# ©゙doubtnut 

## MATHS

## BOOKS - SELINA MATHS (ENGLISH)

## MATRICES

## Questions

1. Find the values of $\mathrm{x}, \mathrm{y}$, a and b , if : $\left[\begin{array}{ll}x-2 & y \\ a / 2 & b+1\end{array}\right]=\left[\begin{array}{ll}0 & 3 \\ 1 & 5\end{array}\right]$

## - Watch Video Solution

2. Let $A=\left[\begin{array}{ll}5 & 4 \\ 3 & -2\end{array}\right], B=\left[\begin{array}{ll}-3 & 0 \\ 1 & 4\end{array}\right]$ and $C=\left[\begin{array}{ll}1 & -3 \\ 0 & 2\end{array}\right]$, find :
(i) $\mathrm{A}+\mathrm{B}$ and $\mathrm{B}+\mathrm{A}$ (ii) $(\mathrm{A}+\mathrm{B})+\mathrm{C}$ and $\mathrm{A}+(\mathrm{B}+\mathrm{C})$
(iii) Is $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$ ? (iv) Is $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})$ ?
3. If $A=\left[\begin{array}{ll}5 & 4 \\ 3 & -1\end{array}\right], B=\left[\begin{array}{ll}2 & 1 \\ 0 & 4\end{array}\right]$ and $C=\left[\begin{array}{ll}-3 & 2 \\ 1 & 0\end{array}\right]$, find :
(i) $\mathrm{A}+\mathrm{C}$ (ii) $\mathrm{B}-\mathrm{A}$ (iii) $\mathrm{A}+\mathrm{B}-\mathrm{C}$

## - Watch Video Solution

4. If matrix $A=\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & -3 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & -2 \\ 7 & 4\end{array}\right]$, find transpose matrices $A^{t}$ and $B^{t}$. If possible, find (i) $A+A^{t}$ (ii) $B+B^{t}$

## - Watch Video Solution

5. If $A=\left[\begin{array}{ll}8 & 6 \\ -2 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}-3 & 5 \\ 1 & 0\end{array}\right]$ then solve for $2 \times 2$ matrix $X$ such that
(i) $A+X=B$
(ii) $X-B=A$
6. Given $A=\left[\begin{array}{ll}1 & 2 \\ -2 & 3\end{array}\right], B=\left[\begin{array}{ll}-2 & -1 \\ 1 & 2\end{array}\right]$ and $C=\left[\begin{array}{ll}0 & 3 \\ 2 & -1\end{array}\right]$, find $A+2 B-3 C$.

## - Watch Video Solution

7. Given matrix $A=\left[\begin{array}{l}5 \\ -3\end{array}\right]$ and matrix $B=\left[\begin{array}{l}-1 \\ 7\end{array}\right]$ find matrix $X$ such that: $A+2 X=B$.

## - Watch Video Solution

8. If $A=\left[\begin{array}{ll}-2 & 3 \\ 4 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]$, find (i) AB (ii) BA
(iii) Is $\mathrm{AB}=\mathrm{BA}$ ?
(iv) Write the conclusion that you draw from the result obtained above in
(iii).
9. Let $A=\left[\begin{array}{ll}-3 & 3 \\ 2 & -2\end{array}\right]$ and $B=\left[\begin{array}{ll}4 & 6 \\ 4 & 6\end{array}\right]$, find the matrix AB. Write the conclusion, if any, that you can draw the result obtained.

## - Watch Video Solution

10. If $A=\left[\begin{array}{ll}4 & -4 \\ -3 & 3\end{array}\right], B=\left[\begin{array}{ll}6 & 5 \\ 3 & 0\end{array}\right]$ and $C=\left[\begin{array}{ll}2 & 3 \\ -1 & -2\end{array}\right]$ show that $A B=A C$. Write the conclusion, if any, that you can draw from the result obtained above.

## - Watch Video Solution

11. If $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 3\end{array}\right]$ evaluate $A^{2}-3 A+3 I$, where $I$ is a unit matrix of order 2.

## - Watch Video Solution

12. If $A=\left[\begin{array}{ll}3 & 5 \\ 4 & -2\end{array}\right]$ and $B=\left[\begin{array}{l}2 \\ 4\end{array}\right]$ is the product AB possible?.

Give a reason, if yes, find AB.

## - Watch Video Solution

13. If $A=\left[\begin{array}{ll}3 & 2 \\ 0 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]$, find :
(i) (A+B) (A-B) (ii) $A^{2}-B^{2}$ (iii) $I s(A+B)(A-B)=A^{2}-B^{2}$ ?

## - Watch Video Solution

14. Given $\left[\begin{array}{ll}3 & -8 \\ 9 & 4\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}-2 \\ 8\end{array}\right]$, find x and y .

## - Watch Video Solution

15. If $B$ and $C$ are two matrices such that $B=\left[\begin{array}{ll}1 & 3 \\ -2 & 0\end{array}\right]$ and $C=\left[\begin{array}{ll}17 & 7 \\ -4 & -8\end{array}\right]$, find the matrix $M$ so that $B M=C$.

## - Watch Video Solution

16. Find the matrix $M$, such that $M \times\left[\begin{array}{ll}3 & 6 \\ -2 & -8\end{array}\right]=[-2,16]$

## - Watch Video Solution

17. State with reason, whether the following are true or false, $A, B$, and $C$ are matrices of order $2 \times 2$
(i) $A . B=B . A$ (ii) A. (B.C)=(A.B).C
(iii) $(A+B)^{2}=A^{2}+2 A B+B^{2}$ (iv) $A \cdot(B+C)=A . B+A . C$

## - Watch Video Solution

## Exercise 9 A

1. State whether the following statements are true of false. If false, give a reason.

If A and B are two matrices of orders $3 \times 2$ and $2 \times 3$ respectively, then their sum $\mathrm{A}+\mathrm{B}$ is possible.

## - Watch Video Solution

2. State whether the following statements are true of false. If false, give a reason.

The matrices $A_{2 \times 3}$ and $B_{2 \times 3}$ are conformable for substraction.

## - Watch Video Solution

3. State whether the following statements are true of false. If false, give a reason.

Transpose of a $2 \times 1$ matrix is a $2 \times 1$ matrix.

## - Watch Video Solution

4. State whether the following statements are true of false. If false, give a reason.

Transpose of a square matrix is a square matrix.

## - Watch Video Solution

5. State whether the following statements are true of false. If false, give a reason.

A column matrix has many columns and only one row.

## - Watch Video Solution

6. Given $\left[\begin{array}{ll}x & y+2 \\ 3 & z-1\end{array}\right]=\left[\begin{array}{ll}3 & 1 \\ 3 & 2\end{array}\right]$ find $\mathrm{x}, \mathrm{y}$ and z .

