

MATHS

BOOKS - SELINA MATHS (ENGLISH)

SAMPLE PAPER 4

Question Section A

1. Matrices 'A' and 'B' are of same order and

A+B=B+A. This law is known as:

A. Distributive law

B. Commutative law

C. Associative law

D. Cramer's rule

Answer: B

View Text Solution

2. If a matrix has equal number of rows and columns then it is said to be a:

A. Row Matrix

B. Identical matrix

C. Square matrix

D. Rectangular matrix

Answer: C

verii Tiin erlintii

3. Richa has a recurring deposit account in a bank for 3 years at 8% per annum interest. If she gets Rs 2,775 as interest at the time of maturity, then her monthly installment is:

- A. Rs 500
- B. Rs 625
- C. Rs 750
- D. Rs 875

Answer: B

4. The first, second and fourth terms of a proportion are 16, 24 and 54 respectively. Then the third term is:

A. 36

B. 48

C. 28

D. 32

Answer: A

View Text Solution

5. The compounded ratio of 2:3 and 5:7 is

A. 7:10

- B. 9:8
- C. 10: 21
- D. 14:15

Answer: C

- **6.** If $\frac{1}{2}$ is a root of the quadratic equation $x^2-mx-rac{5}{4}=0$, then the value of m is
 - A. 2
 - B.-2
 - $\mathsf{C.}-3$
 - D. 3

Answer: B

View Text Solution

7. The solution set of $1 \geq 15 - 7x > 2x - 27, x \in N$ on the number line is

Answer: A

8. If the sum of first n terms of an A.P is $An+Bn^2$, where A and B are constants, the common difference of A.P. will be

- A. A+B
- B.A-B
- C. 2A
- D. 2B

Answer: D

.... Is

View Text Solution

9. Sum of n terms of the series $\sqrt{2}+\sqrt{8}+\sqrt{18}+\sqrt{32}+$

$$\frac{n+2}{\sqrt{2}}$$

B. $\sqrt{2}n(n+1)$

$$\mathsf{C.}\ \frac{n(n+1)}{\sqrt{2}}$$

D. 1

Answer: C

View Text Solution

then the remainder is:

10. If a polynomial p(x) is divided by a linear divisor (x-a),

A. p(a)

B. p(1)

C. p(0)

D.p(x)

Answer: A

View Text Solution

- **11.** If (x-1) is a factor of $x^3-kx^2+11x-6$, then the value of k should be:
 - A. 1
 - $\mathsf{B.}-6$
 - C. 6
 - D. 5

Answer: C

Visco Test Calatian

12. The polynomial equation

$$x(x+1) + 8 = (x+2)(x-2)$$
 is a:

- A. linear equation
- B. quadratic equation
- C. cubic equation
- D. bi-equadratic equation

Answer: A

13. The roots of the quadratic equation $3x^2-14x+8=0$ are:

A.
$$\frac{1}{3}$$
, 2

$$\mathsf{B.}\,\frac{1}{2},3$$

$$\mathsf{C.}\,\frac{2}{3},4$$

D.
$$\frac{3}{4}$$
, 2

Answer: C

View Text Solution

14. The product of matrices $(PQ)^{-1}P$ is

A. $P^{\,-1}$

$$\mathsf{B}.\,Q^{-1}$$

C. $P^{-1}Q^{-1}P$

D. PQP^{-1}

Answer: B

View Text Solution

Question Section B

A.
$$(-\infty, -50)$$

1. The solution set of $\dfrac{x-1}{3}+4<\left(\dfrac{x-5}{5}\right)-2$ is

B.
$$(-\infty, -5)$$

C.
$$(-\infty, -10)$$

D.
$$(-\infty, -15)$$

Answer: A

View Text Solution

- 2. Krishna deposited Rs 2,000 per month in a recurring bank account for 2 years at the rate of 11% per annum interest.

 The amount Krishna will get at the time of maturity is:
 - A. Rs 47,632
 - B. Rs 50,500
 - C. Rs 51,225
 - D. Rs 53,500

Answer: D

3. Mr Pankaj took health insurance policy for his family and paid Rs 900 as SGST. The total Annual Premium paid by him for this policy rate of GST being 18% is

A. Rs 1,800

B. Rs 10,000

C. Rs 5,000

D. Rs 3,600

Answer: B

Government on their
A. Profits
B. C.P
C. Discount
D. S.P
Answer: A
View Text Solution
5. Two matrices A and B are multipled to get AB, if:
A Roth are rectangular

4. The traders at each stage always pay GST to the

- B. Both have same order
- C. No. of columns of 'A' is equal to the no. of rows of 'B'
- D. No. of rows of 'A' is equal to the no. of columns of 'B'

Answer: C

View Text Solution

Question Section C

1. The production of TV sets in a factory increases uniformly by a fixed number every year. It produced 16000 sets in 6^{th} year and 22,600 in 9^{th} year.

