

India's Number 1 Education App

MATHS

BOOKS - SELINA MATHS (ENGLISH)

CIRCLES

Questions

1. In the adjoining figure, $\angle AOC = 110^{\circ}$, Calculate:

 $\angle ADC$

2. In the adjoining figure , $\angle AOC = 110^{\circ}$, Calculate :

 $\angle ABC$

Watch Video Solution

3. In the adjoining figure , $\angle AOC = 110^{\circ}\,,\,\,$ Calculate :

$$\angle OAC$$

4. In the adjoining figure PQ = PR and $\angle PRQ = 70^{\circ}$ Find $\angle QPR$.

5. The given figure shows a circle through the points A,B,C and D . If

$$\angle BAC = 67^{\circ}$$
 , find : $\angle DBC + \angle DCB$.

6. In the given figure BC//DE and O is the centre of the circle . If $\angle CDE = x^\circ$, find in terms of x° the value of $\angle BAC$.

7. In the adjoining figure, AC is diameter of the circle AB = BC and

 $\angle AED=118^{\circ}$. Calculate :

 $\angle DEC$

Watch Video Solution

8. In the adjoining figure, O is centre of the circle chords AC and BD are perpendicular to each other, $\angle OAB = a$ and $\angle DBC = b$. Show that

a= b

Watch Video Solution

9. In the adjoining figure , ABCD is a cyclic quadrilateral , $\angle CBQ=48^\circ$ and a=2b Calculate the numerical value of b.

Watch Video Solution

10. In the given figure $\angle BAD = 80^{\circ}$

$$\angle ABD = 55^{\circ} \; \; ext{and} \; \; \angle BDC = 45^{\circ}, \; .$$
 Find

- (i) $\angle BCD$
- (ii) $\angle ADB$

Hence, show that AC is a diameter.

 ${\bf 11.}\ {\bf In}\ {\bf a}\ {\bf circle},\ {\bf with}\ {\bf centre}\ {\bf O}\ , {\bf a}\ {\bf diameter}\ {\bf AB}\ {\bf and}\ {\bf a}\ {\bf chord}\ {\bf AD}\ {\bf are}\ {\bf drawn}\ .$

Another circle is drawn with AO as diameter to cut AD at C. Prove that:

 $BD = 2 \times OC$

Watch Video Solution

12. In the figure given bellow, O is the centre of the circle and

 $\angle AOC = 160^{\circ}$, Prove that $: 3\angle y - 2\angle x = 140^{\circ}$

13. Two unequal circles with centres A and B intersect each other at points C and D. The centre B of the smaller circles lies on the circumference of the bigger circle with centre A. If $\angle CMD = x^\circ$, find in terms of x, the measure of angle DAC .

`(##SEL RKB ICSE MAT X C17 E01 013 Q01.png" width="80%">

Watch Video Solution

14. The given figure shows a triangle ABC with $\angle BAC=56^\circ$ and $\angle ABC=64^\circ$, Bisectors of angles A,B and C meet the circumcircle of the ΔABC at points P,Q and R respectively .

Find the measure of $\angle QPR$.

15. In the given figure ,I is the incentre of triangle ABC . All produced meets the circumcircle of the triangle ABC at point D. if $\angle BAC = 50^\circ \text{ and } \angle ABC = 70^\circ, \text{ find :}$

- (i) $\angle BCD(ii) \angle ICD(iii) \angle BIC$
- `(##SEL_RKB_ICSE_MAT_X_C17_E01_015_Q01.png" width="80%">
 - Watch Video Solution

- 16. In the given figure, the lengths of arc AB and are BC arc in the ratio
- 3: 2 if $\angle AOB = 96^{\circ}$, find
- $(i)\angle CAB(ii)\angle ADB$

17. If two sides of a cyclic quadrilateral are parallel , prove that the other two sides are equal

Watch Video Solution

Exercise 17 A

1. In the given figure. O is the centre of the circle. $\angle OAB$ and $\angle OCB$ are 30° and 40° respectively . Find $\angle AOC$. Show your steps of working.

- **2.** In the given figure $\angle BAD=60^{\circ}$, $\angle ABD=70^{\circ} \angle BDC=45^{\circ}$
- (i) prove that AC is a diameter of the circle

- (ii) Find $\angle ACB$
- `(##SEL_RKB_ICSE_MAT_X_C17_E02_002_Q01.png" width="80%">
 - Watch Video Solution

- **3.** Given O is the centre of the circle and $\angle AOB = 70^{\circ}$, Calculate the value of
- (i) $\angle OCA$.
- (ii) $\angle OAC$.

