 2 g . Hence the relative molecular mass of the gas is
A. 5
B. 10
C. 15
D. 20

Answer:

- Watch Video Solution

11. Calcuate the mass of
10^{22} atoms of sulphur.
[Atocmi mass $\mathrm{S}=32, \mathrm{C}$ and $\mathrm{O}=16$ and Avogadro's number $=6 \times 10^{23}$]

- Watch Video Solution

12. Calculate the mass of
0.1 mole of carbon dioxide.
[Atomic mass: $\mathrm{S}=32, \mathrm{C}=12$ and $\mathrm{O}=16$ and Avogadro.s Number $=$ 6×10^{23}]

- Watch Video Solution

13. Calcualte the volume occupied by 0.1 mol of CO_{2} at STP.

- Watch Video Solution

14. State the Avogadro law of ideal gas
15. Write the empirical formula for each of the following:
$\mathrm{C}_{2} \mathrm{H}_{6}$

- Watch Video Solution

16. Write the empirical formula for each of the following:

$$
C_{6} H_{6}
$$

- Watch Video Solution

17. Write the empirical formula for each of the following:
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
18. Write the empirical formula for each of the following:
$\mathrm{Na}_{2} \mathrm{CO}_{3}$

- Watch Video Solution

19. Write the empirical formula for each of the following:
$\mathrm{C}_{4} \mathrm{H}_{10}$

- Watch Video Solution

20. when gases react together their reacting volumes bear a simple ratio to each other under the same conditions of temperature and pressure. Who proposed this law?

D Watch Video Solution

21. State Gay-Lussac.s Law of combining volumes.

D Watch Video Solution

Numerical Problems

1. What mass of oxygen will contain 2 mol of O_{2} molecules? Molar mass of O_{2} is $32 \mathrm{gmol}^{-1}$.

- Watch Video Solution

2. Compute the mass in grams for each of the following:
3.0 mol of NH_{3}

- Watch Video Solution

3. Compute the mass in grams for each of the following:
0.4 mol of CO_{2}

- Watch Video Solution

4. Compute the mass in grams for each of the following:
5.0 mol of $\mathrm{H}_{2} \mathrm{IO}_{6}$ Relative atomic mases: $\mathrm{H}=1,0=16, \mathrm{I}=127$

D Watch Video Solution

5. Calculate the number of $\mathrm{H}_{2} \mathrm{O}$ molecules in 0.06 g of water. [Molar mass of $\mathrm{H}_{2} \mathrm{O}=18 \mathrm{gmol}^{-1}$]

- Watch Video Solution

6. How many Ag atoms are there in 0.001 g of silver? Take atomic mass of $\mathrm{Ag}=108$ and Avogadro's number $=6.023 \times 10^{23}$.

- Watch Video Solution

7. At STP, 11 g of carbon dioxide gas (molar mass of $\left.C O_{2}=44 \mathrm{gmol}^{-1}\right)$ is filled in a container. Compute the following quantities of the gas.

Number of carbon and oxygen atoms

- Watch Video Solution

8. At STP, 11 g of carbon dioxide gas (molar mass of $\left.C O_{2}=44 \mathrm{gmol}^{-1}\right)$ is filled in a container. Compute the following quantities of the gas.

Number of molecules

(Watch Video Solution

9. At STP, 11 g of carbon dioxide gas (molar mass of $\left.C O_{2}=44 \mathrm{gmol}^{-1}\right)$ is filled in a container. Compute the following quantities of the gas.

Number of carbon and oxygen atoms

- Watch Video Solution

10. At STP, 11 g of carbon dioxide gas (molar mass of $\left.C O_{2}=44 \mathrm{gmol}^{-1}\right)$ is filled in a container. Compute the following quantities of the gas.

Volume of the gas

D Watch Video Solution

11. Under the same conditions of temperature and pressure, $2 \mathrm{LCO}_{2} 3 \mathrm{ICI}_{2} 5 \mathrm{LH}_{2} 4 \mathrm{LN}_{2}$ and $1 \mathrm{LSO}_{2}$ are collected in different containers. In which gas sample will there be the greatest number of molecules?

- Watch Video Solution

12. Under the same conditions of temperature and pressure, $2 \mathrm{LCO}_{2} 3 \mathrm{ICI}_{2} 5 \mathrm{LH}_{2} 4 L \mathrm{~N}_{2}$ and $1 \mathrm{LSO}_{2}$ are collected in different containers. In which gas sample will there be the least number of molecules? Justify your answer.

- Watch Video Solution

13. The gases hydrogen, oxygen, carbon dioxide, sulphur dioxide and chlorine are arranged in order of their increasing relative
molecular mass. Given 10 g of each gas at STP, which gas will contain the least number of molecules and which gas the most?

- Watch Video Solution

14. Samples of the gases $O_{2}, N_{2}, \mathrm{CO}_{2}$ and CO under the same conditions of temperature and pressure contain the same number of molecules represented by X . The molecules of oxygen $\left(\mathrm{O}_{2}\right)$ occupy V litres and have a mass of 8 g . Under the same conditions of temperature and pressure, answer the following questions:

What is the volume occupied by
X moelcules of N_{2}

- Watch Video Solution

15. Samples of the gases $O_{2}, N_{2}, \mathrm{CO}_{2}$ and CO under the same conditions of temperature and pressure contain the same number
of molecules represented by X . The molecules of oxygen $\left(\mathrm{O}_{2}\right)$ occupy V litres and have a mass of 8 g . Under the same conditions of temperature and pressure, answer the following questions:

What is the volume occupied by
3 x molecules of $C O$?

D Watch Video Solution

16. Samples of the gases $O_{2}, N_{2}, C O_{2}$ and $C O$ under the same conditions of temperature and pressure contain the same number of molecules represented by X . The molecules of oxygen $\left(\mathrm{O}_{2}\right)$ occupy V litres and have a mass of 8 g . Under the same conditions of temperature and pressure, answer the following questions:

What is the mass of CO_{2} in gram ?

- Watch Video Solution

17. Samples of the gases $O_{2}, N_{2}, \mathrm{CO}_{2}$ and CO under the same conditions of temperature and pressure contain the same number of molecules represented by X . The molecules of oxygen $\left(O_{2}\right)$ occupy V litres and have a mass of 8 g . Under the same conditions of temperature and pressure, answer the following questions: In answering the above questions, name the law you have used?

- Watch Video Solution

18. A gas of mass 32 gm has a volume of 20 litre at S.T.P. Calculate the gram molecular weight of the gas.

- Watch Video Solution

19. Complete the calculation. Show working for complete credit :

Calculate the mass of calcium that will contain the same number of
atoms as are present in 3.2 gm of sulphur. [Atomic masses : $\mathrm{S}=32$,
$\mathrm{Ca}=40$]

- Watch Video Solution

20. The mass of 11.2 litre of a certain gas at S.T.P. is 24 g . Find the gram molecular mass of the gas.

- Watch Video Solution

21. Calculate the volume occupied by 2.4 g of a gas at STP when its vapour density is 11.2

- Watch Video Solution

1. Express 144 pencils in dozen and gross.

- Watch Video Solution

2. ____ is used to report the amount of chemical substance.