## - Watch Video Solution

7. Solve for $\mathrm{a}, \mathrm{b}$ and c , if,
(i) $\left[\begin{array}{ll}-4 & a+5 \\ 3 & 2\end{array}\right]=\left[\begin{array}{ll}b+4 & 2 \\ 3 & c-1\end{array}\right]$
(ii) $\left[\begin{array}{ll}a & a-b \\ b+c & 0\end{array}\right]=\left[\begin{array}{ll}3 & -1 \\ 2 & 0\end{array}\right]$

## - Watch Video Solution

8. If $A=[8,-3]$ and $B=[4,-5]$ find, (i) $\mathrm{A}+\mathrm{B}$ (ii) $\mathrm{B}-\mathrm{A}$

## - Watch Video Solution

9. If $A=\left[\begin{array}{l}2 \\ 5\end{array}\right], B=\left[\begin{array}{l}1 \\ 4\end{array}\right]$ and $C=\left[\begin{array}{l}6 \\ -2\end{array}\right]$, find
(i) $B+C$ (ii) $A-C$
(iii) $A+B-C$ (iv) $A-B+C$

## - Watch Video Solution

10. Wherever possible write each of the following as a single matrix.
(i) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]+\left[\begin{array}{ll}-1 & -2 \\ 1 & -7\end{array}\right]$
(ii) $\left[\begin{array}{lll}2 & 3 & 4 \\ 5 & 6 & 7\end{array}\right]-\left[\begin{array}{lll}0 & 2 & 3 \\ 6 & -1 & 0\end{array}\right]$
(iii) $\left[\begin{array}{lll}0 & 1 & 2 \\ 4 & 6 & 7\end{array}\right]+\left[\begin{array}{ll}3 & 4 \\ 6 & 8\end{array}\right]$

## - Watch Video Solution

11. Find x and y from the following equations:
(i) $\left[\begin{array}{ll}5 & 2 \\ -1 & y-1\end{array}\right]-\left[\begin{array}{ll}1 & x-1 \\ 2 & -3\end{array}\right]=\left[\begin{array}{ll}4 & 7 \\ -3 & 2\end{array}\right]$
(ii) $[-8, x]+[y-2]=[-3,2]$

## - Watch Video Solution

12. Given : $M=\left[\begin{array}{cc}5 & -3 \\ -2 & 4\end{array}\right]$ find its transpose matrix $M$ '. If possible, find
(i) $\mathrm{M}+\mathrm{M}^{t}$ (ii) $M^{t}-M$
13. Write the additive inverse of matrices $A, B$, and $C$ where $A=[6,-5], B=\left[\begin{array}{ll}-2 & 0 \\ 4 & -1\end{array}\right]$ and $C=\left[\begin{array}{l}-7 \\ 4\end{array}\right]$

## - Watch Video Solution

14. Given $\mathrm{A}=\left[\begin{array}{c}2 \\ -3\end{array}\right], \mathrm{B}=\left[\begin{array}{l}0 \\ 2\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{c}-1 \\ 4\end{array}\right]$, find the matrix X in each of the following:
(i) $\mathrm{X}+\mathrm{B}=\mathrm{C}-\mathrm{A}$
(ii) $A-X=B+C$

## - Watch Video Solution

15. Given $A=\left[\begin{array}{ll}-1 & 0 \\ 2 & -4\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & -3 \\ -2 & 0\end{array}\right]$ find the matrix X in each of the following
(i) $A+X=B$
(ii) $A-X=B$
(iii) $X-B=A$

## - Watch Video Solution

## Exercise 9 B

1. Evaluate:
(i) $3\left[\begin{array}{c}5 \\ -2\end{array}\right]$
(ii) $7\left[\begin{array}{ll}-1 & 2 \\ 0 & 1\end{array}\right]$
(iii) $2\left[\begin{array}{ll}-1 & 0 \\ 2 & -3\end{array}\right]+\left[\begin{array}{ll}3 & 3 \\ 5 & 0\end{array}\right]$

## - Watch Video Solution

2. Find $x$ and $y$ if:
(i) $3\left[\begin{array}{l}4 \\ x\end{array}\right]+2\left[\begin{array}{c}y \\ -3\end{array}\right]=\left[\begin{array}{c}10 \\ 0\end{array}\right]$
(ii) $x\left[\begin{array}{l}-1 \\ 2\end{array}\right]-4\left[\begin{array}{l}-2 \\ -y\end{array}\right]=\left[\begin{array}{l}7 \\ -8\end{array}\right]$
3. Given $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 1 \\ 5 & 2\end{array}\right]$ and $C=\left[\begin{array}{cc}-3 & -1 \\ 0 & 0\end{array}\right]$, find
(i) $2 A-3 B+C$ (ii) $A+2 C-B$

## - Watch Video Solution

4. If $\left[\begin{array}{ll}4 & -2 \\ 4 & 0\end{array}\right]+3 A=\left[\begin{array}{ll}-2 & -2 \\ 1 & -3\end{array}\right]$ find A .

## ( Watch Video Solution

5. Given $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}-4 & -1 \\ -3 & -2\end{array}\right]$
(i) find the matrix $2 \mathrm{~A}+\mathrm{B}$.
(ii) find a matrix C such that: $C+B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

## - Watch Video Solution

6. If $2\left[\begin{array}{ll}3 & x \\ 0 & 1\end{array}\right]+3\left[\begin{array}{ll}1 & 3 \\ y & 2\end{array}\right]=\left[\begin{array}{cc}z & -7 \\ 15 & 8\end{array}\right]$, find the values of $\mathrm{x}, \mathrm{y}$ and Z.

## - Watch Video Solution

7. Given $A=\left[\begin{array}{ll}-3 & 6 \\ 0 & -9\end{array}\right]$ and $A^{t}$ is it transpose matrix. Find :
(i) $2 A+3 A^{t}$ (ii) $2 A^{t}-3 A$

## - Watch Video Solution

8. Given $A=\left[\begin{array}{ll}1 & 1 \\ -2 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & -1 \\ 1 & 1\end{array}\right]$ Solve for matrix X :
(i) $X+2 A=B$ (ii) $3 A+B+2 X=0$

## - Watch Video Solution

9. If $M=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $N=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ show that $3 M+5 N=\left[\begin{array}{l}5 \\ 3\end{array}\right]$
10. If $I$ is the unit matrix of order $2 \times 2$ find the matrix $M$, such that
(i) $M-2 I=3\left[\begin{array}{ll}-1 & 0 \\ 4 & 1\end{array}\right]$
(ii) $5 M+3 I=4\left[\begin{array}{ll}2 & -5 \\ 0 & -3\end{array}\right]$

## - Watch Video Solution

11. If $\left[\begin{array}{ll}1 & 4 \\ -2 & 3\end{array}\right]+2 M=3\left[\begin{array}{ll}3 & 2 \\ 0 & -3\end{array}\right]$ find the matrix $M$.

## - Watch Video Solution

## Exercise 9 C

1. Evaluate : if possible
(i) $[3,2]\left[\begin{array}{l}2 \\ 0\end{array}\right]$ (ii) $[1,-2]\left[\begin{array}{ll}-2 & 3 \\ -1 & 4\end{array}\right]$
(iii) $\left[\begin{array}{ll}6 & 4 \\ 3 & -1\end{array}\right]\left[\begin{array}{l}-1 \\ 3\end{array}\right]$ (iv) $\left[\begin{array}{ll}6 & 4 \\ 3 & -1\end{array}\right]\left[\begin{array}{l}-1 \\ 3\end{array}\right]$
2. If $A=\left[\begin{array}{ll}0 & 2 \\ 5 & -2\end{array}\right], B=\left[\begin{array}{ll}1 & -1 \\ 3 & 2\end{array}\right]$ and is a unit matrix of order $2 \times 2$ find :
(i) AB (ii) BA (iii) AI
(Iv) $A^{2}$ (v) $B^{2} A$

Watch Video Solution
3. If $A=\left[\begin{array}{ll}3 & x \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}9 & 16 \\ 0 & -y\end{array}\right]$ find x and y when $A^{2}=B$.

## - Watch Video Solution

4. Find x and y , if :
(i) $\left[\begin{array}{cc}4 & 3 x \\ x & -2\end{array}\right]\left[\begin{array}{l}5 \\ 1\end{array}\right]=\left[\begin{array}{ll}y & 8\end{array}\right]$
(ii) $\left[\begin{array}{ll}x & 0 \\ -3 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & y\end{array}\right]=\left[\begin{array}{ll}2 & 2 \\ -3 & -2\end{array}\right]$
5. If $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right], B=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$ and $C=\left[\begin{array}{ll}4 & 3 \\ 1 & 2\end{array}\right]$. Find
(i) (AB) $C$ (ii) $A(B C)$ Is $A(B C)=(A B) C$ ?