Watch Video Solution

4. In each of the following figure. O is the centre of the circle. Find the values of a,b and c.

5. In each of the following figure. O is the centre of the circle . Find the values of a,b c. and d

6. In the figure , AB is common chord of the two circles. If AC and AD are diameter. Prove that D,B and C are in a straight line. $O_1 \ {
m and} \ O_2$ are the

(i) $\angle CDB$

9. Calculate:

- (ii) $\angle ABC$
- (iii) ∠ACB

10. In the figure, given below .ABCD is a cyclic quadrilateral in which

 $\angle BAD = 75^{\circ}, \angle ABD = 58^{\circ} \text{ and } \angle ADC = 77^{\circ}, \text{ Find }:$

- (i) $\angle BDC$,
- (ii) $\angle BCD$.

11. In the following figure , O is centre of the circle and ΔABC is

equilateral Find:

12. Given : $\angle CAB = 75^{\circ}$ and $\angle CBA = 50^{\circ}$ Find the value of

 $\angle DAB + \angle ABD$.

Watch Video Solution

13. ABCD is a cyclic quadrilateral in a circle with centre O.

If $\angle ADC = 130^{\circ}$, find `angle BAC ?

Watch Video Solution

14. In the figure, given alongside, AOB is a diameter of the circle and

$$\angle AOC = 110^{\circ} \text{ Find } \angle BDC.$$

15. In the following figure. O is the centre of the circle.

$$\angle AOB = 60^{\circ}$$
 and

$$\angle BDC = 100^{\circ}$$

Find $\angle OBC$.

16. In cyclic quadrilateral ABCD , $\angle DAC = 27^{\circ}$

$$\angle ADB = 33^{\circ}$$

Calculate:

- (i) $\angle DBC$
- (ii)∠DCB
- (iii) $\angle CAB$.

17. In the figure given alongside ,AB and CD are straight lines thorugh the centre O of a circle. If $\angle AOC=80^\circ$ and $\angle CDE=40^\circ$, find

$\angle DCE$

18. In the given figure AC is a diemeter of a circle O, A circle is described on AO as diameter AE, a chord of the larger circle, intersects the smaller circle at B.

Prove that: AB = BE

Watch Video Solution

19. In the following figure.

- (i) if $\angle BAD = 96^{\circ}$, find $\angle BCD$ and $\angle BFE$.
- (ii) Prove that AD is parallel to PE.
- `(##SEL_RKB_ICSE_MAT_X_C17_E02_019_Q01.png" width="80%">
- (b) ABCD is a parallelogram. A circle through vertices A and B meets side BC at point P and side AD at point Q . Show that quadrilateral PCDQ is cyclic.
 - Watch Video Solution

20. Prove that:

the parallelogram, inscirbed in a circle, is a rectangle.

21. Prove that:

the rhombus, inscribed in a circle is a square.

Watch Video Solution

22. In the given figure AB = AC . Prove that DECB is an isoseles traqezium.

23. Two circles intersect at P and Q . Through P diameter PA and PB of the two circles are drawn. Show that the points A,Q and B are collinear.

24. The figure given below, shows a circle with centre O.

Given : $\angle AOC = a$ and $\angle ABC = b$

Find the relationship between a and b.

(ii) Find the measure of angle OAB ,if OABC is a parallelogram

25. Two chords AB and CD intersect at P inside the circle. Prove that the sum of the angles substended by the arcs AC and BD at the centre O is equal to twice the angle APC.

Watch Video Solution

26. In the given figure ,RS is a diameter of the circle NM is parallel to RS and $/MRS = 29^{\circ}$ Calculate:

- (i) $\angle RNM$.
- (ii) $\angle NRM$

Watch Video Solution

27. In the figure, given alongside. AB //CD and O is the centre of the circle. If $\angle ADC = 25^{\circ}$ find the angle AEB Give reasons in support of

29. ABCD is a cyclic quadrilateral in which AB and DC on being produced , meet at P such that PA = PD. Prove that AD is parallel to BC .

30. AB is a diameter of the circle APBR at shown in the figure. APQ and RBQ are straight lines

Find:

- (i) $\angle PRB$
- (ii) $\angle PBR$
- (iii) $\angle BPR$.

31. In the given figure . SP is bisector of $\angle RPT$ and PQRS is a cyclic quadrilateral . Prove that SQ = SR

32. In the figure O is the centre of the circle $\angle AOE=150^\circ, \angle DAO=51^\circ.$ Calculate the sizes of the angles CEB and OCE.

