đず doubtnut

India's Number 1 Education App

MATHS

BOOKS - SELINA MATHS (ENGLISH)

SIMILARITY

Questions

1. In the given figure, $\triangle A B C$ is similar to $\triangle D E F, A B=(x-0.5) \mathrm{cm}$, $A C=1.5 x \mathrm{~cm}, D E=9 \mathrm{~cm}$, and $D F=3 x \mathrm{~cm}$. Find the lengths of AB and D.

Watch Video Solution

2. In the given figure, $\mathrm{AP}=8 \mathrm{~cm}, \mathrm{BP}=22 \mathrm{~cm}, \mathrm{AQ}=12 \mathrm{~cm}$ and $\mathrm{QC}=8 \mathrm{~cm}$

Show that $\triangle A P Q$ is similar to $\triangle A C B$.

- Watch Video Solution

3. In the given figure, $\mathrm{AP}=8 \mathrm{~cm}, \mathrm{BP}=22 \mathrm{~cm}, \mathrm{AQ}=12 \mathrm{~cm}$ and $\mathrm{QC}=8 \mathrm{~cm}$

If $P Q=14 \mathrm{~cm}$, find $B C$.

D Watch Video Solution

4. Theorem 6.7 : If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse then triangles on both sides of the perpendicular are similar to the whole triangle and to each other.

- Watch Video Solution

5. In the given figure, lines I and m are parallel. Three concurrent lines through point O meet line I at points A, B and C, and line m at points P, Q and R as shown. Prove that : $\frac{A B}{B C}=\frac{Q R}{P Q}$

- Watch Video Solution

6. In the figure, given alongside, $\angle Q P S=\angle R P T$
and $\angle P R Q=\angle P T S$.

Prove that triangles PQR and PST are similar.

- Watch Video Solution

7. In the figure, given alongside, $\angle Q P S=\angle R P T$ and $\angle P R Q=\angle P T S$.

If PT : $\mathrm{ST}=3: 4$, find the ratio between $\mathrm{QR}: \operatorname{PR}$.
8. In the given figure, $A B$ and $D E$ are perpendiculars to $B C$. If $A B=9 \mathrm{~cm}, D E$
$=3 \mathrm{~cm}$ and $\mathrm{AC}=24 \mathrm{~cm}$, calculate AD .

- Watch Video Solution

9. In the adjoining figure, $A B C$ is a triangle right-angled at vertex A and $A D$ is altitude.

Prove that : $\triangle A B D$ is similar to $\triangle C A D$.

- Watch Video Solution

10. In the adjoining figure, $A B C$ is a triangle right-angled at vertex A and
$A D$ is altitude.

If $B D=3.6 \mathrm{~cm}$ and $C D=6.4 \mathrm{~cm}$, find the length of $A D$.
11. In the adjoining figure, $D E / / B C$ and D divides $A B$ in the ratio $2: 3$.

Find:

$\frac{A E}{E C}$
12. In the adjoining figure, $D E / / B C$ and D divides $A B$ in the ratio 2:3.

Find :

$\frac{A E}{A C}$

- Watch Video Solution

13. In the adjoining figure, $D E / / B C$ and D divides $A B$ in the ratio 2:3.

Find $D E$, if $B C=7.5 \mathrm{~cm}$.

- Watch Video Solution

14. In $\Delta A B C$, D and E are points on the sides AB and AC respectively. Find whether DE//BC, if :

$A D=3 \mathrm{~cm}, \quad B D=4.5 \mathrm{~cm}, A E=4 \mathrm{~cm}$ and $A C=10 \mathrm{~cm}$

- Watch Video Solution

15. In $\triangle A B C, \mathrm{D}$ and E are points on the sides AB and AC respectively. Find whether $D E / / B C$, if :

$$
A D=7 \mathrm{~cm}, \quad B D=45 \mathrm{~cm}, A E=35 \mathrm{~cm} \text { and } C E=56 \mathrm{~cm}
$$

- Watch Video Solution

16. In the given figure, $\mathrm{AB} / / \mathrm{EF} / / \mathrm{CD}$. Given that $\mathrm{AB}=7.5 \mathrm{~cm}, \mathrm{EG}=2-5 \mathrm{~cm}, \mathrm{GC}=$ 5 cm and $\mathrm{DC}=9 \mathrm{~cm}$. Calculate :

EF

- Watch Video Solution

17. In the given figure, $\mathrm{AB} / / \mathrm{EF} / / \mathrm{CD}$. Given that $\mathrm{AB}=7.5 \mathrm{~cm}, \mathrm{EG}=2-5 \mathrm{~cm}, \mathrm{GC}=$

5 cm and $\mathrm{DC}=9 \mathrm{~cm}$. Calculate :

AC.

D Watch Video Solution
18. In the given figure, $D E / / B C$.

Prove that $\triangle A D E$ and $\triangle A B C$ are similar

- Watch Video Solution

19. In the given figure, $D E / / B C$.

Given that $A D=\frac{1}{2} B D$, calculate $D E$, if $\mathrm{BC}=45 \mathrm{~cm}$.
Also, find $\frac{A r .(\triangle A D E)}{A r .(\triangle A B C)}$ and $\frac{A r .(\triangle A D E)}{A r .(\text { trapezium BCED })}$

- Watch Video Solution

20. In the figure, given alongside, PB and QA are perpendiculars to the line segment AB . If $\mathrm{PO}=6 \mathrm{~cm}, \mathrm{QO}=9 \mathrm{~cm}$ and area of $\triangle P O B-120 \mathrm{~cm}^{2}$.

find the area of $\triangle Q O A$.

- Watch Video Solution

21. In the given figure, $D E$ is parallel to the base $B C$ of triangle $A B C$ and $A D: D B=5: 3$. Find the ratio :

$\frac{A D}{A B}$ and then $\frac{D E}{B C}$

- Watch Video Solution

22. In the given figure, $D E$ is parallel to the base $B C$ of triangle $A B C$ and AD: $\mathrm{DB}=5: 4$. Find the ratio :

Area of $\triangle D E F$
Area of $\triangle B F C$

- Watch Video Solution

23. In $\triangle A B C, \angle B=90^{\circ}, A B=12 \mathrm{~cm}$ and $A C=15 \mathrm{~cm}$. D and E are points on AB and AC respectively such that $\angle A E D=90^{\circ}$ and $\mathrm{DE}=3 \mathrm{~cm}$.

Calculate the area of $\triangle A B C$ and then the area of $\triangle A D E$.

- Watch Video Solution

24. A model of a ship is made to a scale of $1: 200$. If the length of the model is 4 m , calculate the length of the ship.
25. The scale of map is $1: 50,000$. In the map, a triangular plot ABC of land has the following dimensions :
$A B=2 \mathrm{~cm}, B C=3.5 \mathrm{~cm}$ and angle $A B C=90^{\circ}$.
Calculate : the actual length of side BC , in km , of the land.

- Watch Video Solution

26. The scale of map is $1: 50,000$. In the map, a triangular plot $A B C$ of land has the following dimensions :
$A B=2 \mathrm{~cm}, B C=3-5 \mathrm{~cm}$ and angle $A B C=90^{\circ}$.
Calculate : the area of the plot in sq. km.

Watch Video Solution

27. A rectangular tank has length $=4 \mathrm{~m}$, width $=3 \mathrm{~m}$ and capacity $=30 \mathrm{~m}^{3}$.

A small model of the tank is made with capacity $240 \mathrm{~cm}^{3}$. Find :
the dimensions of the model.
28. A rectangular tank has length $=4 \mathrm{~m}$, width $=3 \mathrm{~m}$ and capacity $=30 \mathrm{~m}^{3}$. A small model of the tank is made with capacity $240 \mathrm{~cm}^{3}$. Find : the ratio between the total surface area of the tank and its model.

- Watch Video Solution

Exercise 15 A

1. In the figure, given below, straight lines $A B$ and $C D$ intersect at P, and $A C / / B D$. Prove that :

$\triangle A P C$ and $\triangle B P D$ are similar.
2. In the figure, given below, straight lines $A B$ and $C D$ intersect at P, and AC//BD.