## - Watch Video Solution

6. Given $A=\left[\begin{array}{lll}0 & 4 & 6 \\ 3 & 0 & -1\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ -1 & 2 \\ -5 & -6\end{array}\right]$, is the following possible
(i) AB (ii) BA (iii) $A^{2}$.

## - Watch Video Solution

7. Let $A=\left[\begin{array}{ll}2 & 1 \\ 0 & -2\end{array}\right], B=\left[\begin{array}{ll}4 & 1 \\ -3 & -2\end{array}\right]$ and $C=\left[\begin{array}{ll}-3 & 2 \\ -1 & 4\end{array}\right]$. Find $A^{2}+A C-5 B$.

## - Watch Video Solution

8. If $M=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ and I is a unit matrix of the same order as that of $M$, show that $M^{2}=2 M+3 I$

## - Watch Video Solution

9. If $A=\left[\begin{array}{ll}a & 0 \\ 0 & 2\end{array}\right], B=\left[\begin{array}{ll}0 & -b \\ 1 & 0\end{array}\right], M=\left[\begin{array}{ll}1 & -1 \\ 1 & 1\end{array}\right]$ and $B A=M^{2}$ , find the values of $a$ and $b$.

## - Watch Video Solution

10. Given $A=\left[\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ -2 & 01\end{array}\right]$, Find
(i) A-B (ii) $A^{2}$
(iii) AB (iv) $A^{2}-A B+2 B$

## - Watch Video Solution

11. If $A=\left[\begin{array}{ll}1 & 4 \\ 1 & -3\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 2 \\ -1 & -1\end{array}\right]$, find: $(A+B)^{2}$

## - Watch Video Solution

12. Find the matrix A , if $B=\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]$ and $B^{2}=B+\frac{1}{2} A$.

## - Watch Video Solution

13. If $A=\left[\begin{array}{ll}-1 & 1 \\ a & b\end{array}\right]$ and $A^{2}=I$, find a and b .

## - Watch Video Solution

14. If $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right]$ and $C=\left[\begin{array}{ll}1 & 4 \\ 0 & 2\end{array}\right]$ then show that
(i) $A(B+C)=A B+A C$
(ii) $(B-A) C=B C-A C$.

## - Watch Video Solution

15. If $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 1\end{array}\right], B=\left[\begin{array}{cc}-3 & 2 \\ 4 & 0\end{array}\right]$ and $C=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ simplify : $A^{2}+B C$.

## - Watch Video Solution

16. Solve for x and y
(i) $\left[\begin{array}{ll}2 & 5 \\ 5 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-7 \\ 14\end{array}\right]$
(ii) $[x+y, x-4]\left[\begin{array}{ll}-1 & -2 \\ 2 & 2\end{array}\right]=[-7,-11]$
(iii) $\left[\begin{array}{ll}-2 & 0 \\ 3 & 1\end{array}\right]\left[\begin{array}{l}-1 \\ 2 x\end{array}\right]+3\left[\begin{array}{l}-2 \\ 1\end{array}\right]=2\left[\begin{array}{l}y \\ 3\end{array}\right]$.

## - Watch Video Solution

17. In each case given below, find :
the order of matrix $M$,
(i) $M \times\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]=[1,2]$

## - Watch Video Solution

18. If $A=\left[\begin{array}{ll}2 & x \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}4 & 36 \\ 0 & 1\end{array}\right]$, find the value of x , given that $A^{2}=B$

## - Watch Video Solution

19. If $A=\left[\begin{array}{ll}3 & 7 \\ 2 & 4\end{array}\right], B=\left[\begin{array}{ll}0 & 2 \\ 5 & 3\end{array}\right]$ and $C=\left[\begin{array}{ll}1 & -5 \\ -4 & 6\end{array}\right]$ Find $A B-$ 5C.

## - Watch Video Solution

20. If $A$ and $B$ are any two $2 \times 2$ matrices such that $A B=B A=B$ and $B$ is not a zero matrix, what can you say about the matrix A ?
21. Given $A=\left[\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right], B=\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]$ and $\mathrm{AB}=\mathrm{A}+\mathrm{B}$, find the values of a,b and c.

## - Watch Video Solution

22. If $P=\left[\begin{array}{ll}1 & 2 \\ 2 & -1\end{array}\right]$ and $Q=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$ then compute :
(i) $P^{2}-Q^{2}$ (ii) $(P+Q)(P-Q)$

Is $(\mathrm{P}+\mathrm{Q})(\mathrm{P}-\mathrm{Q})=P^{2}-Q^{2}$ true for matrix algebra?

## - Watch Video Solution

23. Give the matrices :
$A=\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right], B=\left[\begin{array}{ll}3 & 4 \\ -1 & -2\end{array}\right]$ and $C=\left[\begin{array}{ll}-3 & 1 \\ 0 & -2\end{array}\right]$. Find :
(i) $A B C$ (ii) $A C B$.

State whether $\mathrm{ABC}=\mathrm{ACB}$.
24. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}6 & 1 \\ 1 & 1\end{array}\right]$ and $C=\left[\begin{array}{cc}-2 & -3 \\ 0 & 1\end{array}\right]$. Find each of the following and state if they are equal:
(i) $\mathrm{CA}+\mathrm{B}$ (ii) $\mathrm{A}+\mathrm{CB}$

## - Watch Video Solution

25. If $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{l}3 \\ -11\end{array}\right]$. find the matrix X such that $A X=B$.

## - Watch Video Solution

26. If $A=\left[\begin{array}{ll}4 & 2 \\ 1 & 1\end{array}\right]$, find $(A-2 I)(A-3 I)$.

## - Watch Video Solution

27. If $A=\left[\begin{array}{rrr}2 & 1 & -1 \\ 0 & 1 & -2\end{array}\right]$ find:
(i) $A^{t} . A$ (ii) $A \cdot A^{t}$
where $A^{t}$ is the transpose of matrix A .

## - Watch Video Solution

28. If $M=\left[\begin{array}{ll}4 & 1 \\ -1 & 2\end{array}\right]$ show that $6 M-M^{2}=9 I$, where I is a $2 \times 2$ unit matrix.

## - Watch Video Solution

29. If $P=\left[\begin{array}{rr}2 & 6 \\ 3 & 9\end{array}\right]$ and $Q=\left[\begin{array}{ll}3 & x \\ y & 2\end{array}\right]$. find x and y such that $\mathrm{PQ}=n u l l$ matrix.

## - Watch Video Solution

30. Evalutate:
$\left[\begin{array}{c}2 \cos 60^{\circ},-2 \sin 30^{\circ} \\ -\tan 45^{\circ}, \cos 0^{\circ}\end{array}\right]\left[\begin{array}{l}\cot 45^{\circ}, \cos e c 30^{\circ} \\ \sec 60^{\circ}, \sin 90^{\circ}\end{array}\right]$

## - Watch Video Solution

31. State with reason, whether the following are true of false. $A, B$ and $C$ are matrices of order $2 \times 2$.
$A+B=B+A$

## Watch Video Solution

32. State with reason, whether the following are true of false. $A, B$ and $C$ are matrices of order $2 \times 2$.
$A-B=B-A$

## - Watch Video Solution

33. State with reason, whether the following are true of false. A, B and C are matrices of order $2 \times 2$.
(B.C).A=B.(C.A)

## - Watch Video Solution

34. State with reason, whether the following are true of false. $A, B$ and $C$ are matrices of order $2 \times 2$.
( $\mathrm{A}+\mathrm{B}$ ). $\mathrm{C}=\mathrm{A} . \mathrm{C}+\mathrm{B} . \mathrm{C}$

## - Watch Video Solution

35. State with reason, whether the following are true of false. $A, B$ and $C$ are matrices of order $2 \times 2$.
A. $(B-C)=A . B-A . C$

## - Watch Video Solution

36. State with reason, whether the following are true of false. A, B and C are matrices of order $2 \times 2$.
(A-B).C=A.C-B.C

## - Watch Video Solution

37. State with reason, whether the following are true of false. A, B and C are matrices of order $2 \times 2$.
$A^{2}-B^{2}=(A+B)(A-B)$

## - Watch Video Solution

38. State with reason, whether the following are true of false. A, B and C are matrices of order $2 \times 2$.
$(A-B)^{2}=A^{2}-2 A . B+B^{2}$.