33. In the figure , given below P and Q are the centres of two circles intersecting at B and C . ACD is a straight line. Calculate the numerical value of x.

Watch Video Solution

34. The figure shows two circles which intersects at A and B . The centre of the smaller circle is O and lies on the circumference of the Calculate. In terms of a° , the value of

- (i) abtuse $\angle AOB$
- (ii) $\angle ADB$

Give reassons for your answers clearly.

Watch Video Solution

35. In the given figure ,O is the centre of the circle and $\angle DAB = 50^{\circ}$

Calculate the values of x and y.

36. In the given figure. A is the centre of the circle, ABCD is a parallelogram and CDE is a straight line.

Prove that : $\angle BCD = 2 \angle ABE$

`(##SEL_RKB_ICSE_MAT_X_C17_E02_036_Q01.png" width="80%">

37. ABCD is a cyclic quadrilateral in which AB is parallel to DC and AB is a diameter of the circle. Given $\angle BED=65^\circ$, Calculate

- (i) $\angle DAB$
- (ii) $\angle BDC$

38. In the given figure AB is a diameter of the circle. Chord ED is parallel to AB and $\angle EAB = 63^{\circ}$ Calculate

$$(i)\angle EBA$$

Watch Video Solution

39. In the given figure AB is a diameter of the circle with centre O. DO is parallel to CB and $\angle DCB = 120^{\circ}$ Calculate :

- (i) $\angle DAB$
- (ii) $\angle DBA$
- (iii) $\angle DBC$,
- (iv) $\angle DBC$

Also , show that the Δ AOD is an equilateral triangle.

40. In the given figure, I is the incentre of ΔABC BI when produced meets the circumcircle of ΔABC at D. Given

$$\angle BAC = 55^{\circ} \; \; ext{and} \; \; \angle ACB = 65^{\circ}, \; ext{Calculate:}$$

(i) $\angle DCA$.

 $\angle AIC$.

41. A triangle ABC is inscribed in a circle. The bisector of angles BAC, ABC and ACB meet the circumcircle of the triangle at points P,Q and R respectively. Prove that:

(i)
$$\angle ABC = 2\angle APQ$$
.

(ii)
$$\angle ACB = 2 \angle APR$$
.

(iii)
$$\angle QPR = 90^{\circ} - \frac{1}{2} \angle BAC$$
.

42. Calculate the angles x,y and z if

$$\frac{x}{3} = \frac{y}{4} = \frac{z}{5}$$

`(##SEL_RKB_ICSE_MAT_X_C17_E02_042_Q01.png" width="80%">

- **43.** In the given figure , AB = AC = CD and $\angle ADC = 38^{\circ}$. Calculate :
- (i) $\angle ABC$
- (ii) ∠BEC

44. In the given figure ,AC is the diameter of circle , centre O. Chord BD is perpendicular to AC. Write down angles p,q and r in terms of x.

45. In the given figure ,AC is the diameter of the circle with centre O,CD and BE are parallel Angle $\angle AOB=80^\circ~{
m and}~ \angle ACE=10^\circ$ Calculate

- (i) Angle BEC
- (ii) Angle BCD,
- (iii) Angle CED

46. In the given figure . AE is the diamter of the circle . Write down the numerical value of $\angle ABC + \angle CDE$. Give reasons for your answers.

47. In the given figure. AOC is a diameter and AC is parallel to ED . If

48. Use in the given figure to find:

- (i) $\angle BAD$.
- (ii) $\angle DQB$

 ${\bf 49.}$ In the given figure , AOB is a diameter and DC is parallel to AB . If

 $\angle CAB = x^{\circ}$, find (in terms of x) the values of :

- (i) $\angle COB$
- (ii) $\angle DOC$
- (iii) $\angle DAC$
- (iv) $\angle ADC$.

50. In the given figure ,AB is the diameter of a circle with centre O.

 $\angle BCD = 130^{\circ}$ Find :

- (i) $\angle DAB$
- (ii) $\angle DBA$

51. In the given figure, PQ is the diameter of the circle whose centre is

O. Given $\angle ROS = 42^{\circ}$ Calculate $\angle RTS$.

52. In the given figure, PQ is a diameter Chord SR is parallel to PQ .

Given that $\angle PQR = 58^{\circ}$ Calculate:

- (i) $\angle RPQ$
- (ii) $\angle STP$

53. AB is the diameter of the circle with centre O. OD is parallel to BC

and $\angle AOD = 60^{\circ}$

Calculate the numerical values of:

(i) $\angle ABD$

(iii) $\angle ADC$.