- Watch Video Solution

3. How many O_{2} molecules are there in one mole of oxygen gas?

D Watch Video Solution

4. Calculate the number of CO_{2} molecules in 10 moles of it.

- Watch Video Solution

5. How many N atoms are present in 0.25 mol of N_{2} ?

- Watch Video Solution

6. The molecular formula of an organic acid is $\mathrm{H}_{2} \mathrm{CO}_{2}$ What is its empirical formula?

D Watch Video Solution

7. What is the percentage composition of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$? [R.A.M.: $0=$ $16, \mathrm{Al}=27, \mathrm{~S}=32$.]

- Watch Video Solution

8. Calculate the molecular mass and percentage composition of HgO. [R.A.M.: $\mathrm{O}=16, \mathrm{Hg}=200.6$.]

D Watch Video Solution

9. Calculate the mass percent of chromium in potassium dichromate $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ [R.A.M. : $0=16, \mathrm{~K}=39, \mathrm{C}=52$.]

- Watch Video Solution

10. Calculate the molecular mass of haemoglobin $C_{3021} H_{4780} O_{896} N_{760} S_{12} e_{4}$ and find the mass percentage of iron (Fe) in this molecule. [R.A.M.: $\mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{~S}=32, \mathrm{Fe}=56$]

D Watch Video Solution

11. Calculate the percentage composition of a compound which has molecular formula $N_{2} O_{4}$ [R.A.M.: $\mathrm{N}=14, \mathrm{O}=16$.]
12. Both carbon monoxide (CO) and carbon dioxide $\left(\mathrm{CO}_{2}\right)$ are binary compounds of carbon and oxygen. Show by calculations that both the compounds contain different percentages of the two elements. [R.A.M.: $\mathrm{C}=12, \mathrm{O}=16$.]

- Watch Video Solution

13. Both sodium sulphate $\left(N a_{2} S O_{4}\right)$ and sodium sulphite ($\mathrm{Na}_{2} \mathrm{SO}_{3}$) are the compounds of sodium, sulphur and oxygen. By calculations prove that the quantity of oxygen in sodium sulphate is greater than that in sodium sulphite. (R.A.M. : $\mathrm{Na}=23, \mathrm{~S}=32, \mathrm{O}=$ 16.]

- Watch Video Solution

14. Determine the percentage composition of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ in hydrogen peroxide $\mathrm{H}_{2} \mathrm{O}_{2}$ [R.A.M.: $\mathrm{H}=1,0=16$.]

- Watch Video Solution

15. Which contains larger percentage of oxygen, $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{N}_{2} \mathrm{O}_{3}$?

- Watch Video Solution

16. Calculate the percentage of nitrogen in ammonium nitrate
$\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$ [R.A.M: $\left.\mathrm{H}=1, \mathrm{~N}=14,0=16\right]$

- Watch Video Solution

17. What mass of sulphur is contained in 30 g of iron pyrites

Watch Video Solution

18. What mass of sulphur is contained in 30 g of iron pyrites $\left.\left(N a_{2} B_{4} O_{7}, 10 H_{2} O\right)=H=1 B=11, O=16, N a=23\right)$

- Watch Video Solution

19. Calculate the percentage of nitrogen and oxygen in ammonium nitrate. [Relative molecular mass of ammonium nitrate is $80, \mathrm{H}=1$, $N=14, O=16)$.

- Watch Video Solution

20. Calculate the percentage of water of crystalization in $\mathrm{CuSO} \mathrm{H}_{4.5} \mathrm{H}_{2} \mathrm{O}$
$(H=1, O=16, S=32, C u=64)$

- Watch Video Solution

21. A compound contains $50 \% \mathrm{Ca}, 15 \% \mathrm{C}$ and $35 \% \mathrm{~N}$ atoms by mass.

Determine the simplest formula of the compound. (R.A.M.: $\mathrm{C}=12, \mathrm{~N}$
$=14, \mathrm{Ca}=40$.)

- Watch Video Solution

22. Sodium chloride is composed of 39.4% sodium and 60.6% chlorine. Prove by calculations that its empirical formula is NaCl . (R.A.M. : $\mathrm{Na}=23, \mathrm{Cl}=35.5$)

- Watch Video Solution

23. In a compound 8 g of sulphur combine with 8 g of oxygen. What is the empirical formula of the compound? (R.A.M.: $S=32, O=16$).

- Watch Video Solution

24. A compound is composed of $43.4 \% \mathrm{Na}, 11.32 \% \mathrm{C}$ and rest of oxygen by mass. Derive a empirical formula of the compound. (R.A.M.: $\mathrm{C}=12, \mathrm{O}=16, \mathrm{Na}-23$)

- Watch Video Solution

25. A compound contains $10 \% \mathrm{C}, 0.8 \% \mathrm{H}$ and $89.2 \% \mathrm{Cl}$ by mass.

Determine its simplest formula. (R.A.M.: $\mathrm{H}=1, \mathrm{C}=12, \mathrm{Cl}=35.5$)

D Watch Video Solution

26. A compound contains $25.52 \% \mathrm{C}, 6.38 \% \mathrm{H}$ and $68.1 \% \mathrm{~S}$ by mass. If the molecular mass of the compound is 94 , determine its molecular formula.
27. Write the empirical formula of each one of the following: $\mathrm{H}_{2 \mathrm{O}_{2}}$

D Watch Video Solution
28. Write the empirical formula of each one of the following:
CO_{2}

- Watch Video Solution

29. Write the empirical formula of each one of the following:

$$
C_{6} H_{6}
$$

30. Write the empirical formula of each one of the following:

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

- Watch Video Solution

31. Write the empirical formula for each of the following:
$C_{4} H_{10}$

- Watch Video Solution

32. Write the empirical formula of each one of the following:
$C_{6} H_{12}$

D Watch Video Solution
33. Write the empirical formula of each one of the following:
$C_{2} H_{6} S_{2}$

D Watch Video Solution

34. Write the empirical formula of each one of the following:
$C_{6} H_{8} N_{2}$

- Watch Video Solution

35. The molecular formula of an organic acid is $\mathrm{H}_{2} \mathrm{CO}_{2}$ What is its empirical formula?

D Watch Video Solution

36. A compound is composed of 2.2% hydrogen, 26.6% carbon and 71.2% oxygen. Calculate the empirical formula of the compound. If its molecular mass is 90 , find its molecular formula.

D Watch Video Solution

37. A compound is composed of 29.11% sodium, 40.51% sulphur and 30.38% oxygen. Find its empirical formula. (R.A.M. $: \mathrm{Na}=23, \mathrm{~S}=32, \mathrm{O}$
$=16$.

- Watch Video Solution

38. A compound contains 87.5% nitrogen and 12.5% hydrogen by mass. Determine the empirical formula and molecular of this compound if its molecular mass is 32
39. An organic compound with vapour density 94 contains $C=$ $12.67 \%, \mathrm{H}=2.13 \%$ and $\mathrm{Br}=85.20 \%$. Find the molecular formula.
(Atomic mass: $\mathrm{C}=12, \mathrm{H}=1, \mathrm{Br}=80$)

- Watch Video Solution

40. A gaseous hydrocarbon contains 82.76% of carbon. Given that its vapour density is 29 , find its molecular formula ($C=12, H=1$).

D Watch Video Solution

41. If the empirical formula of a compound is CH and its vapour density is 13 , find the molecular formula of the compound.

- Watch Video Solution

42. Compound of X and Y has the empirical formula $X Y$. Its vapour density is equal to its empirical formula mass. Determine its molecular formula.

- Watch Video Solution

43. Nitrogen and oxygen gases combine to form nitric oxide:
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$.
Calculate the volume of nitrogen required to produce $30 \mathrm{dm}^{3}$ of NO gas.