## - Watch Video Solution

1. Find $x$ and $y$ if

$$
\left[\begin{array}{ll}
3 & -2 \\
-1 & 4
\end{array}\right]\left[\begin{array}{l}
2 x \\
1
\end{array}\right]+2\left[\begin{array}{l}
-4 \\
5
\end{array}\right]=4\left[\begin{array}{l}
2 \\
y
\end{array}\right]
$$

## - Watch Video Solution

2. Find $x$ and $y$, if :
$[3 x 8]\left[\begin{array}{ll}1 & 4 \\ 3 & 7\end{array}\right]-3[2-7]=5[3,2 y]$

## ( Watch Video Solution

3. If $[x, y]\left[\begin{array}{l}x \\ y\end{array}\right]=[25]$ and $[-x, y]\left[\begin{array}{l}2 x \\ y\end{array}\right]=[-2]$,2 find x and y if:
(i) $x, y \in W$ (whole numbers)
(ii) $x, y \in Z$ (integers)
4. Given $\left[\begin{array}{ll}2 & 1 \\ -3 & 4\end{array}\right] \cdot X=\left[\begin{array}{l}7 \\ 6\end{array}\right]$.Write :
(i) the order of the matrix X .
(ii) the matrix X .

## - Watch Video Solution

5. Evaluate :
$\left[\begin{array}{c}\cos 45^{\circ}, \sin 30^{\circ} \\ \sqrt{2} \cos 0^{\circ}, \sin 0^{\circ}\end{array}\right]\left[\begin{array}{c}\sin 45^{\circ}, \cos 90^{\circ} \\ \sin 90^{\circ}, \cot 45^{\circ}\end{array}\right]$

## - Watch Video Solution

6. If $A=\left[\begin{array}{ll}0 & -1 \\ 4 & -3\end{array}\right], B=\left[\begin{array}{c}-5 \\ 6\end{array}\right]$ and $3 A \times M=2 B$, find matrix $M$.

## - Watch Video Solution

7. If $\left[\begin{array}{ll}a & 3 \\ 4 & 1\end{array}\right]+\left[\begin{array}{ll}2 & b \\ 1 & -2\end{array}\right]-\left[\begin{array}{ll}1 & 1 \\ -2 & c\end{array}\right]=\left[\begin{array}{ll}5 & 0 \\ 7 & 3\end{array}\right]$
find the values of $\mathrm{a}, \mathrm{b}$ and c .
8. If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ find:
(i) $A(B A)$ (ii) (AB) $B$.

## - Watch Video Solution

9. Find x and y , if : $\left[\begin{array}{ll}x & 3 x \\ y & 4 y\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}5 \\ 12\end{array}\right]$

## - Watch Video Solution

10. If matrix $X=\left[\begin{array}{ll}-3 & 4 \\ 2 & -3\end{array}\right]\left[\begin{array}{l}2 \\ -2\end{array}\right]$ and $2 X-3 Y=\left[\begin{array}{c}10 \\ -8\end{array}\right]$ find the matrix ' X ' and matrix Y .

## - Watch Video Solution

11. Given $A=\left[\begin{array}{ll}2 & -1 \\ 2 & 0\end{array}\right], B=\left[\begin{array}{ll}-3 & 2 \\ 4 & 0\end{array}\right]$ and $C=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$, Find the matrix $X$ such that $A+X=2 B+C$.

## - Watch Video Solution

12. Find the value of $x$, given that:
$A^{2}=B, A=\left[\begin{array}{ll}2 & 12 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}4 & x \\ 0 & 1\end{array}\right]$

## - Watch Video Solution

13. If $A=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right], B=\left[\begin{array}{ll}4 & -2 \\ -1 & 3\end{array}\right]$ and I is the identify matric of the same order and $A^{t}$ is the transpose of matrix A, find $A^{t} B+B I$.

## - Watch Video Solution

14. Given $A=\left[\begin{array}{ll}2 & -6 \\ 2 & 0\end{array}\right], B=\left[\begin{array}{ll}-3 & 2 \\ 4 & 0\end{array}\right]$ and $C=\left[\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right]$. Find the matrix $X$ such that $A+2 X=2 B+C$.

## (D) Watch Video Solution

15. Let $A=\left[\begin{array}{ll}4 & -2 \\ 6 & -3\end{array}\right], B=\left[\begin{array}{ll}0 & 2 \\ 1 & -1\end{array}\right]$ and $C=\left[\begin{array}{ll}-2 & 3 \\ 1 & -1\end{array}\right]$. Find $A^{2}-A+B C$.

Watch Video Solution
16. Let $A=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right], B=\left[\begin{array}{ll}2 & 3 \\ -1 & 0\end{array}\right]$. Find $A^{2}+A B+B^{2}$

## - Watch Video Solution

17. If $A=\left[\begin{array}{ll}3 & a \\ -4 & 8\end{array}\right], B=\left[\begin{array}{ll}c & 4 \\ -3 & 0\end{array}\right], C=\left[\begin{array}{ll}-1 & 4 \\ 3 & b\end{array}\right]$ and $3 A$ $2 \mathrm{C}=6 \mathrm{~B}$. Find the values of $\mathrm{a}, \mathrm{b}$ and c .

## - Watch Video Solution

$A=\left[\begin{array}{ll}p & 0 \\ 0 & 2\end{array}\right], B=\left[\begin{array}{ll}0 & -q \\ 1 & 0\end{array}\right], C=\left[\begin{array}{ll}2 & -2 \\ 2 & 2\end{array}\right]$ and $B A=C^{2}$.
Find the values of $p$ and $q$.

## - Watch Video Solution

19. 

Given
$A=\left[\begin{array}{ll}3 & -2 \\ -1 & 4\end{array}\right], B=\left[\begin{array}{l}6 \\ 1\end{array}\right], C=\left[\begin{array}{l}-4 \\ -5\end{array}\right]$ and $D=\left[\begin{array}{l}2 \\ 2\end{array}\right]$. Find $A B+2 C-4 D$

## - Watch Video Solution

20. Evaluate : $\left[\begin{array}{l}4 \sin 30^{\circ} 2 \cos 60^{\circ} \\ \sin 90^{\circ} 2 \cos 0^{\circ}\end{array}\right]\left[\begin{array}{ll}4 & 5 \\ 5 & 4\end{array}\right]$

## - Watch Video Solution

21. If $A=\left[\begin{array}{ll}3 & 1 \\ -1 & 2\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$,find $A^{2}-5 A+7 I$.

## ( Watch Video Solution

22. Given $A=\left[\begin{array}{ll}2 & 0 \\ -1 & 7\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $A^{2}=9 A+m I$. Find $m$.

## Watch Video Solution

23. Given matrix $A=\left[\begin{array}{c}4 \sin 30^{\circ} \cos 0^{\circ} \\ \cos 0^{\circ} 4 \sin 30^{\circ}\end{array}\right]$ and $B=\left[\begin{array}{l}4 \\ 5\end{array}\right]$. If $\mathrm{AX}=\mathrm{B}$. write the order of matrix $X$.

## - Watch Video Solution

24. If $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}-2 & 1 \\ -3 & 2\end{array}\right]$ and $A^{2}-5 B^{2}=5 C$. find matrix

C where C is a 2 by 2 matrix.
25. Given matrix $B=\left[\begin{array}{ll}1 & 1 \\ 8 & 3\end{array}\right]$. Find the matrix X if, $X=B^{2}-4 B$. Hence, solve for a and b given $X\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}5 \\ 50\end{array}\right]$.

