©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SELINA PHYSICS (ENGLISH)

QUESTION PAPER-2019

Section I

1. The diagram alongside shows a claw hammer used to remove a nail :

To which class of lever does it belong?

- Watch Video Solution

2. The diagram alongside shows a claw hammer used to remove a nail :

Give one more example of the same class of lever mentioned by you in (i) for which the
mechanical advantage is greater than one.

- Watch Video Solution

3. Two bodies A and B have masses in the ratio
$5: 1$ and their kinetic energies are in the ratio
$125: 9$. Find the ratio of their velocities.
4. Name the physical quantity which is measured in calorie.How is it related to the S.I. unit of that quantity?

D Watch Video Solution

5. Name the S.I. unit of heat. How is it related to the unit calorie?

D Watch Video Solution

6. Define couple.

D Watch Video Solution

7. State the S.I. unit of moment of couple.

D Watch Video Solution
8. Define critical angle for a given medium
9. State one important factor which affects the critical angle of a given medium.

D Watch Video Solution

10. An electromagnetic radiation is used for photography in fog.

Identify the radiation.

D Watch Video Solution
11. An electromagnetic radiation is used for photography in fog.

Why is this radiation mentioned by you, ideal for this purpose?

- Watch Video Solution

12. What is the relation between the refractive index of water with respect to air $\left({ }_{a} \mu_{w}\right)$ and the refractive index of air with respect to water $\left({ }_{w} \mu_{a}\right)$.
13. If the refractive index of water with respect to air $\left({ }_{a} \mu_{w}\right)$ is $\frac{5}{3}$. Calculate the refractive index of air with respect to water $\left({ }_{w} \mu_{a}\right)$.

- Watch Video Solution

14. The specific heat capacity of a substance A is $3,800 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ and that of a substance B is $400 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$. Which of the two
substances is a good conductor of heat? Give a reason for your answer.

D Watch Video Solution

15. A man playing a flute is able to produce notes of different frequencies. If he closes the holes near his mouth, will the pitch of the note produced, increase or decrease ? Give a reason.

D Watch Video Solution

16. The diagram alongside shows a light source P embedded in a rectangular glass block ABCD of critical angle 42°. Complete the path of the ray $P Q$ till it emerges out of the block. [Write necessary angles.]

17. If the lens is placed in water instead of air, how does its focal length change?

- Watch Video Solution

18. Which lens, thick or thin has greater focal length?
19. Two waves of the same pitch have amplitudes in the ratio $1: 3$. What will be the ratio of their :
intensities and

- Watch Video Solution

20. Two waves of the same pitch have amplitudes in the ratio $1: 3$. What will be the ratio of their :

frequencies?

21. How does an increase in the temperature affect the specific resistance of a :

Metal and

D Watch Video Solution

22. How does an increase in the temperature affect the specific resistance of a :

Semiconductor?

23. Define resonant vibrations.

D Watch Video Solution

24. Which characteristic of sound, makes it possible to recognize a person by his voice without seeing him?

D Watch Video Solution
25. Is it possible for a hydrogen $\left({ }_{1}^{1} H\right)$ nucleus
to emit an alpha particle ? Give a reason for
your answer.

- Watch Video Solution

26. Calculate the effective resistance across $A B$

27. State whether the specific heat capacity of
a substance remains the same when its state
changes from solid to liquid.

- Watch Video Solution

28. Give one example to support your answer.
29. A magnet kept at the centre of two coils A and B is moved to and fro as shown in the diagram. The two galvanometers show deflection.

State with a reason whether :
$x>y$
or $\mathrm{x}<\mathrm{y}$. [x and y are magnitudes of deflection]

D Watch Video Solution

30. Why is a nuclear fusion reaction called a thermo nuclear reaction?

- Watch Video Solution

31. Complete the reation :
${ }^{3} \mathrm{He} e_{2}+{ }^{2} \mathrm{H}_{1} \rightarrow{ }^{4} \mathrm{He} e_{2}+\ldots \ldots+$ Energy
(D) Watch Video Solution
32. State two ways to increase the speed of rotation of a D.C. motor.