D Watch Video Solution

44. For the reaction
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$

If pressure id increased by reducing the volume of the container then :

- Watch Video Solution

45. What volume of propane is burnt for every $100 \mathrm{~cm}^{3}$ of oxygen used in the reaction $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$? Gas volumes are measured under the same conditions.

- Watch Video Solution

46. Find the volume of sulphur dioxide (at STP) that would be liberated by roasting 30 g of iron pyrites according to the equation $4 \mathrm{FeS}_{2}+11 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{SO}_{2}$.
(Atomic mass : $S=32, F e=56, O=16$, molar volume of gas is
22.4 litres at STP.)
47. What volume of hydrogen sulphide at STP will burn in oxygen to yield 12.8 g of sulphur dioxide according to the equation $2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{SO}_{2}$.

- Watch Video Solution

48. What volume of dioxygen is required for complete combustion of 2 volume of acetylene gas at NTP ?

- Watch Video Solution

49. Calcium hydroxide and ammonium chloride react to give ammonia as per equation:

$$
\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}
$$

In a reaction, 5.35 g of ammonium chloride were consumed .

Calculate

The mass of calcium chloride formed.

- Watch Video Solution

50. Calcium hydroxide and ammonium chloride react to give ammonia as per equation:
$\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
In a reaction, 5.35 g of ammonium chloride were consumed. Calculate

The volume at STP of ammonia liberated.
(R.A.M. : $H=1, N=14, O=16, C l=35.5, C a=40)$

- Watch Video Solution

51. Carbon monoxide combines with oxygen to form carbon dioxide according to the equation:
$2 \mathrm{CO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(g)$.
$200 \mathrm{~cm}^{3}$ of carbon monoxide is mixed with $200 \mathrm{~cm}^{3}$ of oxygen at room temperature and ignited.

Calculate the volume of carbon dioxide formed when cooled to room temperature.

- Watch Video Solution

52. Carbon monoxide combines with oxygen to form carbon dioxide according to the equation:
$2 \mathrm{CO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$.
$200 \mathrm{~cm}^{3}$ of carbon monoxide is mixed with $200 \mathrm{~cm}^{3}$ of oxygen at room temperature and ignited.

What other gas, if any, may also be present ?

- Watch Video Solution

53. On passing carbon dioxide over red hot carbon, carbon monoxide is produced as pe the equation $\mathrm{CO}_{2}+\mathrm{C} \rightarrow 2 \mathrm{CO}$.

Calculate the volume of carbon monoxide at STP wher 3 g of carbon is consumed in the reaction.

- Watch Video Solution

54. When hydrogen burns in oxygen, water vapour is produced:
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ (vapour).
How many moles of steam is obtained from 0.5 mol of O_{2} used?

- Watch Video Solution

55. Upon heating, baking soda (sodium hydrogen carbonate) decomposes according to the equation:
$2 \mathrm{NaHCO}_{3}(s) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(g)$

In an experiment, 8.4 g baking soda decomposes and carbon dioxide gas is collected.

Calculate the volume of carbon dioxide produced at NTP.

- Watch Video Solution

56. Upon heating, baking soda (sodium hydrogen carbonate) decomposes according to the equation:
$2 \mathrm{NaHCO}_{3}(s) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(g)$
In an experiment, 8.4 g baking soda decomposes and carbon dioxide gas is collected.

How many moles of CO_{2} are produced?

- Watch Video Solution

57. Upon heating, baking soda (sodium hydrogen carbonate)
decomposes according to the equation:
$2 \mathrm{NaHCO}_{3}(s) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(g)$
In an experiment, 8.4 g baking soda decomposes and carbon dioxide gas is collected.

What would be the volume of CO_{2} measured at STP?

$$
(R . A . M .: N a=23, H=1, C=12, O=16)
$$

- Watch Video Solution

58. When 1 mol of zinc was treated with sufficient quantity of hydrochloric acid, the whole of Zn was consumed. In the reaction, hydrogen gas was liberated and zinc chloride was formed. State The moles of HCl required to react with 1 mole of zinc.

- Watch Video Solution

59. When 1 mol of zinc was treated with sufficient quantity of hydrochloric acid, the whole of Zn was consumed. In the reaction,
hydrogen gas was liberated and zinc chloride was formed. State The moles of H_{2} liberated.

- Watch Video Solution

60. When 1 mol of zinc was treated with sufficient quantity of hydrochloric acid, the whole of Zn was consumed. In the reaction, hydrogen gas was liberated and zinc chloride was formed. State The volume of H_{2} at STP.

- Watch Video Solution

61. When steam is passed over hot iron, hydrogen is liberated and $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is formed according to the chemical equation $3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}(\mathrm{~g})$.

In a typical reaction, 56 g iron was consumed. Calculate the following:

The volume of H_{2} liberated at STP (when molar volume of H_{2} is $\left.22.4 L\right)$

- Watch Video Solution

62. When steam is passed over hot iron, hydrogen is liberated and $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is formed according to the chemical equation $3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}(\mathrm{~g})$.

In a typical reaction, 56 g iron was consumed. Calculate the following:

The mass
of
$\mathrm{Fe}_{3} \mathrm{O}_{4}$ formed.
(R.A.M. : $H=1, O=16, F e=56$)

- Watch Video Solution

63. With the help of the equation
$\mathrm{CaCO}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}, \quad$ calculate the
following :

The mass of CaCl_{2} formed from $10 \mathrm{gCaCO} \mathrm{C}_{3}$.

- Watch Video Solution

64. With the help of the equation
$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$, calculate the following :

The volume of CO_{2} formed at STP from 10 g CaCO 3 .

- Watch Video Solution

65. How many litres of NH3 would be formed when 120 L of H_{2}, at standard conditions combine with N_{2} ? What is the volume of N_{2} consumed in this reaction?
66. What mass of oxygen is required to burn (1) 480 g of methane,
(ii) $500 \mathrm{~cm}^{3}$ of methane?

Equation: $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Relative atomic mass: $C=12, H=1, O=16$

D Watch Video Solution

67. What is the mass of magnesium oxide (MgO) formed when 10 g of Mg is burnt?

D Watch Video Solution

68. How many grams of potassium chlorate should be decomposed to liberate 9.6 g of oxygen?

Equation: $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
Relative atomic mass: $K=39, C l=35.5, O=16$

(Watch Video Solution

69. How many grams of carbon dioxide is set free by the decomposition of 20 g of calcium carbonate?

D Watch Video Solution

70. What would be the volume of this CO_{2} at STP?

Equation
$\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}(g)($ R. $A . M .: C a=40, C=12, O=16)$

D Watch Video Solution

71. Compute the volume of oxygen needed for complete combustio fo 114 g of octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ at STP.
72. What is the volume of O_{2} needed to burn 60 L of octane at STP ?

Equaton $2 \mathrm{C}_{6} \mathrm{H}_{8}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}$
R.A.N.:C=12,H=1,O=16

D Watch Video Solution

73. How many gramsof oxygen is required to burn 40 g or sulphur ?

Equation $S+O_{2} \rightarrow S O_{2}(R . A . M .: S=32, O=16)$

- Watch Video Solution

74. In an experiment, a mixture of $8 \mathrm{~g} C H_{4}$ and $24 g O_{2}$ was burn to form CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ according to the equation
$: \mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)+$ heat
Which reactant in limiting reagent (small proportiona)?