## - Watch Video Solution

## Multiple Choice Questions

1. If a matrix has 4 elements, then which of the following connot be the order of the matrix ?
A. $2 \times 2$
B. $1 \times 4$
C. $2 \times 3$
D. $4 \times 1$

## Answer: C

2. The number of elements in a matrix of order $2 \times 3$ is:
A. 2
B. 3
C. 5
D. 6

## Answer: D

## - View Text Solution

3. Which of the following is a row matrix ?
A. $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$
B. $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
C. $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
D. $\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]$

## Answer: A

## View Text Solution

4. A matrix which has only one column is called a :
A. row matrix
B. column matrix
C. square matrix
D. identity matrix

## Answer: B

## - View Text Solution

5. The matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is known as :
A. row matrix
B. column matrix
C. square matrix
D. identity matrix

## Answer: C

## - View Text Solution

6. If $\left[\begin{array}{ll}x+2 & y+3 \\ 9 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 3 \\ 9 & 2\end{array}\right]$, then the value of $(x+y)$ is :
A. 11
B. 5
C. 8
D. 3

## Answer: D

7. If $A=\left[\begin{array}{l}5 \\ 4\end{array}\right], B=\left[\begin{array}{l}2 \\ 0\end{array}\right]$ and matrix $C=2 A+B$, then matrix C is :
A. $\left[\begin{array}{l}12 \\ 8\end{array}\right]$
B. $\left[\begin{array}{l}12 \\ 4\end{array}\right]$
C. $\left[\begin{array}{l}7 \\ 4\end{array}\right]$
D. $\left[\begin{array}{l}8 \\ 8\end{array}\right]$

## Answer: A

8. Given $A=\left[\begin{array}{ll}-1 & 0 \\ 2 & -4\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & -3 \\ -2 & 0\end{array}\right]$ The 2 by 2 matrix $X$ such that $A+X=B$ is:
A. $\left[\begin{array}{ll}2 & -3 \\ -4 & -4\end{array}\right]$
B. $\left[\begin{array}{ll}3 & -3 \\ -4 & 4\end{array}\right]$
C. $\left[\begin{array}{ll}4 & -3 \\ 4 & -4\end{array}\right]$
D. $\left[\begin{array}{ll}-2 & 3 \\ 4 & 4\end{array}\right]$

## Answer: B

## - View Text Solution

9. If $x=\left[\begin{array}{l}-1 \\ 2\end{array}\right]+4\left[\begin{array}{l}2 \\ -y\end{array}\right]=\left[\begin{array}{l}7 \\ -8\end{array}\right]$, then the respective values of x and y , are :
A. $-1, \frac{3}{2}$
B. $15, \frac{19}{2}$
C. $1, \frac{5}{2}$
D. $-1, \frac{5}{2}$

## Answer: C

10. If $A=\left[\begin{array}{ll}0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0\end{array}\right]$, then the value of $3 A+2 B$ is :
A. $\left[\begin{array}{ll}2 & 3\end{array}\right]$
B. $\left[\begin{array}{ll}3 & 2\end{array}\right]$
C. $\left[\begin{array}{ll}2 & 2\end{array}\right]$
D. $\left[\begin{array}{ll}3 & 3\end{array}\right]$

## Answer: A

## - View Text Solution

11. If $\left[\begin{array}{ll}1 & 4 \\ -2 & 3\end{array}\right]+2 M=3\left[\begin{array}{ll}3 & 2 \\ 0 & -3\end{array}\right]$, then the matrix $M$ is :
A. $\left[\begin{array}{ll}4 & 1 \\ 1 & -6\end{array}\right]$
B. $\left[\begin{array}{ll}8 & 2 \\ 2 & 12\end{array}\right]$
C. $\left[\begin{array}{ll}4 & 1 \\ 1 & 3\end{array}\right]$
D. $\left[\begin{array}{ll}8 & 2 \\ 2 & -12\end{array}\right]$

## - View Text Solution

12. If $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, then the matrix $B A$ is :
A. $\left[\begin{array}{ll}11 & 16 \\ 10 & 16\end{array}\right]$
B. $\left[\begin{array}{ll}10 & 7 \\ 7 & 17\end{array}\right]$
C. $\left[\begin{array}{ll}11 & 10 \\ 16 & 16\end{array}\right]$
D. $\left[\begin{array}{ll}10 & 7 \\ 22 & 17\end{array}\right]$

## Answer: D

## - View Text Solution

13. If $A=\left[\begin{array}{ll}2 & 3 \\ 7 & 5\end{array}\right]$ then $A^{2}=$
A. $\left[\begin{array}{ll}4 & 6 \\ 14 & 10\end{array}\right]$
B. $\left[\begin{array}{ll}25 & 21 \\ 49 & 46\end{array}\right]$
C. $\left[\begin{array}{ll}4 & 9 \\ 49 & 25\end{array}\right]$
D. $\left[\begin{array}{ll}25 & 49 \\ 15 & 46\end{array}\right]$

## Answer: B

## - View Text Solution

14. If $\left[\begin{array}{ll}1 & 2 \\ 2 & 9\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}20 \\ 90\end{array}\right]$, then the value of x and y are :
A. $x=10, y=0$
B. $x=5, y=4$
C. $x=0, y=10$
D. $x=4, y=5$

## Answer: C

## - View Text Solution

15. If $\left[\begin{array}{ll}9 & 2 \\ 7 & 1\end{array}\right] M=\left[\begin{array}{l}2 \\ 5\end{array}\right]$, then the order of matrix $M$ is :
A. $1 \times 2$
B. $2 \times 1$
C. $2 \times 2$
D. $1 \times 1$

## Answer: B

16. If $A=\left[\begin{array}{ll}-1 & 1 \\ a & b\end{array}\right]$ and $A^{2}=I_{2}$, then the values of a and b are:
A. $a=b=1$
B. $a=1, b=0$
C. $a=b=0$
D. $a=0, b=1$

## D View Text Solution

17. If $A=\left[\begin{array}{ll}2 & x \\ 0 & 1\end{array}\right], B=\left[\begin{array}{ll}4 & 36 \\ 0 & 1\end{array}\right]$ and $A^{2}=B$ then the value of x is :
A. 12
B. 6
C. 36
D. -6

## Answer: A

## - View Text Solution

18. If $P=\left[\begin{array}{ll}2 & 6 \\ 3 & 9\end{array}\right], Q=\left[\begin{array}{ll}3 & x \\ y & 2\end{array}\right]$ and $P Q$ is a null matrix, then the value of $x$ and $y$ are :
A. $x=-6, y=-1$
B. $x=-6, y=1$
C. $x=6, y=-1$
D. $x=6, y=1$

## Answer: A

## - View Text Solution

19. The simplified from of $\left[\begin{array}{l}\cos 45^{\circ}, \sin 30^{\circ} \\ \sqrt{2} \cos 0^{\circ}, \sin 0^{\circ}\end{array}\right]\left[\begin{array}{l}\sin 45^{\circ}, \cos 90^{\circ} \\ \sin 90^{\circ}, \cot 45^{\circ}\end{array}\right]$ is :
A. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
B. $\left[\begin{array}{ll}1 & \frac{1}{2} \\ 1 & 0\end{array}\right]$
C. $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
D. $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

## - View Text Solution

20. If $A=\left[\begin{array}{ll}3 & 9 \\ 7 & 2\end{array}\right]$ and I is an identity matrix of order 2 , then the value of $A+51$ is:
A. $\left[\begin{array}{ll}3 & 14 \\ 12 & 2\end{array}\right]$
B. $\left[\begin{array}{ll}3 & 9 \\ 7 a & 2\end{array}\right]$
C. $\left[\begin{array}{ll}8 & 9 \\ 7 & 7\end{array}\right]$
D. $\left[\begin{array}{ll}8 & 14 \\ 12 & 7\end{array}\right]$