If $\mathrm{BD}=2.4 \mathrm{~cm}, \mathrm{AC}=3.6 \mathrm{~cm}, \mathrm{PD}=4.0 \mathrm{~cm}$ and $\mathrm{PB}=3.2 \mathrm{~cm}$, find the lengths of PA and PC.

- Watch Video Solution

3. In a trapezium $A B C D$, side $A B$ is parallel to side $D C$, and the diagonals $A C$ and BD intersect each other at point P. Prove that :
$\triangle A P B$ is similar to $\triangle C P D$.
4. In a trapezium $A B C D$, side $A B$ is parallel to side $D C$, and the diagonals AC and BD intersect each other at point P. Prove that :
$P A \times P D=P B \times P C$.

- Watch Video Solution

5. P is a point on side $B C$ of a parallelogram $A B C D$. If $D P$ produced meets $A B$ produced at point L, prove that :

$$
D P: P L=D C: B L
$$

- Watch Video Solution

6. P is a point on side $B C$ of a parallelogram $A B C D$. If DP produced meets
$A B$ produced at point L, prove that :
$D L: D P=A L: D C$
7. In quadrilateral $A B C D$, the diagonals $A C$ and $B D$ intersect each other at point 0 .

If $A O=2 C O$ and $B O=2 D O$, show that:
$\triangle A O B$ is similar to $\triangle C O D$.

- Watch Video Solution

8. In quadrilateral $A B C D$, the diagonals $A C$ and $B D$ intersect each other at point 0.

If $A O=2 C O$ and $B O=2 D O$, show that:
$O A \times O D=O B \times O C$.

- Watch Video Solution

9. In $\triangle A B C$, angle $A B C$ is equal to twice the angle $A C B$, and bisector of angle $A B C$ meets the opposite side at point P. Show that :
$C B: B A=C P: P A$

(D) Watch Video Solution

10. In $\triangle A B C$, angle ABC is equal to twice the angle ACB , and bisector of angle $A B C$ meets the opposite side at point P. Show that :
$A B \times B C=B P \times C A$

- Watch Video Solution

11. In $\triangle A B C, B M \perp A C$ and $C N \perp A B$, show that :
$\frac{A B}{A C}=\frac{B M}{C N}=\frac{A M}{A N}$

- Watch Video Solution

12. In
the
given
figure,
$D E / / B C, A E=15 \mathrm{~cm}, E C=9 \mathrm{~cm}, N C=6 \mathrm{~cm}$ and $B N=24 \mathrm{~cm}$.

Write all possible pairs of similar triangles.

- Watch Video Solution

13.

In
the
given
figure,
$D E / / B C, A E=15 \mathrm{~cm}, E C=9 \mathrm{~cm}, N C=6 \mathrm{~cm}$ and $B N=24 \mathrm{~cm}$.

Find lengths of ME and DM.

- Watch Video Solution

14. In the given figure, $\mathrm{AD}=\mathrm{AE}$ and $A D^{2}=B D \times E C$.

Prove that : triangles ABD and CAE are similar.

- Watch Video Solution

15. In the given figure, $A B / / D C, B O=6 \mathrm{~cm}$ and $D Q=8 \mathrm{~cm}$, find: $B P \times D O$.

16. Angle $B A C$ of triangle $A B C$ is obtuse and $A B=A C$. P is a point in $B C$ such that $P C=12 \mathrm{~cm} . \mathrm{PQ}$ and $P R$ are perpendiculars to sides $A B$ and $A C$ respectively. If $P Q=15 \mathrm{~cm}$ and $P R=9 \mathrm{~cm}$, find the length of $P B$.

Watch Video Solution

17. State, true or false :

Two similar polygons are necessarily congruent.

- Watch Video Solution

18. State, true or false :

Two congruent polygons are necessarily similar.

- Watch Video Solution

19. State, true or false :

All equiangular triangles are similar.

Watch Video Solution

20. State, true or false :

All isosceles triangles are similar.

- Watch Video Solution

21. State, true or false :

Two isosceles-right triangles are similar.

- Watch Video Solution

22. State, true or false :

Two isosceles triangles are similar, if an angle of one is congruent to the
corresponding angle of the other.

- Watch Video Solution

23. State, true or false :

The diagonals of a trapezium divide each other into proportional segments.

- Watch Video Solution

24. Given : $\angle G H E=\angle D F E=90^{\circ}$,
$D H=8, D F=12$,
$D G=3 x-1$ and $D E=4 x+2$.

Find : the lengths of segments DG and DE.

- Watch Video Solution

25. D is a point on the side $B C$ of a triangle $A B C$ such that $\angle A D C=\angle B A C$. Show that $C A^{2}=C B \dot{C} D$.

- Watch Video Solution

26. In the given figure, $\triangle A B C$ and $\triangle A M P$ are right angled at B and M respectively.

Given $A C=10 \mathrm{~cm}, A P=15 \mathrm{~cm}$ and $P M=12 \mathrm{~cm}$.

Prove that: $\triangle A B C-\triangle A M P$

- Watch Video Solution

27. In the given figure, $\triangle A B C$ and $\triangle A M P$ are right angled at B and M respectively.

Given $A C=10 \mathrm{~cm}, A P=15 \mathrm{~cm}$ and $P M=12 \mathrm{~cm}$.

Find : $A B$ and $B C$.

- Watch Video Solution

28. Given : RS and PT are altitudes of $\triangle P Q R$. Prove that:
$\triangle P Q T \sim \Delta Q R S$.
29. Given : RS and PT are altitudes of $\triangle P Q R$. Prove that:
$P Q \times Q S=R Q \times Q T$.

- Watch Video Solution

30. Given : $A B C D$ is a rhombus, DPR and CBR are straight lines.

Prove that: $D P \times C R=D C \times P R$.

- Watch Video Solution

31. Given : $F B=F D, A E \perp F D$ and $F C \perp A D$.

Prove that: : $\frac{F B}{A D}=\frac{B C}{E D}$

- Watch Video Solution

32. In $\triangle P Q R, \angle Q=90^{\circ}$ and QM is perpendicular to PR. Prove that : $P Q^{2}=P M \times P R$
33. In $\triangle P Q R, \angle Q=90^{\circ}$ and QM is perpendicular to PR. Prove that : $Q R^{2}=P R \times M R$

Watch Video Solution

34. In $\triangle P Q R, \angle Q=90^{\circ}$ and $Q M$ is perpendicular to PR. Prove that : $P Q^{2}+Q R^{2}=P R^{2}$

- Watch Video Solution

35. In $\triangle A B C, \angle B=90^{\circ}$ and $B D \perp A C$.

If $C D=10 \mathrm{~cm}$ and $B D=8 \mathrm{~cm}$, find $A D$.

- Watch Video Solution

36. In $\triangle A B C, \angle B=90^{\circ}$ and $B D \perp A C$.

If $A C=18 \mathrm{~cm}$ and $A D=6 \mathrm{~cm}$, find $B D$.
37. In $\triangle A B C, \angle B=90^{\circ}$ and $B D \perp A C$.

If $A C=9 \mathrm{~cm}$ and $A B=7 \mathrm{~cm}$, find $A D$.

- Watch Video Solution

38. In the figure, $P Q R S$ is a parallelogram with $P Q=16 \mathrm{~cm}$ and $Q R=10 \mathrm{~cm}$.

L is a point on PR such that $R L: L P=2: 3$. QL produced meets RS at M and PS produced at N .

Find the lengths of PN and RM.

M

S

39. In quadrilateral $A B C D$, diagonals $A C$ and $B D$ intersect at point E such that
$A E: E C=B E: E D$.

Show that : $A B C D$ is a trapezium.

(Watch Video Solution

40. In triangle $A B C, A D$ is perpendicular to side $B C$ and $A D^{2}=B D \times D C$.

Show that angle $B A C=90^{\circ}$.

- Watch Video Solution

41.

In
the
given
figure,
$A B / / E F / / D C, A B=67.5 \mathrm{~cm}, D C=40.5 \mathrm{~cm}$ and $A E=52.5 \mathrm{~cm}$.

Name the three pairs of similar triangles.