54. In the given figures , the centre O of the small circle lies on the circumference of the bigger circle. If

$$\angle APB = 75^{\circ} \;\; \mathrm{and} \;\; \angle BCD = 40^{\circ} \; \mathrm{find}$$
 :

- (i) $\angle AOB$
- (ii) $\angle ACB$.
- (iii) ∠ABD.
- (iv) $\angle ADB$.

55. In the given figures

$$\angle BAD = 65^{\circ}$$
, $\angle ABD = 70^{\circ}$ and $\angle BDC = 45^{\circ}$, Find:

- (i) $\angle BCD$
- (ii) $\angle ACB$

Hence, show that AC is a diameter

56. In a cyclic quadrilateral ABCD $\angle A: \angle C=3:1$ and angle B: angle

D = 1:5 `find each angle of the quadrilateral

Watch Video Solution

57. The given figures shows a circle with centre O and $\angle ABP=42^{\circ}$

Calculate the measure of:

- (i) $\angle PQB$
- (ii) $\angle QPB + \angle PBQ$
 - Watch Video Solution

58. In the given figure, M is the centre of the circle Chords AB and CD are perpendicular to each other. If `angle (i) express $\angle AMD$ in terms of x.

- (ii) express $\angle ABD$ in terms of y .
- (iii) Prove that : x=y

Exercise 17 B

1. Prove in a cylic - trapezium the non - parallel sides are equal and the diagonals are also equal .

- 2. In the followoing figure , AD is the diameter of the circle with centre
- O. Chords AB,BC and CD are equal .If $\angle DEF = 110^{\circ}\,,\,$ Calculate :
- (i) $\angle AEF$.
- (ii) $\angle FAB$
- `(##SEL_RKB_ICSE_MAT X C17 E03 002 Q01.png" width="80%">

- **3.** If the sides of a cyclic- quadrilateral are parallel: prove that:
- (i) its other two sides are equal
- (ii) its diagonals are equal.

4. The given figures shows a circle with centre O. Also , PQ = QR = RS and

 $\angle PTS = 75^{\circ}$ Calculate:

- (i) $agn \leq POS$
- (ii) $\angle QOR$
- (iii) $\angle PQR$

`(##SEL_RKB_ICSE_MAT_X_C17_E03_004_Q01.png" width="80%">

Watch Video Solution

5. In the given figure. AB is a side of a regular six- sided polygon and AC is a side of a regular eight - sided polygon inscribed in the circle with centre O. Calculate the sizes of :

- (i) $\angle AOB$
- (ii) $\angle ACB$.
- (iii) $\angle ABC$.

6. In a regular pentagon ABCDE inscribed in a circle . Find the ratio between angle ADE and angle ADC.

Watch Video Solution

7. In the given figure AB

$$=BC=CD \text{ and } \angle ABC=132^{\circ} \text{ Calculate}$$
 :

- (i) $\angle AEB$
- (ii) $\angle AED$
- (iii) $\angle COD$.

Watch Video Solution

- **8.** In the figure , O is the centre of the circle and the length of are AB is twice the length of are BC. If angle AOB = 108° , find :
- (i) $\angle CAB$

9. The figure shows a circle with centre O.AB is the side of regular pentagon and AC is the side of regular hexagon.

Find the angles of triangle ABC.

10. In the given figure, BD is a side of a regular hexagon. DC is a side of a regular pentagon and AD is a diameter, Calculate:

- (i) $\angle ADC$,
- (ii) $\angle BDA$
- (iii) $\angle ABC$

Exercise 17 C

1. In the given circle with diameter AB, find the value of x.

2. In the given figure , ABC is a triangle in which $\angle BAC=30^\circ$. Show that BC is equal to the radius of the circumcircle of the traiangle ABC , whose centre is O.

3. Prove that the circle drawn on any one of the equal sides of an isosceles triangle as diameter bisects the base.

4. In the given figures, chord ED is parallel to diameter AC of the circle .

Given $\angle CBE = 65^{\circ}$ calculate $\angle DEC$

5. The quadrilateral formed by angle bisectors of a cyclic quadrilateral is also cyclic.

Calculate:

- (i) $\angle BDC$
- (ii) $\angle BEC$
- (iii) $\angle BAC$

7. D and E are points on equal sides AB and AC of an isosceles triangle ABC such that AD=AE . Prove that B,C,D,E are concylic.

8. In the given figure ,ABCD is a cyclic quadrilateral .AF is drawn parallel to CB and DA is produced to point E. If $\angle ADC=92^\circ\angle FAE=20^\circ$,

determine $\angle BCD$. Give reason in support of your answer.