## Answer: C

## - View Text Solution

21. If $A=\left[\begin{array}{ll}-2 & 3 \\ 4 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}5 & 2 \\ -7 & 3\end{array}\right]$, then the matrix C such that $A+B C=O$ is :

$$
\text { A. }\left[\begin{array}{ll}
3 & 5 \\
-3 & 8
\end{array}\right]
$$

B. $\left[\begin{array}{ll}-3 & 5 \\ 3 & -8\end{array}\right]$
C. $\left[\begin{array}{ll}-11 & -2 \\ -11 & -2\end{array}\right]$
D. $\left[\begin{array}{ll}3 & -8 \\ 3 & -8\end{array}\right]$

## Answer: A

## - View Text Solution

22. If $2\left[\begin{array}{ll}3 & 4 \\ 5 & x\end{array}\right]\left[\begin{array}{ll}1 & y \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}7 & 0 \\ 10 & 5\end{array}\right]$, then the values of x and y are :
A. $x=4, y=-4$
B. $x=2, y=-8$
C. $x=2, y=-4$
D. $x=4, y=-8$

## Answer: B

## - View Text Solution

23. If $M=\left[\begin{array}{ll}1 & 2\end{array}\right]$ and $N=\left[\begin{array}{l}2 \\ 1\end{array}\right]$, then the order matrix MN is :
A. $1 \times 2$
B. $2 \times 1$
C. $2 \times 2$
D. $1 \times 1$

## Answer: D

## D View Text Solution

24. If $A=\left[\begin{array}{ll}1 & 1 \\ 8 & 3\end{array}\right]$, then $A^{2}-4 A=$
A. $\left[\begin{array}{ll}-3 & -3 \\ 60 & 5\end{array}\right]$
B. $\left[\begin{array}{ll}-3 & -3 \\ 8 & 3\end{array}\right]$
C. $\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]$
D. $\left[\begin{array}{ll}8 & 3 \\ 24 & 14\end{array}\right]$

## - View Text Solution

25. If $\left[\begin{array}{ll}-3 & 2 \\ 0 & -5\end{array}\right]\left[\begin{array}{l}x \\ 2\end{array}\right]=\left[\begin{array}{l}-5 \\ y\end{array}\right]$ then the values of x and y are :
A. $x=3, y=-10$
B. $x=-3, y=-10$
C. $x=-3, y=10$
D. $x=3, y=10$

## Answer: A

## - View Text Solution

26. The order of the matrix $\left[\begin{array}{llll}1 & 9 & 7 & 3 \\ 5 & 4 & -2 & 11 \\ 2 & -1 & -8 & 6\end{array}\right]$ is :
A. $3 \times 4$
B. $4 \times 3$
C. $3 \times 3$
D. $4 \times 3$

## Answer: A

## - View Text Solution

27. The number of elements in the matrix
$\left[\begin{array}{lll}2 & 5 & 19 \\ 35 & 12 & \frac{1}{2} \\ -\sqrt{2} & 1 & 7 \\ -1 & 2 & 3\end{array}\right]$ is :
A. 8
B. 12
C. 15
D. 9

## View Text Solution

28. The diagonal elements in the $\left[\begin{array}{lll}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{array}\right]$ are :
A. $0,0,4$
B. $4,0,0$
C. $0,4,0$
D. $4,4,4$

## Answer: C

## - View Text Solution

29. The matrix $[P]_{m \times n}$ is a square matirx, then which of the following is correct ?

$$
\text { A. } m=n
$$

B. $m>n$
C. $m<n$
D. None of these

## Answer: A

## - View Text Solution

30. If $=\left[\begin{array}{ll}4 & -1 \\ 2 & 1\end{array}\right]$, then $(A+2 I)(A-3 I)$ is equal to :
A. $\left[\begin{array}{ll}4 & -4 \\ 8 & -8\end{array}\right]$
B. $\left[\begin{array}{ll}4 & 8 \\ -4 & -8\end{array}\right]$
C. $\left[\begin{array}{ll}-4 & 4 \\ -8 & 8\end{array}\right]$
D. $\left[\begin{array}{ll}-4 & 4 \\ 8 & -8\end{array}\right]$

Answer: A
31. If $A=\left[\begin{array}{ll}1 & -3 \\ -8 & 8\end{array}\right]$ and $A^{2}-5 A+10 I=0$, then the value of k is :
A. -6
B. -4
C. 4
D. 6

## Answer: C

32. If $A=\left[\begin{array}{ll}3 & 1 \\ 7 & 5\end{array}\right]$ and $A^{2}+x I=y A$, then the value of x is :
A. -8
B. -4
C. 4
D. 8

## Answer: D

## - View Text Solution

33. If $\left[\begin{array}{ll}x & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ -2 & 0\end{array}\right]=0$, then the value of x is:
A. 0
B. 1
C. 2
D. -1

## Answer: C

## - View Text Solution

34. If $A=\left[\begin{array}{ll}5 & -1 \\ 6 & 7\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right]$, then which of the following is correct ?
A. $A B=\left[\begin{array}{ll}7 & -1 \\ 9 & 22\end{array}\right]$
B. $B A=\left[\begin{array}{ll}16 & -5 \\ 39 & 25\end{array}\right]$
C. $A B=B A$
D. $A B \neq B A$

## Answer: D

## - View Text Solution

35. If $A=\left[\begin{array}{ll}7 & 3 \\ 5 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 5 \\ 4 & 5\end{array}\right]$, then the matrix $C$ such that $2 A+3 C=8 B$, is :
A. $\left[\begin{array}{ll}2 & 24 \\ 22 & 36\end{array}\right]$
B. $\left[\begin{array}{ll}\frac{2}{3} & \frac{34}{3} \\ \frac{22}{3} & \frac{36}{3}\end{array}\right]$
C. $\left[\begin{array}{ll}\frac{2}{3} & \frac{22}{3} \\ \frac{36}{3} & \frac{34}{3}\end{array}\right]$
D. $\left[\begin{array}{ll}1 & 17 \\ 11 & 18\end{array}\right]$

## View Text Solution

36. If $\left[\begin{array}{ll}x y & 4 \\ z+6 & x+y\end{array}\right]=\left[\begin{array}{ll}8 & w \\ 0 & 6\end{array}\right]$ then the value of $(x+y+z+w)$ is:
A. 0
B. 4
C. 6
D. 8

## Answer: B

## - View Text Solution

Multiple Choice Questions Fill In The Blanks

1. Given $\left[\begin{array}{ll}4 & 2 \\ -1 & 1\end{array}\right] M=7 I$. IfI is matrix of order $2 \times 2$, then the order of matrix $M$ is
A. $2 \times 2$
B. $2 \times 1$
C. $2 \times 3$
D. $3 \times 3$

## Answer: A

## - View Text Solution

2. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 2 \\ 4 & 5 \\ 3 & 6\end{array}\right]$, then AB is .............
A. $2 \times 2$ matrix
B. $3 \times 2$ matrix
C. Not possible
D. $2 \times 3$ matrix

## Answer: C

3. The simplifed from of $\left[\begin{array}{l}4 \sin 30^{\circ}, 2 \cos 60^{\circ} \\ \sin 90^{\circ}, 2 \cos 0^{\circ}\end{array}\right]\left[\begin{array}{ll}4 & 5 \\ 5 & 4\end{array}\right]$ is ........
A. $\left[\begin{array}{ll}14 & 13 \\ 12 & 14\end{array}\right]$
B. $\left[\begin{array}{ll}13 & 14 \\ 14 & 13\end{array}\right]$
C. $\left[\begin{array}{ll}14 & 14 \\ 13 & 13\end{array}\right]$
D. $\left[\begin{array}{ll}13 & 13 \\ 14 & 14\end{array}\right]$