- Watch Video Solution

33. State two ways to increase the speed of rotation of a D.C. motor.

- Watch Video Solution

Section li

1. A body of mass 10 kg is kept at a height of 5
m. It is allowed to fall and reach the ground.

What is the total mechanical energy possessed by the body at the height of 2 m assuming it is a frictionless medium ?

D Watch Video Solution

2. A body of mass 10 kg is kept at a height of 5
m. It is allowed to fall and reach the ground.

What is the kinetic energy possessed by the
body just before hitting the ground? (Take $\mathrm{g}=$ $10 m / s^{2}$).

D Watch Video Solution

3. A uniform meter scale is in equilibrium as shown in the diagram :

Calculate the weight of the meter scale.
(Watch Video Solution
4. A uniform meter scale is in equilibrium as shown in the diagram :

Which of the following options is correct to keep the ruler in equilibrium when 40 gf wt is shifted to 0 cm mark? F is shifted towards 0 cm . Or F is shifted towards 100 cm .

- Watch Video Solution

5. The diagram alongside shows a pulley arrangement :

Copy the diagram and mark the direction of tension on each strand of the string.

6. The diagram alongside shows a pulley arrangement :

What is the velocity ratio of the arrangement ?

7. The diagram alongside shows a pulley arrangement.
(a) Name the pulleys A and B.
(b) In the diagram, mark the direction of tension on each strand of string.
(c) What is the purpose of the pulley B ?
(d) If the tension is T , deduce the relation
between

T and E
(e) What is the velocity ratio of the arrangement ?
(f) Assuming that the efficiency of the system
is 100%, what is the mechanical advantage ?

RIGID SUPPORT

- Watch Video Solution

8. The diagram alongside shows a pulley arrangement :

If the free end of the string moves through a
distance x, find the distance by which the load
is raised.

D Watch Video Solution
9. How does the angle of deviation formed by
a prism change with the increase in the angle of incidence?

Draw a graph showing the variation in the angle of deviation with the angle of incidence at a prism surface.

D Watch Video Solution

10. A virtual, diminished image is formed when
an object is placed between the optical centre
and the principal focus of a lens.

Name the type of lens which forms the above image.

D Watch Video Solution

11. A virtual, diminished image is formed when
an object is placed between the optical centre
and the principal focus of a lens.
Draw a ray diagram to show the formation of
the image with the above stated characteristics.
12. An object is placed at a distance 24 cm in front of a convex lens of focal length 8 cm .
(i) What is the nature of the image so formed ?
(ii) Calculate the distance of the image from the lens.
(iii) Calculate the magnification of the image.
13. An object is placed at a distance 24 cm in
front of a convex lens of focal length 8 cm .

Calculate the distance of the image from the lens.

D Watch Video Solution

14. An object is placed at a distance 24 cm in
front of a convex lens of focal length 8 cm .
(i) What is the nature of the image so formed
?
(ii) Calculate the distance of the image from the lens.
(iii) Calculate the magnification of the image.

- Watch Video Solution

15. It is observed that during march-past we hear a base drum distinctly from a distance compared to the side drums.

Name the characteristics of sound associated with the above observation.
16. It is observed that during march-past we hear a base drum distinctly from a distance compared to the side drums.

Name the characteristics of sound associated with the above observation.

D Watch Video Solution

17. A pendulum has a frequency of 4 vibrations
per second. An observer starts the pendulum
and fires a gun simultaneously. He hears the
echo from the cliff after 6 vibrations of the pendulum. If the velocity of sound in air is 340 m / s, find the distance between the cliff and the observer.

- Watch Video Solution

18. Two pendulums C and D are suspended
from a wire as shown in the figure given below.
Pendulum C is made to oscillate by displacing
it from its mean position. It is seen that D also
starts oscillating.

Name the type of oscillation, C will execute.

D Watch Video Solution

19. Two pendulums C and D are suspended from a wire as shown in the figure given below.

Pendulum C is made to oscillate by displacing

it from its mean position. It is seen that D also
starts oscillating.

Name the type of oscillation, D will execute.