- Watch Video Solution

42.

In
the
given
figure,
$A B / / E F / / D C, A B=67.5 \mathrm{~cm}, D C=40.5 \mathrm{~cm}$ and $A E=52.5 \mathrm{~cm}$.

Find the lengths of EC and EF .

- Watch Video Solution

43. In the given figure, $Q R$ is parallel to $A B$ and $D R$ is parallel to $Q B$.

Prove that : $P Q^{2}=P D \times P A$.

- Watch Video Solution

44. Through the mid-point M of the side $C D$ of a parallelogram $A B C D$, the line $B M$ is drawn intersecting $A C$ at $\operatorname{Land} A D$ produced at E. Prove that $E L=2 B L$.
45. In the given figure, P is a point on AB such that $A P: P B=4: 3 . \mathrm{PQ}$ is parallel to $A C$.

Calculate the ratio PQ : AC , giving reason for your answer.

- Watch Video Solution

46. In the given figure, P is a point on AB such that $A P: P B=4: 3 . \mathrm{PQ}$ is parallel to AC .

In triangle $A R C, \angle A R C=90^{\circ}$ and in triangle $P Q S,, \angle P S Q=90^{\circ}$.
Given $Q S=6 \mathrm{~cm}$, calculate the length of AR.

- Watch Video Solution

47. In the right-angled triangle QPR, PM altitude.

Given that $Q R=8 \mathrm{~cm}$ and $M Q=3-5 \mathrm{~cm}$, calculate the value of $P R$.
48. In the figure, given below, the medians $B D$ and $C E$ of a triangle $A B C$ meet at G. Prove that:

$\Delta E G D-\Delta C G B$ and (ii) $B G=2 G D$ from (i) above.

- Watch Video Solution

Exercise 15 B

1. In the following figure, point D divides $A B$ in the ratio 3: 5. Find :

$\frac{A E}{E C}$

- Watch Video Solution

2. In the following figure, point D divides $A B$ in the ratio 3: 5. Find :

$\frac{A D}{A B}$
3. In the following figure, point D divides $A B$ in the ratio 3: 5. Find :

$\frac{A E}{A C}$

- Watch Video Solution

4. In the following figure, point D divides $A B$ in the ratio 3: 5. Find :

Also, if:
$D E=24 \mathrm{~cm}$, find the length of $B C$.

- Watch Video Solution

5. In the following figure, point D divides $A B$ in the ratio 3: 5. Find :

Also if :
$B C=4.8 \mathrm{~cm}$, find the length of $D E$.

D Watch Video Solution

6. In the given figure, $P Q / / A B, C Q=4.8 \mathrm{~cm} Q B=3.6 \mathrm{~cm}$ and $A B=6-3 \mathrm{~cm}$.

Find :
$\frac{C P}{P A}$

- Watch Video Solution

7. In the given figure, $P Q / / A B, C Q=4.8 \mathrm{~cm} Q B=3.6 \mathrm{~cm}$ and $A B=6-3 \mathrm{~cm}$.

Find :

$P Q$

8. In the given figure, $\mathrm{PQ} / / \mathrm{AB}, \mathrm{CQ}=4.8 \mathrm{~cm} \mathrm{QB}=3.6 \mathrm{~cm}$ and $\mathrm{AB}=6-3 \mathrm{~cm}$.

Find :

$P Q$

- Watch Video Solution

9. A line PQ is drawn parallel to the side BC of $\triangle A B C$ which cuts side AB at P and side $A C$ at Q. If $A B=90 \mathrm{~cm}, C A=60 \mathrm{~cm}$ and $A Q=4.2 \mathrm{~cm}$, find the length of AP.

- Watch Video Solution

10. In $\triangle A B C, D$ and E are the points on sides AB and AC respectively.

Find whether $D E$ || $B C$, if :
$A B=9 \mathrm{~cm}, A D=4 \mathrm{~cm}, A E=6 \mathrm{~cm}$ and $E C=7.5 \mathrm{~cm}$.
11. In $\triangle A B C, D$ and E are the points on sides AB and AC respectively.

Find whether $D E \| B C$, if :
$A B=6-3 \mathrm{~cm}, E C=11: 0 \mathrm{~cm}, A D=0.8 \mathrm{~cm}$ and $A E=1.6 \mathrm{~cm}$.

- Watch Video Solution

12. In the given figure, $\triangle A B C \sim \triangle A D E$. If $A E: E C=4: 7$ and $D E=6.6 \mathrm{~cm}$, find $B C$. If ' x ' be the length of the perpendicular from A to $D E$, find the length of perpendicular from A to $B C$ in terms of ' x '.

- Watch Video Solution

13. A line segment $D E$ is drawn parallel to base $B C$ of $A B C$ which cuts $A B$ at point D and $A C$ at point E. If $A B=5 B D$ and $E C=3.2 \mathrm{~cm}$, find the length of $A E$.
14. In the figure, given below, $A B, C D$ and $E F$ are parallel lines. Given $A B=$ $7.5 \mathrm{~cm}, \mathrm{DC}=\mathrm{ycm}, \mathrm{EF}=4.5 \mathrm{~cm}, \mathrm{BC}=\mathrm{xcm}$ and $\mathrm{CE}=3 \mathrm{~cm}$, calculate the values of x and y.

- Watch Video Solution

15. In the figure, given below, PQR is a right angled triangle right angled at Q . XY is parallel to $\mathrm{QR}, \mathrm{PQ}=6 \mathrm{~cm}, \mathrm{PY}=4 \mathrm{~cm}$ and $\mathrm{PX}: \mathrm{XQ}=1: 2$. Calculate the lengths of $P R$ and $Q R$.

- Watch Video Solution

16. In the following figure, M is mid-point of $B C$ of a parallelogram $A B C D$. DM intersects the diagonal AC at P and AB produced at E . Prove that : $\mathrm{PE}=$

2 PD.

- Watch Video Solution

17. The given figure shows a parallelogram $A B C D$. E is a point in $A D$ and $C E$ produced meets $B A$ produced at point F. If $A E=4 \mathrm{~cm}, \mathrm{AF}=8 \mathrm{~cm}$ and $\mathrm{AB}=$ 12 cm , find the perimeter of the parallelogram ABCD.

18. The ratio between the corresponding sides of two similar triangles is 2 is to 5 . Find the ratio between the areas of these triangles.

- Watch Video Solution

2. Areas of two similar triangles are $98 \mathrm{sq} . \mathrm{cm}$ and $128 \mathrm{sq} . \mathrm{cm}$. Find the ratio between the lengths of their corresponding sides.

- Watch Video Solution

3. A line PQ is drawn parallel to the base BC of $\triangle A B C$ which meets sides $A B$ and $A C$ at points P and Q respectively. If $A P=\frac{1}{3} P B$, find the value of :

Area of $\triangle A B C$
$\overline{\text { Area of } \triangle A P Q}$

- Watch Video Solution

4. A line PQ is drawn parallel to the base BC of $\triangle A B C$ which meets sides $A B$ and $A C$ at points P and Q respectively. If $A P=\frac{1}{3} P B$, find the value of :

Area of $\triangle A P Q$
$\overline{\text { Area of trapezium } P B C Q}$

- Watch Video Solution

5. The perimeters of two similar triangles are 30 cm and 24 cm . If one side of the first triangle is 12 cm , determine the corresponding side of the second triangle.

- Watch Video Solution

6. In the given figure, $A X: X B=3: 5$

Find :

the length of $B C$, if the length of $X Y$ is 18 cm .

- Watch Video Solution

7. In the given figure, $A X: X B=3: 5$

Find :
the ratio between the areas of trapezium XBCY and triangle $A B C$.

- Watch Video Solution

8. $A B C$ is a triangle. $P Q$ is a line segment intersecting $A B$ in P and $A C$ in Q such that $\mathrm{PQI} / \mathrm{BC}$ and divides triangle ABC into two parts equal in area.

Find the value of ratio $B P$: AB.