- Watch Video Solution

75. In an experiment, a mixture of $8 \mathrm{~g} \mathrm{CH}_{4}$ and $24 g O_{2}$ was burn to form CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ according to the equation
$: \mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+$ heat
How many moles of CO_{2} will be formed?

- Watch Video Solution

76. In an experiment, a mixture of $8 \mathrm{~g} C H_{4}$ and $24 g O_{2}$ was burn to form CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ according to the equation
$: \mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)+$ heat How many grams of CO_{2} will be formed ?
77. In an experiment, a mixture of $8 \mathrm{~g} \mathrm{CH} H_{4}$ and $24 g O_{2}$ was burn to form CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ according to the equation
$: \mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)+$ heat
How many moles of other reactant will remain unreacted after the reaction has stopped ?

- Watch Video Solution

78. With the help of the balanced chemical equation
$2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(a q)+3 \mathrm{H}_{2}(g)$
Answer the equations below :
How many moles of acid are required for each mole of H_{2} liberated?
79. With the help of the balanced chemical equation
$2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(a q)+3 \mathrm{H}_{2}(g)$
Answer the equations below :
What would be the mass of $A l_{2}\left(S O_{4}\right)_{3}$ formed per 27 g Al consumed?

- Watch Video Solution

80. With the help of the balanced chemical equation
$2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(a q)+3 \mathrm{H}_{2}(g)$
Answer the equations below :
How much Al (in grams) will be used to liberate 22.4 L of Hydrogen gas, at STP

- Watch Video Solution

81. With the help of the balanced chemical equation
$2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(a q)+3 \mathrm{H}_{2}(g)$

Answer the equations below :
What will be the mass of H_{2} produced per mole of Al consumed?
(R.A.M: $\mathrm{Al}=27, \mathrm{H}=1, \mathrm{~S}=32, \mathrm{O}=16$)

- Watch Video Solution

82. Hydrogen and oxygen combine to form water according to the following equation:
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$. A mixture of 22.4 L of H_{2} and 22.4 L of O_{2} at $100^{\circ} \mathrm{C}$ is ignited.

Calculate the volume of steam produced.
83. Hydrogen and oxygen combine to form water according to the following equation:
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$. A mixture of 22.4 L of H_{2} and 22.4 L of O_{2} at $100^{\circ} \mathrm{C}$ is ignited.

What gas if any will be present on cooling to room temperature?

- Watch Video Solution

84. Ammonia burns in oxygen as
$2 \mathrm{NH}_{3}(g)+2.5 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}(g)+3 \mathrm{H}_{2} \mathrm{O}(g)$
What mass of steam is produced when 1.5 g NO is formed?

- Watch Video Solution

85. Ammonia burns in oxygen as
$2 \mathrm{NH}_{3}(g)+2.5 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}(g)+3 \mathrm{H}_{2} \mathrm{O}(g)$

What volume of O_{2} at STP is required to produce 10 mol of products $\left(4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}\right)$?

- Watch Video Solution

86. Use equation $2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{H}_{2}(g)$ to answer the following What volume of O_{2} will be produced if the volume of H_{2} produced is $2500 \mathrm{~cm}^{3}$ under similar conditions?

- Watch Video Solution

87. Use equation $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})$ to answer the following

What is the final volume of H_{2} if the pressure is increased by 2.5 times at constant temperature?

- Watch Video Solution

88. A sample of ammonium nitrate when heated yields 8.96 L of steam (measured at STP).
$\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$

What volume of dinitrogen oxide is produced at the same time as 8.96 L of steam?

- Watch Video Solution

89. A sample of ammonium nitrate when heated yields 8.96 L of steam (measured at STP).
$\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$
What mass of ammonium nitrate should be heated to produce 8.96

L of steam?

(Relative molecular mass of ammonium nitrate is 80 .)
90. Determine the percentage of oxygen in ammonium nitrite

- Watch Video Solution

91. Commerical sodium hydroxide weighing 30 g has some sodium chloride in it. The mixture on dissolving in water and subsequent treatment with excess silver nitrate solution formed a precipitate weighing 14.3 g . What is the percentage of sodium chloride in the commercial sample of sodium hydroxide? The equation for the reaction is
$\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3}$
(Relative molecular mass of $\mathrm{NaCl}=58, \mathrm{AgCl}=143$)

- Watch Video Solution

92. The equations given below relate to the manufacture of sodium carbonate (molecular mass of $\mathrm{Na} \mathrm{CO}_{3}=106$).
$\mathrm{NaCl}+\mathrm{NH}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaHCO} 3+\mathrm{NH}_{4} \mathrm{Cl}$
$2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

Question a and b are based on the production of 21.2 g of sodium carbonate
b. To produce the mass of sodium hydrogen carbonate calculated in (a) what volume of carbon dioxide measured at STP, would be required?

- Watch Video Solution

93. The equations given below relate to the manufacture of sodium carbonate (molecular mass of
$\mathrm{NaCl}+\mathrm{NH}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaHCO}+\mathrm{NH}_{4} \mathrm{Cl}$
$\mathrm{NaCO}=106)$.
$2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
Question a and b are based on the production of 21.2 g of sodium carbonate
a. What is the mass of sodium hydrogen carbonate must be heated to give 21.2 g of sodium carbonate (molecular weight of NaHCO (3) = 84)

- Watch Video Solution

94. A sample of 10 g of a mixture of sodium chloride and anhydrous sodium sulphate of dissolved in water. When an excess of barium chloride solution is added, 6.99 g of barium sulphate is precipitated according to the equation:
$\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{BaCl}_{2} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{NACl}$. Calculate the percentage of sodium sulphate in the original mixture. $(\mathrm{O}=16, \mathrm{Na}=23, \mathrm{~S}=32$, $B a=137)$

- Watch Video Solution

95. From the equation :
$\mathrm{C}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{SO}_{2}$
Calculate :

The mass of carbon oxidised by 49 g of sulphuric acid $(\mathrm{C}=12$, relative molecular mass of sulphuric acid $=98$)

D Watch Video Solution

96. From the equation :
$\mathrm{C}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{SO}_{2}$
Calculate :
Calculate the volume of Sulfur dioxide that is released in the reaction when 24 grams of black carbon is used in the reaction.
97. Given that the relative molecular mass of copper oxide is 80 , what volume of ammonia (measured at STP) is required to completely reduce 120 g of copper oxide? The equation for the reaction is:
$3 \mathrm{CuO}+2 \mathrm{NH}_{3} \rightarrow 3 \mathrm{Cu}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$

- Watch Video Solution

98. 560 mL of carbon monoxide is mixed with 500 mL of oxygen and ignited. The chemical equation for the reaction is $2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$.

Calculate the volume of oxygen used and carbon dioxide formed in the above reaction.
99. How much calcium oxide is formed when 82 g of calcium nitrate is heated ? Also find the volume of nitrogen dioxide evolved :
$2 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{CaO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
$(C a=40, N=14, O=16)$

- Watch Video Solution

100. The equation $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$, represents the catalytic oxidation of ammonia. If $100 \mathrm{~cm}^{3}$ of ammonia is used, calculate the volume of oxygen required to oxidise the ammonia completely.

- Watch Video Solution

101. Concentrated nitric acid oxidises phosphorus to phosphoric acid according to the following equation:
$\mathrm{P}+5 \mathrm{HNO}_{3}$ (conc.) $\rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}+5 \mathrm{NO}_{2}$
If 9.3 g of phosphorus was used in the reaction, calculate :

Number of moles of phosphorus taken.