D Watch Video Solution
20. Two pendulums C and D are suspended
from a wire as shown in the figure given below.

Pendulum C is made to oscillate by displacing it from its mean position. It is seen that D also starts oscillating.

If the length of D is made equal to C then what difference will you notice in the oscillations of

D Watch Video Solution

21. Two pendulums C and D are suspended from a wire as shown in the figure given below.

Pendulum C is made to oscillate by displacing
it from its mean position. It is seen that D also
starts oscillating.

What is the name of the phenomenon when
the length of D is made equal to C ?

22. Write one advantage of connecting electrical appliances in parallel combination.

D Watch Video Solution
23. What characteristics should a fuse wire have?

D Watch Video Solution
24. Which wire in a power circuit is connected to the metallic body of the appliance?

- Watch Video Solution

25. The Fig. below shows a dual control switch circuit use to light a bulb.

Complete the circuit so that bulb is switched on.

D Watch Video Solution
26. The Fig. below shows a dual control switch circuit use to light a bulb.

Mark the supply terminals with L and N to indicate live and neutral wires.

D Watch Video Solution

27. The diagram alongside shows a circuit with
the key k open. Calculate :

the resistance of the circuit when the key k is open.

D Watch Video Solution

28. The diagram alongside shows a circuit with the key k open. Calculate :

the current drawn from the cell when the key k
is open.

D Watch Video Solution

29. The diagram alongside shows a circuit with
the key k open. Calculate :

the resistance of the circuit when the key k is
closed.

D Watch Video Solution
30. The diagram alongside shows a circuit with
the key k open. Calculate :

the current drawn from the cell when the key k
is closed.

- Watch Video Solution

31. Define Calorimetry.

D Watch Video Solution

32. Name the material used for making a

Calorimeter.

- Watch Video Solution

33. Why is a Calorimeter made up of thin sheets of the above material.

- Watch Video Solution

34. The melting point of naphthalene is $80^{\circ} \mathrm{C}$ and the room temperature is $30^{\circ} \mathrm{C}$. A sample of liquid naphthalene at $100^{\circ} \mathrm{C}$ is cooled down to the room temperature. Draw a temperature time graph to represent this
cooling. In the graph, mark the region which corresponds to the freezing process.

D Watch Video Solution

35. 104 g of water at $30^{\circ} \mathrm{C}$ is taken in a calorimeter made of copper of mass 42 g .

When a certain mass of ice at $0^{\circ} \mathrm{C}$ is added to
it, the final steady temperature of the mixture after the ice has melted, was found to be 10°
C. Find the mass of ice added. [Specific heat capacity of water $=4.2 \mathrm{~J} g^{-1 \circ} C^{-1}$, Specific
latent heat of fusion of ice $=336 \mathrm{~J} g^{-1}$, Specific heat capacity of copper $\left.=0.4 J g^{-1 \circ} C^{-1}\right]$.

D Watch Video Solution

36. Draw a neat labelled diagram of an A.C. generator.

D Watch Video Solution

37. Define nuclear fission.
38. Rewrite and complete the following nuclear reaction by filling in the atomic number of Ba and mass number of Kr :
${ }_{92}^{235} U+{ }_{0}^{1} n \rightarrow{ }_{. .}^{144} B a+\ldots{ }_{36} K r+3{ }_{0}^{1} n+$ Energy

D Watch Video Solution

39. The diagram below shows a magnetic needle kept just below the conductor $A B$ which is kept in North South direction.

In which direction will the needle deflect when
the key is closed?

D Watch Video Solution

40. The diagram below shows a magnetic needle kept just below the conductor $A B$ which is kept in North South direction.

Why is the deflection produced ?

D Watch Video Solution

41. The diagram below shows a magnetic needle kept just below the conductor $A B$ which is kept in North South direction.

What will be the change in the deflection of
the magnetic needle is taken just above the conductor $A B$?

D Watch Video Solution

42. The diagram below shows a magnetic needle kept just below the conductor $A B$ which is kept in North South direction.

Name one device which works on this principle.

- Watch Video Solution