- Watch Video Solution

9. In the given triangle $P Q R, L M$ is parallel to $Q R$ and $P M: M R=3: 4$.

Calculate the value of ratio :
$\frac{P L}{P Q}$ and then $\frac{L M}{Q R}$

- Watch Video Solution

10. In the given triangle $P Q R, L M$ is parallel to $Q R$ and $P M: M R=3: 4$.

Calculate the value of ratio:

Area of $\triangle L M N$
$\overline{\text { Area of } \triangle M N R}$

11. In the given triangle $P Q R$, $L M$ is parallel to $Q R$ and $P M: M R=3: 4$.

Calculate the value of ratio :
Area of $\Delta L Q M$
Area of $\triangle L Q N$

- Watch Video Solution

12. The given diagram shows two isosceles triangles which are similar. In the given diagram, PQ and BC are not parallel, $\mathrm{PC}=4, \mathrm{AQ}=3, \mathrm{QB}=12, \mathrm{BC}=$ 15 and $\mathrm{AP}=\mathrm{PQ}$. Calculate :

the length of AP.

- Watch Video Solution

13. The given diagram shows two isosceles triangles which are similar. In the given diagram, $P Q$ and $B C$ are not parallel, $P C=4, A Q=3, Q B=12, B C=$ 15 and $\mathrm{AP}=\mathrm{PQ}$. Calculate :

the ratio of the areas of triangle APQ and triangle ABC.

- Watch Video Solution

14. In the figure, given below, $A B C D$ is a parallelogram. P is a point on $B C$ such that $B P: P C=1: 2$. DP produced meets $A B$ produced at Q. Given the area of triangle $C P Q=20 \mathrm{~cm}^{2}$

Calculate :

 area of triangle CDP.
- Watch Video Solution

15. In the figure, given below, $A B C D$ is a parallelogram. P is a point on $B C$ such that $B P: P C=1: 2$. DP produced meets $A B$ produced at Q. Given the area of triangle $C P Q=20 \mathrm{~cm}^{2}$

Calculate :

area of parallelogram $A B C D$.

D Watch Video Solution

16. In the given figure, BC is parallel to DE . Area of triangle $A B C=25 \mathrm{~cm}^{2}$, Area of trapezium $B C E D=24 \mathrm{~cm}^{2}$ and $D E=14 \mathrm{~cm}$. Calculate the length of $B C$.

Also, find the area of triangle BCD.
17. The given figure shows a trapezium in which $A B$ is parallel to $D C$ and diagonals AC and BD intersect at point P. If $\mathrm{AP}: \mathrm{CP}=3: 5$,

A

Find :

$\triangle A P B: \triangle C P B$

- Watch Video Solution

18. The given figure shows a trapezium in which $A B$ is parallel to $D C$ and diagonals AC and BD intersect at point P. If $\mathrm{AP}: \mathrm{CP}=3: 5$,

Find :
$\triangle D P C: \triangle A P B$

- Watch Video Solution

19. The given figure shows a trapezium in which $A B$ is parallel to $D C$ and diagonals AC and BD intersect at point P. If $\mathrm{AP}: \mathrm{CP}=3: 5$,

Find:
$\triangle A D P: \triangle A P B$

- Watch Video Solution

20. The given figure shows a trapezium in which $A B$ is parallel to $D C$ and diagonals AC and BD intersect at point P. If $\mathrm{AP}: C P=3: 5$,

Find:
$\triangle A P B: \triangle A D B$

- Watch Video Solution

21. In the given figure, $A B C$ is a triangle. $D E$ is parallel to $B C$ and $\frac{A D}{D B}=\frac{3}{2}$

Determine the ratios and $\frac{A D}{A B}$
22. In the given figure, $A B C$ is a triangle. $D E$ is parallel to $B C$ and $\frac{A D}{D B}=\frac{3}{2}$

Prove that $\triangle D E F$ is similar to $\triangle C B F$.Hence, find $\frac{E F}{F B}$.

- Watch Video Solution

23. In the given figure, $A B C$ is a triangle. $D E$ is parallel to $B C$ and $\frac{A D}{D B}=\frac{3}{2}$

What is the ratio of the areas of $\triangle D E F$ and $\triangle B F C$?

- Watch Video Solution

24. In the given figure, $\angle B=\angle E, \angle A C D=\angle B C E, A B=10.4 \mathrm{~cm}$ and $D E=7.8 \mathrm{~cm}$. Find the ratio between areas of the $\triangle A B C$ and $\triangle D E C$.

- Watch Video Solution

Exercise 15 D

1. A triangle $A B C$ has been enlarged by scale factor $m=2.5$ to the triangle $A^{\prime} B^{\prime} C^{\prime}$ Calculate :
the length of $A B$, if $A^{\prime} B^{\prime}=6 \mathrm{~cm}$.
2. A triangle $A B C$ has been enlarged by scale factor $m=2.5$ to the triangle $A^{\prime} B^{\prime} C^{\prime}$ Calculate :
the length of $\mathrm{C}^{\prime} \mathrm{A}$ if $\mathrm{CA}=4 \mathrm{~cm}$.

- Watch Video Solution

3. A triangle LMN has been reduced by scale factor 0.8 to the triangle L' M^{\prime} N'. Calculate:
the length of $M^{\prime} N^{\prime}$, if $M N=8 \mathrm{~cm}$.

- Watch Video Solution

4. A triangle LMN has been reduced by scale factor 0.8 to the triangle L' M' N'. Calculate: the length of $L M$, if $L^{\prime} M^{\prime}=5-4 \mathrm{~cm}$.

- Watch Video Solution

5. A triangle $A B C$ is enlarged, about the point O as centre of enlargement, and the scale factor is 3 . Find : $A^{\prime} B^{\prime}$, if $A B=4 \mathrm{~cm}$.

- Watch Video Solution

6. A triangle $A B C$ is enlarged, about the point O as centre of enlargement, and the scale factor is 3 . Find :
$B C$, if $B^{\prime} C^{\prime}=15 \mathrm{~cm}$.

(Watch Video Solution

7. A triangle $A B C$ is enlarged, about the point O as centre of enlargement, and the scale factor is 3 . Find :
$O A$, if $O A^{\prime}=6 \mathrm{~cm}$.

- Watch Video Solution

8. A triangle $A B C$ is enlarged, about the point O as centre of enlargement, and the scale factor is 3 . Find : $O C^{\prime}$, if $O C=21 \mathrm{~cm}$.

- Watch Video Solution

9. A triangle $A B C$ is enlarged, about the point O as centre of enlargement, and the scale factor is 3 . Find state the value of :
$\frac{O B^{\prime}}{O B}$

- Watch Video Solution

10. A triangle $A B C$ is enlarged, about the point O as centre of enlargement, and the scale factor is 3 . Find state the value of:
$\frac{C^{\prime} A^{\prime}}{C A}$

- Watch Video Solution

11. A model of an aeroplane is made to a scale of $1: 400$. Calculate : the length, in cm , of the model, if the length of the aeroplane is 40 m .

- Watch Video Solution

12. A model of an aeroplane is made to a scale of $1: 400$. Calculate : the length, in m , of the aeroplane, if length of its model is 16 cm .

- Watch Video Solution

13. The dimensions of the model of a multistorey building are $1.2 m \times 75 \mathrm{~cm} \times 2 m$. If the scale factor is $1: 30$, find the actual dimensions of the building.

- Watch Video Solution

14. On a map drawn to a scale of $1: 2,50,000$, a triangular plot of land has the following measurements: $A B=3 \mathrm{~cm}, B C=4 c m$ and angle
$A B C=90^{\circ}$ Calculate :
the actual lengths of $A B$ and $B C$ in km.

- Watch Video Solution

15. On a map drawn to a scale of $1: 2,50,000$, a triangular plot of land has the following measurements: $A B=3 \mathrm{~cm}, B C=4 \mathrm{~cm}$ and angle $A B C=90^{\circ}$ Calculate :
the area of the plot in sq. km.

- Watch Video Solution

16. A model of a ship is made to a scale $1: 300$.

The length of the model of the ship is 2 m . Calculate the length of the ship.
17. A model of a ship is made to a scale $1: 300$.

The area of the deck of the ship is $180,000 \mathrm{~m}^{2}$. Calculate the area of the deck of the model.