- Watch Video Solution

102. Concentrated nitric acid oxidises phosphorus to phosphoric acid according to the following equation:
$\mathrm{P}+5 \mathrm{HNO}_{3}$ (conc.) $\rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}+5 \mathrm{NO}_{2}$
If 9.3 g of phosphorus was used in the reaction, calculate :
The mass of phosphoric acid formed.

- Watch Video Solution

103. Concentrated nitric acid oxidises phosphorus to phosphoric acid according to the following equation:
$\mathrm{P}+5 \mathrm{HNO}_{3}$ (conc.) $\rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}+5 \mathrm{NO}_{2}$

If 9.3 g of phosphorus was used in the reaction, calculate :

The volume of nitrogen dioxide produced at S.T.P.
$[H=1, N=14, P=31, O=16]$

- Watch Video Solution

104. 67.2 litre of hydrogen combines with 44.8 litres of nitrogen to
form ammonia under specific conditions as :
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
Calculate the volume of ammonia produced. What is the other substance, if any, that remains in the resultant mixture ?

- Watch Video Solution

105. The mass of $5.6 \mathrm{dm}^{3}$ of a certain gas at S.T.P.is 12.0 g . Calculate the relative molecular mass of the gas.
106. Complete the calculation. Show working for complete credit :

If 6 litre of hydrogen and 4 litre of chlorine are mixed and exploded and if water is added to the gases formed, find the volume of the residual gas

- Watch Video Solution

107. Propane burns in air according to the following equation :
$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$.
What volume of propane is consumed on using $1000 \mathrm{~cm}^{3}$ of air, considering only 20% of air contains oxygen ?

- Watch Video Solution

108. Calculate the ratio of number of molecules in 10 L of O_{2} and 10 L of N_{2} at $25^{\circ} C$ and 1 atm. State the law used in the calculation

- Watch Video Solution

109. Copy the following table which gives the volumes of gases collected under the same conditions of temperature and pressure and the number of molecules (X) in 20 litres of nitrogen. You are to complete the table giving the number of molecules in the other gases in terms of X.

Gas		Volume (litres)	Number of molecules
(i)	Chlorine	10	
(ii)	Nitrogen	20	X
(iii)	Ammonia	20	
(iv)	Oxygen	5	

- Watch Video Solution

110. Hydrogen and chlorine combine to form hydrogen chloride gas.

What is the volume ratio of the gases? Name the law.

- Watch Video Solution

111. Hydrogen and chlorine combine to form hydrogen chloride gas.

What is the molecule ratio of the gases? Name the law.

- Watch Video Solution

112. Hydrogen and oxygen combine to form water vapour.

When 40 litres of hydrogen burn, how many litres of oxygen are used?
113. Hydrogen and oxygen combine to form water vapour.

Calculate the ratio between the volume of hydrogen and volume of oxygen.

- Watch Video Solution

114. Hydrogen and oxygen combine to form water vapour.

Name and state the law illustrated by this problem.

D Watch Video Solution

115. How many litres of ammonia gas will be produced when one litre of nitrogen combines with three litres of hydrogen at a given temperature and pressure?
116. Give two examples of gases with (1) atomicity $=2$

D Watch Video Solution

117. Give two examples of gases with and (ii) atomicity $=3$

- Watch Video Solution

118. Select monoatomic, diatomic and triatomic molecules from the following list:
$\mathrm{He}, \mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{HCI}, \mathrm{NO}, \mathrm{Ar}, \mathrm{N}_{2}, \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

119. A vessel contains X number of molecule of hydrogen gas at a certain temperature and pressure. How many molecules of oxygen
will be present in a vessel of same volume under the same conditions of temperature and pressure? Name the law to justify your answer.

- Watch Video Solution

Questions For Practice Fill In The Blanks

1. A dozen of pencils is the collection of \qquad pencils.

- Watch Video Solution

2. ____ is used to report the amount of chemical substance.
3. What is the value of Avogadro's Number ?

- Watch Video Solution

4. The number of moles of Cl atoms in one mole of CCl_{4} \qquad is

D Watch Video Solution

5. The mass of 0.2 mol of carbon is \qquad grams.

D Watch Video Solution

6. The molar volume of a gas is \qquad at STP
7. The number of molecules in 32 g of oxygen is \qquad

- Watch Video Solution

8. The number of moles in 36 g of hydrogen is \qquad

- Watch Video Solution

9. Write the name and symbol of the reference element that has been used as a standard substance to define the relative atomic mass.

- Watch Video Solution

10. What is the atomic mass and gram atomic mass of the standard reference element?

Questions For Practice On Examination Pattern Section I

1. The amount of a chemical substance is reported as
A. mole
B. mass
C. volume
D. density

Answer: A
2. The molar mass of O_{2} is 32 g per mole. What is the number of moles in 16 g of oxygen?
A. 3.2
B. 0.5
C. 0.3125
D. 0.42

Answer: B

- Watch Video Solution

3. One mole of N , represents which one of the following?
A. 28 g of nitrogen
B. 22.4 L at STP
C. $6.022 \times 10^{23} N_{2}$, molecules
D. All the three

Answer: D

- Watch Video Solution

4. Which one is not true about $\mathrm{H}_{2} \mathrm{SO}_{4}$?
A. It is composed of $2 \mathrm{H}, 1 \mathrm{~S}$ and 4 O atoms.
B. Its molar mass is $98 \mathrm{~g} / \mathrm{mol}$
C. It is composed of one molecule H_{2} one atom S and two molecules O_{2}
D. its relative molecular mass is 98 .

Answer: C

5. The number of moles in 16 g calcium is 0.4 . What is the molar mass of Ca atoms?
A. $4 \mathrm{gmol}^{-1}$
B. $6.4 \mathrm{gmol}^{-1}$
C. $0.04 \mathrm{gmol}^{-1}$
D. $40 \mathrm{gmol}^{-1}$

Answer: D

- Watch Video Solution

6. The molar mass of Ne atoms is $20 \mathrm{gmol}^{-1}$. What is the number of moles in 100 g of neon?
A. 5
B. 10
C. 200
D. 100

Answer: A

D Watch Video Solution

7. Which one is the correct formula of aluminium sulphate?
A. AlSO_{4}
B. $A l_{2}\left(S O_{4}\right)_{3}$
C. $A l_{3}\left(\mathrm{SO}_{4}\right)_{2}$
D. $\mathrm{Al}\left(\mathrm{SO}_{4}\right)_{3}$

Answer: B

D Watch Video Solution

8. The molar mass of $\mathrm{H}_{2} \mathrm{O}$ is 18 g moll. What is the number of moles in 90 g water?
A. 5
B. 11
C. 0.2
D. 72

Answer: A

- Watch Video Solution

9. What is the ratio of the number of molecules in 14 g CO to that of 28 g N ?
A. 1.5
B. 2
C. 3.5
D. 0.5

Answer: D

D Watch Video Solution
10. Which oen of the following has larger number of molecules?
A. $11 g \mathrm{CO}_{2}$
B. $12 g O_{2}$
C. $2 g H_{2}$
D. $21 g N_{2}$

Answer: C

- Watch Video Solution

11. The mass of 0.4 mol Ar is 16 g . What is the molar mass of Ar atoms?
A. $4 \mathrm{gmol}^{-1}$
B. $6.4 \mathrm{gmol}^{-1}$
C. $0.04 \mathrm{gmol}^{-1}$
D. $40 \mathrm{gmol}^{-1}$