9. If I is the incentre of triangle ABC and AI when produced meets the circumcircle of triangle ABC in point D. If

$$\angle BAC = 66^{\circ} \; \; ext{and} \; \; \angle ABC = 80^{\circ} \; ext{Calculate} :$$

- (i) $\angle DBC$
- (ii) $\angle IBC$
- (iii) ∠BIC

10. In the given figure ,AB = AD = DC = PB and $\angle DBC = x^\circ$ Determine in terms of x:

(i) $\angle ABD$

11. In the given figure, ABC, AEQ and CEP are straight lines. Show that

 $\angle APE$ and $\angle CQE$ are supplementrary.

12. In the given figure. AB is the diameter of the circle with centre O.

 $(\#\#SEL_RKB_ICSE_MAT_X - C17_E04_{012} - Q01. png \text{ width} = 80 \% > If$

angle ADC = 32 ^(@) , `find angle BOC.

13. In a cyclic -quadrilateral PQRS angle PQR $=135^\circ$, Sides SP and RQ produced meet at point A whereas sides PQ and SR produced meet at point B. If $\angle A$: $\angle B=2$: 1. find angles A and B

Watch Video Solution

14. In the following figure , ABCD is a cyclic quadrilateral in which AD is parallel to BC .

If the bisector of angle A meets BC at point E and given circle at point F, prove that:

- (i) EF =FC
- (ii) BF = DF

Watch Video Solution

15. ABCD is a cyclic quadrilateral , Sides AB and DC produced meet at point E , whereas sides BC and AD produced meet at point F.

If $\angle DCF$: $\angle F$: $\angle E=3$: 5 : 4 find the angles of the cyclic quadrilateral

ABCD.

16. The following figure shows a circle with PR as its diameter.

If PQ=7 cm and QR=3RS=6 cm . Find the perimeter of the cyclic quadrilateral PQRS.

Watch Video Solution

17. In the given figure AB is the diameter of a circle with centre O . If chord AC = chord AD, prove that :

- (i) are BC = areDB
- (ii) AB is bisector of $\angle CAD$.

Further, if the length of are AC is twice the length of are BC, find:

- (i) $\angle BAC$
- (ii) $\angle ABC$

Watch Video Solution

18. In cyclic quadrilateral ABCD , AD = BC

,
$$\angle BAC = 30^{\circ} \;\; \mathrm{and} \;\; \angle CBD = 70^{\circ}$$
 , find :

 $\angle BCD$

19. In cyclic quadrilateral ABCD , AD = BC , $\angle BAC = 30^\circ$ and $\angle CBD = 70^\circ$, find :

$$\angle BCA$$

20. In cyclic quadrilateral ABCD , AD = BC , $\angle BAC = 30^{\circ}$ and $\angle CBD = 70^{\circ}$, find :

$$\angle ABC$$

Watch Video Solution

21. In cyclic quadrilateral ABCD , AD = BC, $\angle BAC = 30^\circ$ and $\angle CBD = 70^\circ$, find : angle ADC .

22. In the given figure , $\angle ACE = 43^{\circ}$ and $\angle CAF = 62^{\circ}$, find the values of a,b and c.

23. In the given figure,AB is parallel to DC. $\angle BCE=80^\circ$ and $\angle BAC=25^\circ$. $F\in d\!:\!(i)$ angle CAD (ii) angle CBD (iii) angle ADC $\dot{}$

24. ABCD is a cyclic quadrilateral of a circle with centre O such that AB is a diameter of this circle and the length of the chord CD is equal to the radius of the circle. If AD and BC produced meet at P, show that $APB=60^\circ$.

25. In the figure, given below, CP bisects angle ACB.

Show that DP bisect angle ADB.

26. cyclic quadrilateral In ABCD AD BC

,
$$\angle BAC = 30^{\circ} \; \; ext{and} \; \; \angle CBD = 70^{\circ} \; \text{, find} :$$

 $\angle BCD$

Watch Video Solution

is parallel to BC and $\angle CBD = 32^\circ$

27. In the given figure, AD is a diameter O is the centre of the circle AD

- (i) $\angle OBD$
- (ii)∠AOB
- (iii) $\angle BED$

Watch Video Solution

28. In the figure given , O is the centre of the circle . $\angle DAE = 70^{\circ}$,

Find the giving suitable reasons, the measure of

- (i) $\angle BCD$
- (ii) $\angle BOD$
- (iii) $\angle OBD$

Watch Video Solution