## Answer: B

## - View Text Solution

4. If $A=\left[\begin{array}{ll}3 & 1 \\ -1 & 2\end{array}\right]$, then $A^{2}+5 A=\ldots . . . . .$.
A. $\left[\begin{array}{ll}23 & 10 \\ 10 & 13\end{array}\right]$
B. $\left[\begin{array}{ll}10 & 23 \\ 13 & 10\end{array}\right]$
C. $\left[\begin{array}{ll}23 & 10 \\ 10 & 23\end{array}\right]$
D. $\left[\begin{array}{ll}23 & 10 \\ -10 & 13\end{array}\right]$

Answer: D

## - View Text Solution

5. If $A=\left[\begin{array}{ll}2 & 12 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{ll}4 & x \\ 0 & 1\end{array}\right]$ and $A^{2}=B$, then the value of x is
A. 26
B. 30
C. 36
D. 40

## Answer: C

$A=\left[\begin{array}{ll}p & 0 \\ 0 & 2\end{array}\right], B=\left[\begin{array}{ll}0 & -q \\ 2 & 0\end{array}\right]$ and $C\left[\begin{array}{ll}2 & -2 \\ 2 & 2\end{array}\right] I f A+B=C$, then the value of $p$ and $q$ are 2 and 2 respectively.
A. Both assertion and reason are correct and reason is the correct explanation of assertion.
B. Both assertion and reason are correct but reason is not the correct explanation of assertion.
C. Assertion is correct but reason is notcorrect.
D. Assertion is incorrect but reason is correct.

## Answer: C

## - View Text Solution

2. Assertion Let $A=\left[\begin{array}{ll}2 & 3 \\ 7 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}m-n & 6 \\ 14 & m+n\end{array}\right] \cdot I f 2 A=B$, then $\mathrm{m}=7$ and $\mathrm{n}=3$.

Two equal matrices have the same order and their corresponding elements are also equal.
A. Both assertion and reason are correct and reason is the correct explanation of assertion.
B. Both assertion and reason are correct but reason is not the correct explanation of assertion.
C. Assertion is correct but reason is notcorrect.
D. Assertion is incorrect but reason is correct.

## Answer: A

## - View Text Solution

3. Assertion : $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ is a row matrix and $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ is a column matrix.

Reason : Matrix having only one row is called row matrix and matrix having only one column is is called column matrix.
A. Both assertion and reason are correct and reason is the correct explanation of assertion.
B. Both assertion and reason are correct but reason is not the correct explanation of assertion.
C. Assertion is correct but reason is notcorrect.
D. Assertion is incorrect but reason is correct.

## Answer: D

## - View Text Solution

4. Assertion : If $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] X=\left[\begin{array}{l}2 \\ 1\end{array}\right]$, then the order of matrix X is $1 \times 2$.

Reason : The product $A B$ of two matrices $A$ and $B$ is possible if number of columns in $A$ is equal to the number of rows in $B$. Also, the order of the product matrix $A B$ is number of rows in $A X$ number of columns in $B$.
A. Both assertion and reason are correct and reason is the correct explanation of assertion.
B. Both assertion and reason are correct but reason is not the correct explanation of assertion.
C. Assertion is correct but reason is notcorrect.
D. Assertion is incorrect but reason is correct.

## Answer: D

## - View Text Solution

5. Assertion : If A , B and C are square matrices of order 2 , then $(A+B)+C=A+(B+C)$.

Reason : Addition of matrices is commutative.
A. Both assertion and reason are correct and reason is the correct explanation of assertion.
B. Both assertion and reason are correct but reason is not the correct explanation of assertion.
C. Assertion is correct but reason is notcorrect.
D. Assertion is incorrect but reason is correct.

## Answer: A

## - View Text Solution

6. Assertion : If $A$ and $B$ are square matrices of order 2 , then $A B=B A$ is not always true.

Reason : Matrix multiplication is associative.
A. Both assertion and reason are correct and reason is the correct explanation of assertion.
B. Both assertion and reason are correct but reason is not the correct
explanation of assertion.
C. Assertion is correct but reason is notcorrect.
D. Assertion is incorrect but reason is correct.

## Answer: B

## Multiple Choice Questions Competency Based Questions

1. Three friends decided to study the chapter matrices in a group. For this, they wrote three different matrices of the same order $2 x 2$ and learn to perform different matrix opertions to understand its consept. The three matrices written understand its concept. The three matrices written by them are $A=\left[\begin{array}{ll}2 & -1 \\ 2 & 0\end{array}\right], B=\left[\begin{array}{ll}-3 & 2 \\ 4 & 0\end{array}\right]$ and $C=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$

On the basis of above information, answer the following :
If a matrix X of order $2 \times 2$ is such that $X=A+B-C$, then $\mathrm{X}=$
A. $\left[\begin{array}{ll}0 & 1 \\ 6 & 2\end{array}\right]$
B. $\left[\begin{array}{ll}4 & -3 \\ -2 & 2\end{array}\right]$
C. $\left[\begin{array}{ll}-2 & 1 \\ 6 & -2\end{array}\right]$
D. $\left[\begin{array}{ll}-4 & 3 \\ -2 & -2\end{array}\right]$
2. Three friends decided to study the chapter matrices in a group. For this, they wrote three different matrices of the same order $2 x 2$ and learn to perform different matrix opertions to understand its consept. The three matrices written understand its concept. The three matrices written by them are $A=\left[\begin{array}{ll}2 & -1 \\ 2 & 0\end{array}\right], B=\left[\begin{array}{ll}-3 & 2 \\ 4 & 0\end{array}\right]$ and $C=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ On the basis of above information, answer the following : If Y is square matrix of order 2 such that $Y=2 B^{2}$, then $Y=$
A. $\left[\begin{array}{ll}34 & -12 \\ -24 & 16\end{array}\right]$
B. $\left[\begin{array}{ll}18 & 8 \\ 32 & 0\end{array}\right]$
C. $\left[\begin{array}{ll}9 & 84 \\ 16 & 0\end{array}\right]$
D. $\left[\begin{array}{ll}17 & -6 \\ 12 & 8\end{array}\right]$

## Answer: A

## - View Text Solution

3. Three friends decided to study the chapter matrices in a group. For this, they wrote three different matrices of the same order $2 x 2$ and learn to perform different matrix opertions to understand its consept.

The three matrices written understand its concept. The three matrices written by them are $A=\left[\begin{array}{ll}2 & -1 \\ 2 & 0\end{array}\right], B=\left[\begin{array}{ll}-3 & 2 \\ 4 & 0\end{array}\right]$ and $C=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ On the basis of above information, answer the following : If $Z=3 A-4 C$, then $\mathrm{Z}=$
A. $\left[\begin{array}{ll}2 & 3 \\ 6 & 8\end{array}\right]$
B. $\left[\begin{array}{ll}2 & -3 \\ 6 & -8\end{array}\right]$
C. $\left[\begin{array}{ll}-2 & 3 \\ -6 & 8\end{array}\right]$
D. $\left[\begin{array}{ll}-2 & 3 \\ 6 & -8\end{array}\right]$

## Answer: B

## - View Text Solution

4. Three friends decided to study the chapter matrices in a group. For this, they wrote three different matrices of the same order $2 x 2$ and learn to perform different matrix opertions to understand its consept. The three matrices written understand its concept. The three matrices written by them are $A=\left[\begin{array}{ll}2 & -1 \\ 2 & 0\end{array}\right], B=\left[\begin{array}{ll}-3 & 2 \\ 4 & 0\end{array}\right]$ and $C=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ On the basis of above information, answer the following : If $M=A^{2}-2 I$, then $\mathrm{M}=$
A. $\left[\begin{array}{ll}2 & 1 \\ 2 & -1\end{array}\right]$
B. $\left[\begin{array}{ll}2 & -4 \\ 4 & -4\end{array}\right]$
C. $\left[\begin{array}{ll}2 & -2 \\ 4 & -2\end{array}\right]$
D. $\left[\begin{array}{ll}0 & -2 \\ 4 & -4\end{array}\right]$