Answer: D

12. A gas cylinder of capacity of $20 \mathrm{dm}^{3}$ is filled with gas X, the mass of which is 10 g . When the same cylinder is filled with hydrogen gas at the same temperature and pressure, the mass of the hydrogen is 2 g . Hence the relative molecular mass of the gas is
A. 5
B. 10
C. 15
D. 20

Answer: B

- Watch Video Solution

13. The gas law relating volume with its number of molecules is called
A. Boyl's law
B. Gay-Lussac's law
C. Avogadro's law
D. Ohm's law

Answer: C

D Watch Video Solution

14. In the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$, the volume ratio of the gases as 1: 3: 2 was
A. Boyle
B. Gay-Lussac's law
C. Avogadro
D. Charles

Answer: B

- Watch Video Solution

15. The relative molecular mass of a gas is 44 . Therefore, its vapour density is
A. 44
B. 88
C. 22
D. 11
16. Choose the most appropriate answer

Which of the following would weigh the least?
A. 2 mole of nitrogen atoms
B. 1 mol of silver
C. 22.4 L of oxygen gas at STP
D. 6.02×10^{23} atoms of carbon

Answer: D

- Watch Video Solution

17. Select odd one out from the following and justify your answer.
$\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{H}_{2} \mathrm{O}$
18. Select odd one out from the following and justify your answer. $\mathrm{NaCl}, \mathrm{NaHCO} 3, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}_{2}$

- Watch Video Solution

19. Select odd one out from the following and justify your answer.
$\mathrm{He}, \mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}$

- Watch Video Solution

20. Select odd one out from the following and justify your answer.
$\mathrm{He}, \mathrm{Ar}, \mathrm{CO}, \mathrm{Ne}$
21. Select odd one out from the following and justify your answer.
$\mathrm{HCl}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$

- Watch Video Solution

22. Match (A) mole, (B) Avogadro's number, (C) 22.4 L, (D) vapour density, (E) empirical formula with its description given below.

It is equal to half of the molecular mass

- Watch Video Solution

23. Match (A) mole, (B) Avogadro's number, (C) 22.4 L, (D) vapour density, (E) empirical formula with its description given below. It is the volume of one mole of a gas at STP.

- Watch Video Solution

24. Match (A) mole, (B) Avogadro's number, (C) 22.4 L, (D) vapour density, (E) empirical formula with its description in (1)-(v) given below.

Its numerical value is 6.022×10^{23}

- Watch Video Solution

25. Match (A) mole, (B) Avogadro's number, (C) 22.4 L , (D) vapour density, (E) empirical formula with its description in (1)-(v) given below.

I represents the simple ratio of atoms in a molecule.

- Watch Video Solution

26. Match (A) mole, (B) Avogadro's number, (C) 22.4 L, (D) vapour density, (E) empirical formula with its description in (1)-(v) given
below.
Its numerical value is 6.022×10^{23}

- Watch Video Solution

27. The volumes of gases A, B, C and D are in the ratio, 1:2:2:4 under the same conditions of temperature and pressure.

Which sample of gas contains the maximum number of molecules?

- Watch Video Solution

28. The volumes of gases A, B, C and D are in the ratio, 1:2:2:4 under the same conditions of temperature and pressure.

If the temperature and the pressure of gas A are kept constant, then what will happen to its volume when the number of molecules is doubled?
29. The volumes of gases A, B, C and D are in the ratio, 1:2:2:4 under the same conditions of temperature and pressure.

If this ratio of gas volumes refers to the reactants and products of a reaction, which gas law is being observed?

- Watch Video Solution

30. The volumes of gases A, B, C and D are in the ratio, 1:2:2:4 under the same conditions of temperature and pressure.

If the volume of A is actually 5.6 dm at STP, calculate the number of molecules in the actual volume of D at STP (Avogadro's number is $\left.6 \times 10^{23}\right)$

- Watch Video Solution

31. The volumes of gases A, B, C and D are in the ratio, 1:2:2:4 under the same conditions of temperature and pressure. If the volume of

A is actuaally 5.6 dm 3 at s.t.p calculate the number of molecules in the actual volume of D ate s.t.p

Using your answer from (iv), state the mass of D if the gas is dinitrogen oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$
. $(N=14, O=16)$

- Watch Video Solution

Questions For Practice On Examination Pattern Numericals

1. A sample of 10 g of a mixture of sodium chloride and anhydrous sodium sulphate of dissolved in water. When an excess of barium chloride solution is added, 6.99 g of barium sulphate is precipitated
$\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{BaCl}_{2} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{NACl}$. Calculate the percentage of sodium sulphate in the original mixture. $(O=16, N a=23, S=32$, $B a=137)$

D Watch Video Solution

2. What volume of oxygen is required to burn completely a mixture of 22.4 L of methane and 11.2 L of hydrogen into carbon dioxide and steam? Equations of the reactions are given below. (Assume that all volumes are measured at STP.)
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

3. Consider the reaction and based on the reaction answer the questions that follow:
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\text { Heat }} \mathrm{N}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{Cr}_{2} \mathrm{O}_{3}$
Calculate:

The quantity in moles of nitrogen formed when 63 g of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is given

- Watch Video Solution

4. When excess lead nitrate solution was added to a solution of sodium sulphate, 15.15 g of lead sulphate was precipitated. What mass of sodium sulphate was present in the original solution?
$\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{PbSO}_{4}+2 \mathrm{NaNO}_{3}$
($\mathrm{O}=16, \mathrm{Na}=23, \mathrm{~S}=32, \mathrm{~Pb}=207$)

- Watch Video Solution

5. If $112 \mathrm{~cm}^{3}$ of hydrogen sulphide is mixed with $120 \mathrm{~cm}^{3}$ of chlorine at STP, what is the mass of sulphur formed according to the
equation $\mathrm{H}_{2} \mathrm{~S}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}+\mathrm{S}$?

- Watch Video Solution

6. The reaction $4 \mathrm{~N}_{2} \mathrm{O}+\mathrm{CH}_{4} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{~N}_{2}$ takes place in the gaseous state. If all volumes are measured at the same temperature and pressure, calculate the volume of dinitrogen oxide $\left(N_{2} O\right)$ required to give 150 ml of steam. $(\mathrm{N}=14, \mathrm{O}=16, \mathrm{C}=12$, $H=1)$

- Watch Video Solution

7. Washing soda has the formula $\mathrm{Na}_{2} \mathrm{CO}_{2} \cdot 10 \mathrm{H}_{2} \mathrm{O}$. What is mass of anhydrous sodium carbonate left when all the water of crystallisation is expelled by heating 57.2 g of washing soda?
8. Calculate the volue of O_{2} at 1 atm and 273 K required for the complete combustion of 2.64 L of acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ at 1 atm and $273 \mathrm{~K} .2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

- Watch Video Solution

9. LPG stands for liquefied petroleum gas. Varieties of LPG are marketed including a mixture of propane (60\%) and butane (40\%).

If 10 L of this mixture is burnt, find the total volume of carbon dioxide gas added to the atmosphere. Combustion reactions can be represented as:

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g) \\
& 2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2}(g) \rightarrow 8 \mathrm{CO}_{2}(g)+10 \mathrm{H}_{2} \mathrm{O}(g)
\end{aligned}
$$

- Watch Video Solution

1. Compute the relative molecular mass (M), gram molecular mass and molar mass of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$.