- Watch Video Solution

18. A model of a ship is made to a scale 1:300.

The volume of the model is $6.5 \mathrm{~m}^{3}$. Calculate the volume of the ship.

- Watch Video Solution

Exercise 15 E

1. In the following figure, $X Y$ is parallel to
$B C, A X=9 \mathrm{~cm}, X B=4.5 \mathrm{~cm}$ and $B C=18 \mathrm{~cm}$.

$\frac{A Y}{Y C}$

- Watch Video Solution

2. In the following figure, $X Y$ is parallel to
$B C, A X=9 \mathrm{~cm}, X B=4.5 \mathrm{~cm}$ and $B C=18 \mathrm{~cm}$.

$\frac{Y C}{A C}$

- Watch Video Solution

3. In the following figure, $X Y$ is parallel to $B C, A X=9 \mathrm{~cm}, X B=4.5 \mathrm{~cm}$ and $B C=18 \mathrm{~cm}$.

$X Y$

- Watch Video Solution

4. In the following figure, $A B C D$ to a trapezium with $A B / / D C$. If $A B=9 \mathrm{~cm}, D C=18 \mathrm{~cm}, C F=13.5 \mathrm{~cm}, A P=6 \mathrm{~cm}$ and $B E=15 \mathrm{~cm}$

Calculate
$E C$
5. In the following figure, $A B C D$ to a trapezium with $A B / / D C$. If $A B=9 \mathrm{~cm}, D C=18 \mathrm{~cm}, C F=13.5 \mathrm{~cm}, A P=6 \mathrm{~cm}$ and $B E=15 \mathrm{~cm}$

Calculate
$A F$

- Watch Video Solution

6. In the following figure, $A B C D$ to a trapezium with $A B / / D C$. If $A B=9 \mathrm{~cm}, D C=18 \mathrm{~cm}, C F=13.5 \mathrm{~cm}, A P=6 \mathrm{~cm}$ and $B E=15 \mathrm{~cm}$

Calculate

$P E$

- Watch Video Solution

7. In the following figure, AB, CD and EF are perpendicular to the straight line BDF.

If $A B=x$ and,$C D=z$ unit and $E F=y$ unit, prove that : $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$
8. Triangle ABC is similar to triangle PQR . If AD and PM are corresponding medians of the two triangles, prove that : $\frac{A B}{P Q}=\frac{A D}{P M}$

- Watch Video Solution

9. Triangle $A B C$ is similar to triangle $P Q R$. If $A D$ and $P M$ are altitudes of the two triangles, prove that : $\frac{A B}{P Q}=\frac{A D}{P M}$

- Watch Video Solution

10. Triangle $A B C$ is similar to triangle $P Q R$. If bisector of angle BAC meets $B C$ at point D and bisector of angle QPR meets $Q R$ at point M, prove that : $\frac{A B}{P Q}=\frac{A D}{P M}$

- Watch Video Solution

11. In the following figure, $\angle A X Y=\angle A Y X$. . If $\frac{B X}{A X}=\frac{C Y}{A Y}$, show that triangle $A B C$ is Isosceles.

- Watch Video Solution

12. In the following diagram, lines I, m and n are parallel to each other.

Two transversals p and q intersect the parallel lines at points A, B, C and P, Q, R as shown.

Prove that : $\frac{A B}{B C}=\frac{P Q}{Q R}$
Join A and R. Let $A R$ meets $B Q$ at point D.

- Watch Video Solution

13. In the following figure, $\mathrm{DE} \| \mathrm{AC}$ and $\mathrm{DC} \| \mathrm{AP}$. Prove that : $\frac{B E}{E C}=\frac{B C}{C P}$

- Watch Video Solution

14. In the figure given below, $\mathrm{AB} / / \mathrm{EF} / / \mathrm{CD}$. If $\mathrm{AB}=22.5 \mathrm{~cm}, \mathrm{EP}=7.5 \mathrm{~cm}, \mathrm{PC}$ $=15 \mathrm{~cm}$ and $\mathrm{DC}=27 \mathrm{~cm}$.

Calculate :

EF

- Watch Video Solution

15. In the figure given below, $\mathrm{AB} / / \mathrm{EF} / / \mathrm{CD}$. If $\mathrm{AB}=22.5 \mathrm{~cm}, \mathrm{EP}=7.5 \mathrm{~cm}, \mathrm{PC}$
$=15 \mathrm{~cm}$ and $\mathrm{DC}=27 \mathrm{~cm}$.
Calculate:
AC
2

- Watch Video Solution

16.

$\triangle A B C, \angle A B C=\angle D A C, A B=8 \mathrm{~cm}, A C=4 \mathrm{~cm}$ and $A D=5 \mathrm{~cm}$.

Prove that $\triangle A C D$ is similar to $\triangle B C A$.

- Watch Video Solution

17.

$\triangle A B C, \angle A B C=\angle D A C, A B=8 \mathrm{~cm}, A C=4 \mathrm{~cm}$ and $A D=5 \mathrm{~cm}$.

Find $B C$ and $C D$.

- Watch Video Solution

18.

In
$\triangle A B C, \angle A B C=\angle D A C, A B=8 \mathrm{~cm}, A C=4 \mathrm{~cm}$ and $A D=5 \mathrm{~cm}$.

Find area of $\triangle A C D$: area of $\triangle A B C$.
19. In the given triangle P, Q and R are the mid points of sides $A B, B C$ and $A C$ respectively. Prove that triangle $P Q R$ is similar to triangle $A B C$.
20. In the following figure, AD and CE are medians of $\triangle A B C$. DF is drawn parallel to CE. Prove that :

$$
E F=F B
$$

0
 Watch Video Solution

21. In the following figure, AD and CE are medians of $\triangle A B C$. DF is drawn parallel to CE. Prove that :

$A G: G D=2: 1$.

- Watch Video Solution

22. If the areas of two similar triangles are equal, prove that they are congruent.

- Watch Video Solution

23. The ratio between the altitudes of two similar triangles is $3: 5$, write the ratio between their :
corresponding medians.

- Watch Video Solution

24. The ratio between the altitudes of two similar triangles is $3: 5$, write the ratio between their : perimeters.

- Watch Video Solution

25. The ratio between the altitudes of two similar triangles is $3: 5$, write the ratio between their :
areas.

- Watch Video Solution

26. The ratio between the areas of two similar triangles is $16: 25$. Find the ratio between their :
perimeters.

- Watch Video Solution

27. The ratio between the areas of two similar triangles is $16: 25$. Find the ratio between their : corresponding altitudes.

- Watch Video Solution

28. The ratio between the areas of two similar triangles is $16: 25$. Find the ratio between their :
corresponding medians.

- Watch Video Solution

29. The given figure shows P a triangle $P Q R$ in which $X Y$ is parallel to $Q R$. If $P X: X Q=1: 3$ and $Q R=9 \mathrm{~cm}$, find the length of $X Y$. Further, if the area of
$\Delta P X Y=x \mathrm{~cm}^{2}$, find, in terms of x , the area of:
triangle PQR .

- Watch Video Solution

30. The given figure shows P a triangle $P Q R$ in which $X Y$ is parallel to $Q R$. If $P X: X Q=1: 3$ and $Q R=9 \mathrm{~cm}$, find the length of $X Y$. Further, if the area of $\Delta P X Y=x \mathrm{~cm}^{2}$, find, in terms of x , the area of:
trapezium XQRY.

- Watch Video Solution

31. On a map, drawn to a scale of 1:20000, a rectangular plot of land

ABCD has $A B=24 \mathrm{~cm}$ and $B C=32 \mathrm{~cm}$. Calculate :
the diagonal distance of the plot in kilometre.
32. On a map, drawn to a scale of 1:20000, a rectangular plot of land ABCD has $A B=24 \mathrm{~cm}$ and $B C=32 \mathrm{~cm}$. Calculate : the area of the plot in sq. km.

- Watch Video Solution

33. The dimensions of the model of a multi storeyed building are 1 m by 60 cm by 1.20 m . If the scale factor is $1: 50$, find the actual dimensions of the building. Also, find :
the floor area of a room of the building, if the floor area of the corresponding room in the model is $50 \mathrm{sq} . \mathrm{cm}$.