## Answer: D

## - View Text Solution

5. Three friends decided to study the chapter matrices in a group. For this, they wrote three different matrices of the same order $2 x 2$ and learn to perform different matrix opertions to understand its consept. The three matrices written understand its concept. The three matrices written by them are $A=\left[\begin{array}{ll}2 & -1 \\ 2 & 0\end{array}\right], B=\left[\begin{array}{ll}-3 & 2 \\ 4 & 0\end{array}\right]$ and $C=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ On the basis of above information, answer the following :

If N is matrix of order 2 such that $8+2 N=3 C$, then $\mathrm{N}=$
A. $\left[\begin{array}{ll}3 & -1 \\ -2 & 3\end{array}\right]$
B. $\left[\begin{array}{ll}6 & -2 \\ -4 & 6\end{array}\right]$
C. $\left[\begin{array}{ll}0 & -1 \\ -2 & 3\end{array}\right]$
D. $\left[\begin{array}{ll}0 & -2 \\ -4 & 6\end{array}\right]$

## Answer: A

## - View Text Solution

6. While taking revision class of mathemeatics on the chapter matrices, a teachter wrote the following matrices on the board.
$A=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], B=\left[\begin{array}{lll}7 & 6 & 3\end{array}\right], C=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], D=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right], E=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right], I$
After writing these matrices on the board, the teacher asked the following questions:

Which of the following matrices is a row matrix ?
A. A
B. B
C. C
D. F

## Answer: B

## - View Text Solution

7. While taking revision class of mathemeatics on the chapter matrices, a teachter wrote the following matrices on the board.
$A=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], B=\left[\begin{array}{lll}7 & 6 & 3\end{array}\right], C=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], D=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right], E=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right], I$
After writing these matrices on the board, the teacher asked the following questions:

Which of the following matrices is a column matrix ?
A. A
B. B
C. C
D. F

## Answer: A

## - View Text Solution

8. While taking revision class of mathemeatics on the chapter matrices, a teachter wrote the following matrices on the board.
$A=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], B=\left[\begin{array}{lll}7 & 6 & 3\end{array}\right], C=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], D=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right], E=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right], I$
After writing these matrices on the board, the teacher asked the following questions:

Which of the following matrices is an identity matrix ?
A. G
B. D
C. C
D. E

## Answer: C

## - View Text Solution

9. While taking revision class of mathemeatics on the chapter matrices, a teachter wrote the following matrices on the board.
$A=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], B=\left[\begin{array}{lll}7 & 6 & 3\end{array}\right], C=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], D=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right], E=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right], I$
After writing these matrices on the board, the teacher asked the following questions:

Which of the following matrices is a rull matrix ?
A. A
B. B
C. C
D. E

## Answer: D

## - View Text Solution

10. While taking revision class of mathemeatics on the chapter matrices, a teachter wrote the following matrices on the board.
$A=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], B=\left[\begin{array}{lll}7 & 6 & 3\end{array}\right], C=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], D=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right], E=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right], I$
After writing these matrices on the board, the teacher asked the following questions:

Which of the following matrices is square matrix ?
A. A
B. B
C. D
D. F

## Answer: D

## - View Text Solution

11. A matrix is an ordered rectangular array of elements (numbers). The plural of matrix is matrices. The elemnts in a matrix are arranged in rows and columns. Consider the following matrices :
$A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}-2 & 7 \\ 9 & \end{array}\right], C=\left[\begin{array}{lll}1 & -2 & 3 \\ 7 & 6 & 4\end{array}\right]$,
$D=\left[\begin{array}{ll}-1 & 2 \\ 0 & 4 \\ 3 & 1\end{array}\right], E=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right], F=\left[\begin{array}{l}2 \\ 1\end{array}\right], G=\left[\begin{array}{ll}0 & 1\end{array}\right]$
Now, answer the following question
The addition of whcih of the following matrices is possible ?
A. A, B and E
B. A and B only
C. C and D
D. F and G

## Answer: A

12. A matrix is an ordered rectangular array of elements (numbers). The plural of matrix is matrices. The elemnts in a matrix are arranged in rows and columns. Consider the following matrices :
$A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}-2 & 7 \\ 9 & \end{array}\right], C=\left[\begin{array}{lll}1 & -2 & 3 \\ 7 & 6 & 4\end{array}\right]$,
$D=\left[\begin{array}{ll}-1 & 2 \\ 0 & 4 \\ 3 & 1\end{array}\right], E=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right], F=\left[\begin{array}{l}2 \\ 1\end{array}\right], G=\left[\begin{array}{ll}0 & 1\end{array}\right]$
Now, answer the following question
Which of the following multiplication of matrices is not possible ?
A. $A B$
B. $C D$
C. FG
D. EG

## Answer: D

13. A matrix is an ordered rectangular array of elements (numbers). The plural of matrix is matrices. The elemnts in a matrix are arranged in rows and columns. Consider the following matrices :
$A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}-2 & 7 \\ 9 & \end{array}\right], C=\left[\begin{array}{lll}1 & -2 & 3 \\ 7 & 6 & 4\end{array}\right]$,
$D=\left[\begin{array}{ll}-1 & 2 \\ 0 & 4 \\ 3 & 1\end{array}\right], E=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right], F=\left[\begin{array}{l}2 \\ 1\end{array}\right], G=\left[\begin{array}{ll}0 & 1\end{array}\right]$
Now, answer the following question
Which of the following matrices is possible ?
A. $F^{2}$
B. $G^{2}$
C. $A^{2}$
D. $C^{2}$

## Answer: C

14. A matrix is an ordered rectangular array of elements (numbers). The plural of matrix is matrices. The elemnts in a matrix are arranged in rows and columns. Consider the following matrices :
$A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}-2 & 7 \\ 9 & \end{array}\right], C=\left[\begin{array}{lll}1 & -2 & 3 \\ 7 & 6 & 4\end{array}\right]$,
$D=\left[\begin{array}{ll}-1 & 2 \\ 0 & 4 \\ 3 & 1\end{array}\right], E=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right], F=\left[\begin{array}{l}2 \\ 1\end{array}\right], G=\left[\begin{array}{ll}0 & 1\end{array}\right]$
Now, answer the following question
If $A=\left[\begin{array}{ll}2 & -2 \\ -2 & 2\end{array}\right]$ and $A^{2}=x A$, where x is any number, then the value of $x$ is :
A. -4
B. -2
C. 2
D. 4

## Answer: D

15. A matrix is an ordered rectangular array of elements (numbers). The plural of matrix is matrices. The elemnts in a matrix are arranged in rows and columns. Consider the following matrices :
$A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}-2 & 7 \\ 9 & \end{array}\right], C=\left[\begin{array}{lll}1 & -2 & 3 \\ 7 & 6 & 4\end{array}\right]$,
$D=\left[\begin{array}{ll}-1 & 2 \\ 0 & 4 \\ 3 & 1\end{array}\right], E=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right], F=\left[\begin{array}{l}2 \\ 1\end{array}\right], G=\left[\begin{array}{ll}0 & 1\end{array}\right]$
Now, answer the following question
If $P+Q=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$ and $P-Q=\left[\begin{array}{ll}4 & 4 \\ 4 & 4\end{array}\right]$, then matrix $\mathrm{P}=$
A. $\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]$
B. $\left[\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right]$
C. $\left[\begin{array}{ll}6 & 4 \\ 4 & 6\end{array}\right]$
D. $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$

## Answer: A

## - View Text Solution