- Watch Video Solution

2. How many molecules are there in 22.4 L of H_{2} at STP?

- Watch Video Solution

3. What is the mass of 11.2 L of N_{2} at STP?

- Watch Video Solution

4. The vapour density of carbon dioxide is 22 . What is its gram molecular mass?
5. Atomic mass of chlorine is 35.5 . What is its vapour density?

- Watch Video Solution

6. Which one in each of the following sets will occupy more volume at STP?
$2 g H_{2}$ or $16 g O_{2}$

- Watch Video Solution

7. Which one in each of the following sets will occupy more volume at STP?

1 mole N_{2} or $14 g N_{2}$
8. Which one in each of the following sets will occupy more volume at STP?
$22 g C O_{2}$ or $20 g O_{2}$

- Watch Video Solution

9. Which one in each of the following sets will occupy more volume at STP?
$10 g H_{2} 100 g \mathrm{CO}_{2}$

- Watch Video Solution

10. Calculate the mass of each of the following at STP:
$5.6 \mathrm{LO}_{2}$
11. Calculate the mass of each of the following at STP:
$11.2 \mathrm{LCO}_{2}$

D Watch Video Solution

12. Calculate the mass of each of the following at STP:
$5.6 L N_{2}$

- Watch Video Solution

13. Calculate the mass of each of the following at STP:
$22.4 L H_{2}$
14. Calculate the mass of each of the following at STP:
$112 L C l_{2}$

- Watch Video Solution

15. Calculate the volume occupied by 15 g of a gas at STP. Its relative molecular mass is 60 .

- Watch Video Solution

16. What is the volume of $7.1 \mathrm{~g} C l_{2}$ at STP?

- Watch Video Solution

17. Calculate the ratio of the number of molecules in 2 L of oxygen and 8 L of nitrogen at STP.

Watch Video Solution

18. Find the ratio of the number of moles in 2 g of oxygen and 8 g nitrogen.

- Watch Video Solution

19. The ratio of the mass of a sulphur atom to that of an oxygen atom is 2:1. If the molar mass of O atoms is $16 \mathrm{gmol}^{-1}$ find the mass of one mole of S atoms

- Watch Video Solution

20. Compute the number of O atoms in 54 g of water. $M\left(\mathrm{H}_{2} \mathrm{O}\right)=18 g$.
21. A vessel contains 5.6 g of nitrogen $\left(N_{2}\right)$ gas. Calculate the following quantities. The molar mass of $N_{2} i s 28 \mathrm{gmol}^{-1}$.

Number of moles of N_{2}

- Watch Video Solution

22. A vessel contains 5.6 g of nitrogen $\left(N_{2}\right)$ gas. Calculate the following quantities. The molar mass of $N_{2} i s 28 \mathrm{gmol}^{-1}$.

Number of N_{2} molecules

- Watch Video Solution

23. A vessel contains 5.6 g of nitrogen $\left(N_{2}\right)$ gas. Calculate the following quantities. The molar mass of $N_{2} i s 28 \mathrm{gmol}^{-1}$.

Number of moles of N_{2}

Watch Video Solution

24. A vessel contains 5.6 g of nitrogen $\left(N_{2}\right)$ gas. Calculate the following quantities. The molar mass of $N_{2} i s 28 \mathrm{gmol}^{-1}$.

Volume of the gas at STP

- Watch Video Solution

25. A gas cylinder contains 24×10^{24} molecules of nitrogen gas. If

Avogadro's number is 6×10^{23} and the relative atomic mass of nitrogen is 14 , calculate:

Mass of nitrogen gas in the cylinder.

D Watch Video Solution

26. A gas cylinder contains 24×10^{24} molecules of nitrogen gas. If Avogadro's number is 6×10^{23} and the relative atomic mass of nitrogen is 14 , calculate:

Volume of nitrogen at STP in dm.

- Watch Video Solution

27. A certain gas ' X ' occupies a volume of $100 \mathrm{~cm}^{3}$ at STP and weighs
0.5 g . Find its relati ve molecular mass.

- Watch Video Solution

28. Calculate the number of moles and the number of molecules present in 1.4 g of ethane $\left(C_{2} H_{4}\right)$ gas. What is the volume occupied by the same amount of ethene?
29. Calculate the vapour density of ethene. ($\mathrm{C}=12, \mathrm{H}=1$).

- Watch Video Solution

30. A gas cylinder contains 12×10^{24} molecules of oxygen gas.

If Avogadro's number is 6×10^{23}. Calculate :
The mass of oxygen present in the cylinder.

- Watch Video Solution

31. A gas cylinder contains 12×10^{24} molecules of oxygen gas.

If Avogadro's number is 6×10^{23}. Calculate :
The volume of oxygen at S.T.P. present in the cylinder. [$\mathrm{O}=16$]
32. A cylinder contains 68 g of ammonia at STP.

How many moles of ammonia are present in this cylinder?

D Watch Video Solution

33. A cylinder contains 68 g of ammonia at STP.

What is the volume occupied by this gas?

- Watch Video Solution

34. A cylinder contains 68 g of ammonia at STP.

How many molecules of ammonia are present in the cylinder?
35. A gas cylinder can hold 1 kg of hydrogen at room temperature and pressure :

Find the number of moles of hydrogen present.

- Watch Video Solution

36. A gas cylinder can hold 1 kg of hydrogen at room temperature and pressure :

What weight of CO_{2} can the cylinder hold under similar conditions of temperature and pressure ? $(\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16)$

- Watch Video Solution

37. A gas cylinder can hold 1 kg of hydrogen at room temperature and pressure :

If the number of molecules of hydrogen in the cylinder is X ,
calculate the number of CO_{2} molecules in the cylinder under the same conditions of temperature and pressure.

D Watch Video Solution

Illustrative Assignments On Molecular Formula

1. A compound is composed of $74 \% \mathrm{C}, 8.7 \% \mathrm{H}$ and $17.3 \% \mathrm{~N}$ by mass.

If the molecular mass of the compound is 162 , what is its molecular formula? (R.A.M.: $\mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14$.)

- Watch Video Solution

2. A compound is composed of 2.7% of $\mathrm{H}, 48.3 \%$ of Cl and 49% of C
atoms by mass. Determine its empirical formula. If the vapour density of the compound is 73.5 , what is its molecular formula? (R.A.M.: $\mathrm{H}=1, \mathrm{C}=12, \mathrm{Cl}=35.5$.)

- Watch Video Solution

3. The percentage composition of sodium phosphate as determined by analysis is 42.1% sodium, 18.9% phosphorus and 39% oxygen. Find the empirical formula of the compound (work to two decimal places). (R.A.M: $\mathrm{Na}=23, \mathrm{P}=31, \mathrm{O}=16$.)

- Watch Video Solution

4. A metal M forms a volatile chloride containing 65.5% chlorine. If the vapour density of the metal chloride is 162.5, find the molecular formula of the chloride. ($\mathrm{M}=56, \mathrm{Cl}=35.5$)

- Watch Video Solution

5. $112 \mathrm{~cm}^{3}$ at S.T.P. of a gaseous fluoride of phosphorus has a mass of 0.63 g calculate the relative molecular mass of fluoride. If the molecule of the fluoride contains only one atom of phosphorus, determine the formula of the phosphorus fluoride. $[F=19, P=31]$

D Watch Video Solution

6. Determine the empirical formula of a compound containing 47.9% potassium, 5.5% beryllium and 46.6% fluorine by mass.
(Atomic weight of $\mathrm{Be}=9, \mathrm{~F}=19, \mathrm{~K}=39$).