- Watch Video Solution

34. The dimensions of the model of a multi storeyed building are 1 m by

60 cm by 1.20 m . If the scale factor is $1: 50$, find the actual dimensions of the building. Also, find :
the space (volume) inside a room of the model, if the space inside the corresponding room of the building is $90 \mathrm{~m}^{3}$.

- Watch Video Solution

35. In a triangle $P Q R, L$ and M are two points on the base $Q R$, such that $\angle L P Q=\angle Q R P$ and $\angle R P M=\angle R Q P$. Prove that:

$\Delta P Q L \sim \Delta R P M$

- Watch Video Solution

36. In a triangle $P Q R, L$ and M are two points on the base $Q R$, such that $\angle L P Q=\angle Q R P$ and $\angle R P M=\angle R Q P$. Prove that:
$Q L \times R M=P L \times P M$

- Watch Video Solution

37. In a triangle $P Q R$, L and M are two points on the base $Q R$, such that $\angle L P Q=\angle Q R P$ and $\angle R P M=\angle R Q P$. Prove that:

$$
P Q^{2}=Q R \times Q L
$$

38. A triangle ABC with $A B=3 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $A C=4 \mathrm{~cm}$ is enlarged to A DEF such that the longest side of A DEF $=9 \mathrm{~cm}$. Find the scale factor and hence, the lengths of the other sides of $\triangle D E F$.

- Watch Video Solution

39. Two isosceles triangles have equal vertical angles. Show that the triangles are similar.

If the ratio between the areas of these two triangles is $16: 25$, find the ratio between their corresponding altitudes.

- Watch Video Solution

40. In triangle $A B C, A P: P B=2: 3$. PO is parallel to BC and is P extended to Q so that CQ is parallel to BA . Find :

area $\triangle A P O$: area $\triangle A B C$.

- Watch Video Solution

41. In triangle $A B C, A P: P B=2: 3$. PO is parallel to BC and is P extended to Q so that $C Q$ is parallel to $B 4 B A$. Find :

area $\triangle A P O$: area $\triangle C R O$.

- Watch Video Solution

42. The following figure shows a triangle $A B C$ in which $A D$ and $B E$ are perpendiculars to $B C$ and $A C$ respectively. Show that :

$\triangle A D C \sim \triangle B E C$

- Watch Video Solution

43. The following figure shows a triangle $A B C$ in which $A D$ and $B E$ are perpendiculars to $B C$ and $A C$ respectively. Show that :
$C A \times C E=C B \times C D$

- Watch Video Solution

44. The following figure shows a triangle $A B C$ in which $A D$ and $B E$ are perpendiculars to $B C$ and $A C$ respectively. Show that :
$\triangle A B C \sim \triangle D E C$

B
45. The following figure shows a triangle $A B C$ in which $A D$ and $B E$ are perpendiculars to $B C$ and $A C$ respectively. Show that :

$$
C D \times A B=C A \times D E
$$

46. In the given figure, ABC is a triangle with $\angle E D B=\angle A C B$. Prove that $\triangle A B C \sim \triangle E B D$.

If $B E=6 \mathrm{~cm}, E C=4 \mathrm{~cm}, B D=5 \mathrm{~cm}$ and area of $\triangle B E D=9 \mathrm{~cm}^{2}$.
Calculate the :
length of $A B$

- Watch Video Solution

47. In the given figure, ABC is a triangle with $\angle E D B=\angle A C B$. Prove that $\triangle A B C \sim \Delta E B D$.

If $B E=6 \mathrm{~cm}, E C=4 \mathrm{~cm}, B D=5 \mathrm{~cm}$ and area of $\triangle B E D=9 \mathrm{~cm}^{2}$.
Calculate the :
area of $\triangle A B C$

- Watch Video Solution

48. In the given figure, ABC is a right angled triangle with $\angle B A C=90^{\circ}$.

Prove that : $\triangle A D B \sim \triangle C D A$.

- Watch Video Solution

49. In the given figure, ABC is a right angled triangle with $\angle B A C=90^{\circ}$.

If $B D=18 \mathrm{~cm}$ and $C D=8 \mathrm{~cm}$, find $A D$.

- Watch Video Solution

50. In the given figure, ABC is a right angled triangle with $\angle B A C=90^{\circ}$.

Find the ratio of the area of $\operatorname{Detla} A D B$ is to area of $\triangle C D A$.

- Watch Video Solution

51. In the given figure, $A B$ and $D E$ are perpendiculars to $B C$

Prove that : DetlaABC~ $\triangle D E C$

- Watch Video Solution

52. In the given figure, $A B$ and $D E$ are perpendiculars to $B C$

If $A B=6 \mathrm{~cm}, \mathrm{DE}=4 \mathrm{~cm}$ and $\mathrm{AC}=15 \mathrm{~cm}$. Calculate CD.

- Watch Video Solution

53. In the given figure, $A B$ and $D E$ are perpendiculars to $B C$

Find the ratio : area of a $\operatorname{Detla} A B C$: area of $\triangle D E C$.

- Watch Video Solution

54. ABC is a right angled triangle with $A B C=90^{\circ}$. D is any point on AB and DE is perpendicular to AC. Prove that:

$\triangle A D E \sim \triangle A C B$.

- Watch Video Solution

55. ABC is a right angled triangle with $A B C=90^{\circ}$. D is any point on AB and DE is perpendicular to AC. Prove that:

If $A C=13 \mathrm{~cm}, B C=5 \mathrm{~cm}$ and $A E=4 \mathrm{~cm}$. Find $D E$ and $A D$.

- Watch Video Solution

56. ABC is a right angled triangle with $A B C=90^{\circ}$. D is any point on AB and DE is perpendicular to AC. Prove that:

Find, area of AADE: area of quadrilateral BCED.

- Watch Video Solution

57. Given : AB // DE and BC // EF. Prove that:
$\frac{A D}{D G}=\frac{C F}{F G}$

- Watch Video Solution

58. Given : AB // DE and BC // EF. Prove that:

$\triangle D F G \sim A C G$.

- Watch Video Solution

59. PQR is a triangle. S is a point on the side QR of $\triangle P Q R$ such that $\angle P S R=\angle Q P R$. Given $\mathrm{QP}=8 \mathrm{~cm}, \mathrm{PR}=6 \mathrm{~cm}$ and $\mathrm{SR}=3 \mathrm{~cm}$.

Prove $\triangle P Q R \sim \triangle S P R$.

Watch Video Solution

60. PQR is a triangle. S is a point on the side QR of $\triangle P Q R$ such that $\angle P S R=\angle Q P R$. Given $\mathrm{QP}=8 \mathrm{~cm}, \mathrm{PR}=6 \mathrm{~cm}$ and $\mathrm{SR}=3 \mathrm{~cm}$.

Find the lengths of QR and PS .

- Watch Video Solution

61. PQR is a triangle. S is a point on the side QR of $\triangle P Q R$ such that $\angle P S R=\angle Q P R$. Given $\mathrm{QP}=8 \mathrm{~cm}, \mathrm{PR}=6 \mathrm{~cm}$ and $\mathrm{SR}=3 \mathrm{~cm}$.
area of $\triangle P Q R$
area of $\triangle S P R$

- Watch Video Solution

Multiple Choice Questions

1. In the given if $\triangle P Q R \sim \triangle P S T$ and $P T: S T=3: 4$ then $\mathrm{QR}: \mathrm{PR}=$

A. 3: 4
B. $4: 3$
C. 3:7
D. $4: 7$

Answer: B

- View Text Solution

2. In the $P Q$ and $R S$ are perpendicular to base $Q T$. If $R S=2 \mathrm{~cm}, Q S=3 \mathrm{~cm}$ and $Q T=9 \mathrm{~cm}$, then $\mathrm{PQ}=$