Find the production during $\mathbf{1}^{st}$ year.

- A. 5000 B. 2200 C. 10000
 - D. None of these

Answer: A

2. The production of TV sets in a factory increases uniformly by a fixed number every year. It produced 16000 sets in 6^{th} year and 22,600 in 9^{th} year.

The fixed number of TV sets increases every year is

A. 5000

- B. 3200
- C. 2200
- D. 1000

Answer: C

View Text Solution

3. The production of TV sets in a factory increases uniformly by a fixed number every year. It produced 16000 sets in 6^{th} year and 22,600 in 9^{th} year.

Find the production during 3^{rd} year

- A. 9600
- B. 9400

- C. 9200
- D. 9000

Answer: B

View Text Solution

4. The production of TV sets in a factory increases uniformly by a fixed number every year. It produced 16000 sets in 6^{th} year and 22,600 in 9^{th} year.

The total production in 10 years will be:

- A. 1,49,000
- B. 1,52,000
- C. 50000

Answer: A

View Text Solution

5. The speed of a motor boat is 20km/hr for covering the distance of 15km. The boat took 1 hour more for upstream than downstream.

Let the speed of the stream be x km/hour, then the speed of the motor boat in upstream will be:

A. 20km/hr

B. (20+x) km/hr

C. (20 - x)

D. 2km/hr

Answer: C

View Text Solution

6. The speed of a motor boat is 20km/hr for covering the distance of 15km. The boat took 1 hour more for upstream than downstream.

What is the relation between speed, distance and time?

A. speed
$$= \frac{\text{Distance}}{\text{Time}}$$

B. Distance
$$=\frac{\text{speed}}{\text{Time}}$$

C. Time = Speed
$$\times$$
 Distance

D. Speed = Distance
$$\times$$
 Time

Answer: A

7. The speed of a motor boat is 20km/hr for covering the distance of 15km. The boat took 1 hour more for upstream than downstream.

What will be the speed of stream?

- A. 20km/hour
- B. 10km/hour
- C. 15km/hour
- D. 25km/hour

Answer: B

8. The speed of a motor boat is 20km/hr for covering the distance of 15km. The boat took 1 hour more for upstream than downstream.

How much time boat took in downstream?

- A. 90 minutes
- B. 15 minutes
- C. 30 minutes
- D. 45 minutes

Answer: C

$$A = \begin{bmatrix} 3 & -2 \\ -1 & 4 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 \\ -3 & 4 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}, D = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 If $A \begin{bmatrix} 2x \\ 1 \end{bmatrix} + 2 \begin{bmatrix} -4 \\ 5 \end{bmatrix} = 4 \begin{bmatrix} 2 \\ y \end{bmatrix}$ then the values of x and y,

respectively are:

Answer: D

$$A = \left[egin{array}{cc} 3 & -2 \ -1 & 4 \end{array}
ight], B = \left[egin{array}{cc} 2 & 1 \ -3 & 4 \end{array}
ight], C = \left[egin{array}{cc} 1 & 1 \ 2 & 1 \end{array}
ight], D = \left[egin{array}{cc} 2 & 1 \ 1 & 2 \end{array}
ight]$$

If
$$BX = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$$
, then the order of matrix X will be:

 $A.2 \times 2$

B.
$$1 imes 2$$

$$\mathsf{C.}\ 2 imes 1$$

 $D.1 \times 1$

Answer: C

$$A = egin{bmatrix} 3 & -2 \ -1 & 4 \end{bmatrix}, B = egin{bmatrix} 2 & 1 \ -3 & 4 \end{bmatrix}, C = egin{bmatrix} 1 & 1 \ 2 & 1 \end{bmatrix}, D = egin{bmatrix} 2 & 1 \ 1 & 2 \end{bmatrix}$$

CD=

A.
$$\begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$$
B.
$$\begin{bmatrix} 4 & 5 \\ 5 & 4 \end{bmatrix}$$
C.
$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$

D.
$$\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

Answer: B

$$A=egin{bmatrix} 3 & -2 \ -1 & 4 \end{bmatrix}, B=egin{bmatrix} 2 & 1 \ -3 & 4 \end{bmatrix}, C=egin{bmatrix} 1 & 1 \ 2 & 1 \end{bmatrix}, D=egin{bmatrix} 2 & 1 \ 1 & 2 \end{bmatrix}$$

$$2A + B - C =$$

$$2A + B - C =$$

$$A. \begin{bmatrix} 7 & -5 \\ -7 & 11 \end{bmatrix}$$

$$B. \begin{bmatrix} 8 & -7 \\ 11 & -4 \end{bmatrix}$$

$$C. \begin{bmatrix} -4 & 3 \\ 7 & -8 \end{bmatrix}$$

$$D. \begin{bmatrix} 7 & -11 \\ -4 & 6 \end{bmatrix}$$

Answer: A