D Watch Video Solution

Illustrative Assignments

1. From the equation $4 \mathrm{HCl}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Cl}_{2}$, compute the moles of HCl needed to form $0.35 \mathrm{~mol} \mathrm{Cl}_{2}$.

- Watch Video Solution

2. Compute the moles of $C l_{2}$ produced from 3.2 mol HCl as per equation :
$16 \mathrm{HCl}+2 \mathrm{KMnO}_{4} \rightarrow 2 \mathrm{MnCl}_{2}+2 \mathrm{KCl}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Cl}_{2}$

- Watch Video Solution

3. Compute the moles of $K_{3} \mathrm{PO}_{4}$ needed to produce to produce 0.066 mol KCl as per equation:
$3 \mathrm{CaCl}_{2}+2 \mathrm{~K}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{KCl}$
4. Compute the mass of oxygen gas that will combine with 8 g of methane as per the chemical equation $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} .($ R. A. $M .: H=1, O=16, C=12$.

- Watch Video Solution

5. Compute the mass of potassium chlorate $\left(\mathrm{KClO}_{3}\right)$ that should decompose to produce 8 g of oxygen as per the chemical equation , $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}(\mathrm{~g})$ (R.A.M : K = 39, $\mathrm{Cl}=35.5, O=16$.)

D Watch Video Solution

6. Compute the volume of carbon dioxide formed when 8 g methane gas burns completely as represented by the equation :
$\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
7. Compute the volume of methane gas that must be burnt completely to produce 100 L of CO_{2} at STP.

- Watch Video Solution

8. Ammonia and oxygen combine to produce water vapour and nitric oxide as per the chemical equation: $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 6 \mathrm{H}_{2} \mathrm{O}(g)+4 \mathrm{NO}$.
(ii) How many moles of oxygen are required to burn 85 g of ammonia?
9. Ammonia and oxygen combine to produce water vapour and nitric oxide as per the chemical equation:
$4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+4 \mathrm{NO}$.
(ii) How many moles of oxygen are required to burn 85 g of ammonia?

- Watch Video Solution

10. Ammonia and oxygen combine to produce water vapour and nitric oxide as per the chemical equation:
$4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 6 \mathrm{H}_{2} \mathrm{O}(g)+4 \mathrm{NO}$.
(ii) How many moles of oxygen are required to burn 85 g of ammonia?

- Watch Video Solution

11. Ammonia and oxygen combine to produce water vapour and nitric oxide as per the chemical equation: $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 6 \mathrm{H}_{2} \mathrm{O}(g)+4 \mathrm{NO}$.
(iv) What is the volume of NH_{3} at STP that will combine with oxygen in reaction (ii)?

- Watch Video Solution

12. Carbon burns in oxygen as shown by the chemical equation:
$2 C(s)+O_{2}(g) \rightarrow 2 C O(g)$.
A reaction is carried out starting with 12 g carbon and 48 g oxygen.
Which reactant will be in excess at the end of the reaction?

- Watch Video Solution

13. Carbon burns in oxygen as shown by the chemical equation:
$2 C(s)+O_{2}(g) \rightarrow 2 C O(g)$.
A reaction is carried out starting with 12 g carbon and 48 g oxygen. How many moles of CO will be produced?

- Watch Video Solution

14. Carbon burns in oxygen as shown by the chemical equation:
$2 C(s)+O_{2}(g) \rightarrow 2 C O(g)$.
A reaction is carried out starting with 12 g carbon and 48 g oxygen. How many grams of CO will be produced?

- Watch Video Solution

15. Carbon burns in oxygen as shown by the chemical equation:
$2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$.

A reaction is carried out starting with 12 g carbon and 48 g oxygen. What mass of the limiting reactant should be taken so that the end product is only CO?

- Watch Video Solution

16. Calculate the volume of oxygen required for the complete combustion of 8.8 g of propane $\left(C_{3} H_{8}\right)$. (Atomic mass: $\mathrm{C}=14, \mathrm{O}=$ 16, $\mathrm{H}=1$, Molar Volume $=22.4 \mathrm{dm}^{3}$ at S.T.P).

- Watch Video Solution

17. In an experiment, 4.5 mol of calcium carbonate are reacted with dilute hydrochloric acid.

Write the equation for the reaction.
18. In an experiment, 4.5 mol of calcium carbonate are reacted with dilute hydrochloric acid.

What is the mass of 4.5 mol of calcium carbonate? (Relative molecular mass of calcium carbonate is 100.)

- Watch Video Solution

19. In an experiment, 4.5 mol of calcium carbonate are reacted with dilute hydrochloric acid.

What is the volume of carbon dioxide liberated at STP?

- Watch Video Solution

20. In an experiment, 4.5 mol of calcium carbonate are reacted with dilute hydrochloric acid.

What mass of calcium chloride is formed? (Relative molecular mass of calcium chloride is 111.)

- Watch Video Solution

21. In an experiment, 4.5 mol of calcium carbonate are reacted with dilute hydrochloric acid.

How many moles of HCl are used in this reaction?

- Watch Video Solution

22. Consider the reaction and based on the reaction answer the questions that follow :

$$
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\text { Heat }} \mathrm{N}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{Cr}_{2} \mathrm{O}_{3}
$$

Calculate:
The quantity in moles of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ if 63 gm of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is heated.

- Watch Video Solution

23. Consider the reaction and based on the reaction answer the questions that follow :
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\text { Heat }} \mathrm{N}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{Cr}_{2} \mathrm{O}_{3}$
Calculate:

The quantity in moles of nitrogen formed when 63 g of
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is given

- Watch Video Solution

24. Consider the reaction and based on the reaction answer the questions that follow:
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\text { Heat }} \mathrm{N}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{Cr}_{2} \mathrm{O}_{3}$
Calculate:

The volume in litres or dm of N_{2} evolved at S.T.P
25. Consider the reaction and based on the reaction answer the questions that follow :
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\text { Heat }} \mathrm{N}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{Cr}_{2} \mathrm{O}_{3}$
Calculate:

The mass in gram of $\mathrm{Cr}_{2} \mathrm{O}_{3}$ formed at the same time.
[Atomic masses : $\mathrm{H}=1, \mathrm{Cr}=52, \mathrm{~N}=14$]

- Watch Video Solution

26. Calculate the volume of oxygen required for complete burning of $90 \mathrm{dm}^{3}$ of butane
$2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$
27. O_{2} is evolved by heating KClO_{3} using MnO_{2} as a catalyst $2 \mathrm{KClO}_{3} \xrightarrow{\mathrm{MnO}_{2}} 2 \mathrm{KCl}+3 \mathrm{O}_{2}$

Calculate the mass of KClO_{3} required to produce 6.72 litre of O_{2} at S.T.P. [atomic masses of $\mathrm{K}=39, \mathrm{Cl}=35.5, \mathrm{O}=16$).

- Watch Video Solution

28. O_{2} is evolved by heating KClO_{3} using MnO_{2} as a catalyst $2 \mathrm{KClO}_{3} \xrightarrow{\mathrm{MnO}_{2}} 2 \mathrm{KCl}+3 \mathrm{O}_{2}$

Calculate the volume occupied by 0.01 mole of O_{2} at S.T.P.