A. 2 cm
B. 3 cm
C. 4 cm
D. 5 cm

Answer: B

- View Text Solution

3. In the $\triangle P R T$. IfQT $=4 \mathrm{~cm}$ and $T R=9 \mathrm{~cm}$ then $\mathrm{PT}=$

A. 5 cm
B. 6 cm
C. 13 cm
D. 36 cm

Answer: B

- View Text Solution

4. In the $\triangle P Q T-\triangle R P T$ by which of the following similarity crtierion ?

A. SAS
B. ASA
C. $A A$
D. SSS

Answer: C

- View Text Solution

5. In the given $\triangle B P D \sim \triangle B P D$ by which of the following similarity criterion ?

A. SAS
B. SSS
C. ASA
D. $A A$

Answer: D

- View Text Solution

6. In the given if $\mathrm{PM}=\mathrm{PN}$ and $P M^{2}=Q M \times N R$, then which of the following is true?

A. $\Delta P Q M \sim \Delta R P N$
B. $\triangle P Q M \sim \triangle P R N$
C. $\triangle P Q M \sim \triangle P N R$
D. $\triangle P Q M \sim \Delta N R P$

Answer: A

- View Text Solution

7. If in a trapezium PQRS, PQ \|| SR and diagonals PR and QS intersect each other at a point O , then which of the following is true?
A. $\triangle P O Q \sim \triangle S O R$
B. $\triangle P O Q \sim \triangle R O S$
C. $\triangle P Q O \sim \triangle O S R$
D. $\triangle O Q P \sim \triangle R O S$

Answer: B

8. In
$\triangle A B C, B M \perp A C$ and $C N \perp A B . I f A B=3 \mathrm{~cm}, A C=4 \mathrm{~cm}$ and $A M$ then $\mathrm{AN}=$
A. 2 cm
B. 4 cm
C. 6 cm
D. 8 cm

Answer: A

- View Text Solution

9.

In
the
given
$\angle O Q C=\angle A B C=90^{\circ}$. If AC $=8 \mathrm{~cm}, P C=12 \mathrm{~cm}, Q C=x+1$ and B
then find the value of x :

A. 1
B. $\frac{5}{4}$
C. $\frac{2}{3}$
D. 2

Answer: B

- View Text Solution

10. In a $\triangle P Q R, \perp Q R$ such that $\triangle P Q T \sim \triangle R Q P$. Then $\angle Q P R=$
A. 30°
B. 45°
C. 60°
D. 90°

Answer: D

- View Text Solution

11.

$\triangle P Q R, \angle Q=90^{\circ}$ and $Q T \perp P R . I f P R=9 \mathrm{~cm}$ and $P Q=3 \mathrm{~cm}$, then PT =
A. 1 cm
B. 2 cm
C. 3 cm
D. 4 cm

D View Text Solution

12. In the given $D E \| B C$ and $A D: A B=1: 3$ If $D E: 1.5 \mathrm{~cm}$, then $B C=$

A. 1 cm
B. 2 cm
C. 3 cm
D. 4.5 cm

D View Text Solution

13. In the given $D E \| B C$. If $A B=6 \mathrm{~cm}, A D=2 \mathrm{~cm}$ and $A C=9 \mathrm{~cm}$, then the length of CE is :

A. 3 cm
B. 6 cm
C. 9 cm
D. 12 cm

Answer: B

D View Text Solution

14. In a $\triangle A B C, M$ and N are points on the base $B C$ such that $\angle M A B=\angle B C A$ and $\angle C A N=\angle A B C$. If $\mathrm{AM}=2 \mathrm{~cm}, \mathrm{BM}=3 \mathrm{~cm}$ and $\mathrm{AN}=6 \mathrm{~cm}$ then $\mathrm{NC}=$
A. 8 cm
B. 6 cm
C. 4 cm
D. 2 cm

Answer: C

15. In a $\triangle A B C, D E| | B C . I f A D: D B=3: 4$. Then $\mathrm{DE}: \mathrm{BC}=$

A. 3: 4
B. 4: 3
C. 3:7
D. $4: 7$

Answer: B

- View Text Solution

16. In the following which of the two triangles are similar ?

A. $\triangle A D F \sim \Delta C E F$
B. $\triangle A B C \sim \Delta C E F$
C. $\triangle A D F \sim \Delta A B C$
D. None of these

Answer: B

- View Text Solution

17. In the following $\angle E D B=\angle A C B$. If $\mathrm{BE}=6 \mathrm{~cm}, \mathrm{EC}=1 \mathrm{~cm}$ nad $\mathrm{BD}=7$ cm , then the length of $A B$ is

A. $\frac{30}{7} \mathrm{~cm}$
B. $\frac{36}{7} \mathrm{~cm}$
C. 6 cm
D. 7 cm

Answer: C

18. In the given $D E|\mid B C$ and $D C$ and $B E$ intersect each other at point O . If $\mathrm{DE}: \mathrm{BC}=5: 9$, then $\mathrm{OD}: \mathrm{DC}=$

A. $5: 9$
B. 5: 4
C. 4: 9
D. 5: 14

Answer: D
19. In the given $A B C D$ is a parallelogram. If $A M \perp D C$ and $A N \perp C B, A M=6 \mathrm{~cm}, A N=10 \mathrm{~cm}$ and $A B=12 \mathrm{~cm}$, then $B C=$

A. 5 cm
B. 6 cm
C. 7.2 cm
D. 20 cm

Answer: C

20. In following the D is any point on base $B C$ such that $\angle A B D=\angle C A D$. If $A D=10 \mathrm{~cm}, A B=5 \mathrm{~cm}$ and $A C=7 \mathrm{~cm}$, then $B C=$

A. 3.5 cm
B. 5 cm
C. 7 cm
D. 14 cm

Answer: A

21. PQR is a triangle. S is a point on the QR of $\triangle P Q R$ such that $\angle P S R=\angle Q P R$. Given $\mathrm{QP}=8 \mathrm{~cm}, \mathrm{PR}=6 \mathrm{~cm}$ and $\mathrm{SR}=3 \mathrm{~cm}$, then length of $Q R$ is

A. 12 cm
B. 10 cm
C. 8 cm
D. 6 cm

Answer: A

- View Text Solution

22. In the given $\triangle A B C$ is right angled at B . If $D E \perp A C$, then $\triangle A D E$

A. $\triangle B A C$
B. $\triangle A C B$
C. $\triangle A D E$
D. $\triangle A B C$

Answer: B
23. In a $\triangle A B C, \mathrm{D}$ is a point on base BC such that $\angle A B C=\angle D A C$. Then $\triangle A C D$
A. $\triangle A B C$
B. $\triangle B C A$
C. $\triangle D A C$
D. $\triangle C A D$

Answer: B

- View Text Solution

24. In a $\triangle A B C, D$ is a point on base BC such that $\triangle A C D \sim \triangle B C A$. If AB $=5 \mathrm{~cm}, \mathrm{AC}=4 \mathrm{~cm}$ and $\mathrm{AD}=8 \mathrm{~cm}$, then $\mathrm{BC}=$ \qquad
A. 5 cm
B. 4 cm
C. 2.5 cm
D. 8 cm

Answer: D

- View Text Solution

25.

In
the
$\triangle A B C \sim \Delta D E C . I f A B=6 \mathrm{~cm}, D E=3 \mathrm{~cm}$ and $A C=15 \mathrm{~cm}$, then CD
=

A. 3 cm
B. 6 cm
C. 1.5 cm
D. 2.5 cm

Answer: D

- View Text Solution

26. In the given $\Delta A B C \sim \Delta A M P$ by similarity criterion.

A. SSS
B. SAS
C. ASA
D. $A A$

Answer: D

- View Text Solution

27. In the given if $\triangle P Q R \sim \Delta P S T$, then $\frac{P Q}{P R}=.$.

A. $\frac{P S}{P R}$
B. $\frac{P T}{P S}$
C. $\frac{P R}{P Q}$
D. $\frac{P R}{P Q}$

Answer: B

- View Text Solution

28. In the $\angle E D B=\angle A C B$. For $\triangle A B C \sim \triangle E B D$, we must have
$\angle A B C=.$.

A. $\angle E B D$
B. $\angle A D E$
C. $\angle C B E$
D. $\angle A C E$

Answer: A

View Text Solution
29. In the given $\triangle A B C \sim \Delta D E F I f \angle A B C=$............... and $\angle B C A=$

A. $\angle A C D, \angle A D E$
B. $\angle D E C, \angle E C D$
C. $\angle D C E, \angle E D C$
D. $\angle A D E, \angle A C B$

Answer: B

- View Text Solution

30. In the given PB and QA are perpendicular to the line sement AB . If $\mathrm{PQ}=$
$6 \mathrm{~cm}, \mathrm{QO}=9 \mathrm{~cm}, \mathrm{~PB}=4 \mathrm{~cm}$, then $\mathrm{AQ}=$

A. 6 cm
B. 9 cm
C. 4 cm
D. 3 cm

Answer: A

- View Text Solution

Multiple Choice Questions Assertion And Reason Based Questions

1. Assertion : If in two triangles ABC and $\mathrm{PQR}, \triangle A B C \sim \triangle P Q R$ with
$\angle A=45^{\circ}$ and $\angle B=60^{\circ}$, then $\angle R=75^{\circ}$.
Reason : If two triangles are similar, then their corresponding angles are equal.
A. Both assertion and reason are correct and reason is the correct explanation of assertion.
B. Both assertion and reason are correct but reason is not the correct explanation of assertion.
C. Assertion is correct but reason is incorrect.
D. Assertion is incorrect but reason is correct.

Answer: A

- View Text Solution

2. Assertion : In the following the measure of $\angle P i s 60^{\circ}$.

Reason : Two triangles are said to be similar, if their corresponding sids are proportional i.e., they are in the same ratio.
A. Both assertion and reason are correct and reason is the correct explanation of assertion.
B. Both assertion and reason are correct but reason is not the correct
C. Assertion is correct but reason is incorrect.
D. Assertion is incorrect but reason is correct.

Answer: D

- View Text Solution

3. Assertion : If in two triangle $A B C$ and $P Q R$,
$A B=3 \mathrm{~cm}, B C=4 \mathrm{~cm}, \angle B=60^{\circ}, \angle P Q R=9 \mathrm{~cm}$ and $P R=12 \mathrm{~cm}$, then $\Delta A B C \sim \Delta Q P R$.

Reason : If one angle of a triangles is equal to one angle of another triangle and any two sides of these triangles are proportional, then by SAS axiom of similarity, the two triangles are proportional.
A. Both assertion and reason are correct and reason is the correct explanation of assertion.
B. Both assertion and reason are correct but reason is not the correct explanation of assertion.
C. Assertion is correct but reason is incorrect.
D. Assertion is incorrect but reason is correct.

Answer: C

- View Text Solution

4. Assertion : In a $\angle D A C . I f A B=8 \mathrm{~cm}, A C=5 \mathrm{~cm}$ and $A D=4 \mathrm{~cm}$, then $B C=10 \mathrm{~cm}$.

Reason : If two triangles are similar, then their corresponding angles are equal.
A. Both assertion and reason are correct and reason is the correct explanation of assertion.
B. Both assertion and reason are correct but reason is not the correct explanation of assertion.
C. Assertion is correct but reason is incorrect.
D. Assertion is incorrect but reason is correct.

Answer: B

D View Text Solution

5. Assertion : In the following $B C$ is parallel to $D E$. If $A B=x, B D=x+3, B C=$ $x-1$ and $D E=2 x$, then the value of x is 3 .

Reason : Correspoinding angles of two similar triangles are equal.
A. Both assertion and reason are correct and reason is the correct explanation of assertion.
B. Both assertion and reason are correct but reason is not the correct
explanation of assertion.
C. Assertion is correct but reason is incorrect.
D. Assertion is incorrect but reason is correct.

Answer: B

- View Text Solution

Multiple Choice Questions Competency Based Questions

1. A girl, named Ritika of height 90 cm is walking away from the ase of a lamp-post, She observes the shadows of lamp-post and herself and relate it with a chapter of mathematics, she studied in her last class.

On the basis of information, answer the following question

The triangles ABE and CDE are similar by which of the following similarity rule?
A. $A A$
B. ASA
C. SSS
D. SAS

Answer: A

- View Text Solution

2. A girl, named Ritika of height 90 cm is walking away from the ase of a lamp-post, She observes the shadows of lamp-post and herself and relate it with a chapter of mathematics, she studied in her last class.

On the basis of information, answer the following question

If $D E=120 \mathrm{~cm}$ and $B E=360 \mathrm{~cm}$, then length of the lamp-post is :
A. 150 cm
B. 240 cm
C. 270 cm
D. 360 cm

Answer: C

- View Text Solution

3. A girl, named Ritika of height 90 cm is walking away from the ase of a lamp-post, She observes the shadows of lamp-post and herself and relate it with a chapter of mathematics, she studied in her last class.

On the basis of information, answer the following question

The ratio of heights of girl and the lamp-post is :
A. $4: 1$
B. 1: 4
C. $3: 1$
D. 1: 3

Answer: D

- View Text Solution

4. A girl, named Ritika of height 90 cm is walking away from the ase of a lamp-post, She observes the shadows of lamp-post and herself and relate it with a chapter of mathematics, she studied in her last class.

On the basis of information, answer the following question

If $C E=150 \mathrm{~cm}$, then $\mathrm{AC}=$
A. 300 cm
B. 200 cm
C. 150 cm
D. 100 cm

Answer: A
5. A girl, named Ritika of height 90 cm is walking away from the ase of a lamp-post, She observes the shadows of lamp-post and herself and relate it with a chapter of mathematics, she studied in her last class.

On the basis of information, answer the following question

Since $\triangle A B C \sim \Delta C D E$, then which of the following is correct ?
A. $C D \times A B=D E \times B D$
B. $C D \times B D=A B \times D E$
C. $C D \times C E=A B \times A E$
D. $C D \times A E=A B \times C E$

Answer: D

6. Amit went on a trip to Uttarakhand, India. While driving, he observes a bridge in the shape of a trapezium. Let AC and BD be the diagonals of the bridge, which intersect each other at a point 0 .

Which of the following statement is correct regarding to similarity of triangles?
A. $\triangle A O D \sim \triangle C O B$ by SAS similarity rule
B. $\triangle A O B \sim \triangle C O D$ by SAS similarity rule
C. $\triangle A O D \sim \Delta C O B$ by AA similarity rule
D. $\triangle A O B \sim \Delta C O D$ by AA similarity rule

Answer: C

7. Amit went on a trip to Uttarakhand, India. While driving, he observes a bridge in the shape of a trapezium. Let AC and BD be the diagonals of the bridge, which intersect each other at a point 0 .

If $A D=15 \mathrm{~cm}, O C=3 \mathrm{~cm}, O A=5 \mathrm{~cm}$, then the lenght of $B C$ is.
A. 3 cm
B. 9 cm
C. 15 cm
D. 20 cm

Answer: B

8. Amit went on a trip to Uttarakhand, India. While driving, he observes a bridge in the shape of a trapezium. Let AC and BD be the diagonals of the bridge, which intersect each other at a point 0 .

If

$$
O A=3 x-1, O B=6 x-5, O C=5 x-3 \text { and } O D=2 x+1,
$$ then the value of x is:

A. 1
B. 2
C. 4
D. 6

Answer: B

View Text Solution

9. Amit went on a trip to Uttarakhand, India. While driving, he observes a bridge in the shape of a trapezium. Let AC and BD be the diagonals of the bridge, which intersect each other at a point O .

If $O A=2 \mathrm{~cm}, O C=3 \mathrm{~cm}$ and $O D=4 \mathrm{~cm}$, then $\mathrm{OB}=$
A. 2 cm
B. 4 cm
C. 6 cm
D. 8 cm

Answer: C

10. Amit went on a trip to Uttarakhand, India. While driving, he observes a bridge in the shape of a trapezium. Let $A C$ and $B D$ be the diagonals of the bridge, which intersect each other at a point O .

One of the angle property used, if any, in proving the similarity triangles in part (A), is:
A. Corresponding angles property of parallel lines
B. Alternate angles property of parallel lines
C. Interior angles property of parallel lines
D. None of the above

Answer: B

- View Text Solution

