©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SELINA PHYSICS (ENGLISH)

SAMPLE PAPER 2

Section I

1. Define one newton.

Watch Video Solution
2. Write the relation between S.I. unit and C.G.S. unit of force.

- Watch Video Solution

3. Where does the position of centre of gravity lie for
(1) A circular lamina
(2) A triangular lamina

- Watch Video Solution

4. Where does the position of centre of gravity lie for
(1) A circular lamina
(2) A triangular lamina

- Watch Video Solution

5. A man opens a nut by applying a force of 150 N by using a lever handle of length $0 \cdot 4 m$. What should be the length of the handle if he wants to open it by applying a force of 60 N ?

Watch Video Solution

6. Name a machine which is used to :
(a) multiply force,
(ii) multiply speed, and
(c) change the direction of force applied.

- Watch Video Solution

7. Name a machine which can be used to :
change the direction of force applied.

D Watch Video Solution

8. The diagram below shows a lever in use.

(a) To which class of lever does it belong ? Give one example of this class.
(b) How will the mechanical advantage of lever change if load is shifted towards the fulcrum without changing it's dimensions.

- Watch Video Solution

9. The diagram below shows a lever in use.

If $\mathrm{FA}=40 \mathrm{~cm}, \mathrm{AB}=60 \mathrm{~cm}$, then find the mechanical advantage of the lever.

- Watch Video Solution

10. A ball of mass 200 g falls from a height of 5 m .

What will be its kinetic energy when it just reaches
the ground ? $\left(g=9.8 m s^{-2}\right)$

- Watch Video Solution

11. In the diagram below, $P Q$ is a ray of light incident on a rectangular glass block.

Copy the diagram and complete the path of the ray of light through the glass block. In your diagram, mark the angle of incidence by letter 'i' and the angle of emergence by the letter 'e'.
(D) Watch Video Solution
12. In the diagram below, $P Q$ is a ray of light incident on a rectangular glass block.

How are the angles i and 'e' related to each other?

- Watch Video Solution

13. A ray of monochromatic light enters a liquid from air as shown in the diagram given below:

Copy the diagram and show in the diagram the path of the ray of light after it strikes the mirror and reenters the medium of air.

0
Watch Video Solution
14. A ray of monochromatic light enters a liquid from air as shown in the diagram given below:

Copy the diagram and show in the diagram the path of the ray of light after it strikes the mirror and reenters the medium of air.

Watch Video Solution
15. When does a ray of light falling on a lens pass through it undeviated ?

- Watch Video Solution

16. Which lens can produce a real and inverted image of an object?

D Watch Video Solution

17. How is the refractive index of a medium related to
the real and apparent depths of an object in that medium ?

- Watch Video Solution

18. Which characteristic property of light is responsible for the blue colour of the sky?

- Watch Video Solution

19. When acoustic resonance takes place, a loud sound is heard. Why does this happen? Explain.
20. Three musical instruments give out notes at the frequencies listed below. Flute : 400 Hz , Guitar : 200

Hz , Trumpet : 500 Hz . Which one of these has the highest pitch ?

D Watch Video Solution

21. With which of the following frequencies does a tuning fork of 256 Hz resonate : $288 \mathrm{~Hz}, 314 \mathrm{~Hz}, 333$ $\mathrm{Hz}, 512 \mathrm{~Hz}$?

- Watch Video Solution

22. Two bulbs are marked $100 \mathrm{~W}, 220 \mathrm{~V}$ and $60 \mathrm{~W}, 110$
V. Calculate the ratio of their resistances.

- Watch Video Solution

23. What is the colour code for the insulation on the earth wire?

- Watch Video Solution

24. Write an expression for calculating electrical power in terms of current and resistance.

25. Calculate the equivalent resistance between A and

B from the following diagram :

A. 5
B. 3
C. 8
D. 4

Answer: 3

(D) Watch Video Solution

26. Write the difference between heat and temperature .

Watch Video Solution
27. Define Calorimetry.
28. What is meant by Energy degradation?

- Watch Video Solution

29. 200 g of hot water at $80^{\circ} \mathrm{C}$ is added to 300 g of cold water at $10^{\circ} \mathrm{C}$. Calculate the final temperature of the mixture of water. Consider the heat taken by the container to be negligible. [specific heat capacity of water is $4200 \mathrm{Jkg}^{\left.-1{ }^{\circ} \mathrm{C}^{-1} \text {] }\right] \text {] }{ }^{2} \text {. }}$

- Watch Video Solution

30. Fill in the blanks in the following sentences with appropriate words:

During the emission of a beta particle, the number remains the same.

- Watch Video Solution

31. Fill in the blanks in the following sentences with appropriate words:

The minimum amount of energy required to emit an electron from a metal surface is called
32. A mixture of radioactive substances gives off three types of radiations :

Name the radiation which travels with the speed of light

- Watch Video Solution

33. A mixture of radioactive substances gives off three types of radiations:

Name the radiation which has the highest ionizing power.

34. Define 1 kgf.

- Watch Video Solution

35. How is it related to the S.I. unit of force?

D Watch Video Solution
36. What are non-contact forces ?
37. How does the distance of separation between two bodies affect the magnitude of the non-contact force between them ?

- Watch Video Solution

38. A boy of mass 30 kg is sitting at a distance of 2 m
from the middle of a see-saw. Where should a boy of mass 40 kg sit so as to balance the see-saw ?
(D) Watch Video Solution
39. What is meant by the term 'moment of force' ?

(D) Watch Video Solution

40. If the moment of force is assigned a negative sign then will the turning tendency of the force be clockwise or anti-clockwise?

D Watch Video Solution

41. A ball is placed on a compressed spring. When the
spring is released, the ball is observed to fly away.

What form of energy does the compressed spring possess ?

- Watch Video Solution

42. A ball is placed on a compressed spring. When the
spring is released, the ball is observed to fly away.

Why does the ball fly away?
43. State the energy conversion taking place in a solar cell.

- Watch Video Solution

44. What is a solar cell? State two uses of solar cells.

State whether solar cell produces a.c. or d.c. Give one disadvantage of using a solar cell.

- Watch Video Solution

45. A body of mass 0.2 kg falls from a height of 10 m to a height of 6 m above the ground. Find the loss in
potential energy taking place in the body.

$$
\left[g=10 \mathrm{~ms}^{-2}\right]
$$

D Watch Video Solution

46. Define the term refractive index of a medium in terms of velocity of light.

- Watch Video Solution

47. A ray of light moves from a rare medium to a dense medium as shown in the diagram below. Write down the number of the ray which represents the
partially reflected ray.

- Watch Video Solution

48. You are provided with a printed piece of paper.

Using this paper how will you differentiate between a convex lens and a concave lens?
49. A ray of light incident at an angle of incidence 'I' passes through an equilateral glass prism such that the refracted ray inside the prism is parallel to its base and emerges from the prism at an angle of emergence 'e'.

How is the angle of emergence 'e' related to the angle of incidence 'i' ?

- Watch Video Solution

50. A ray of light incident at an angle of incidence ' I ' passes through an equilateral glass prism such that
the refracted ray inside the prism is parallel to its base and emerges from the prism at an angle of emergence 'e'.

What can you say about the value of the angle of deviation in such a situation ?

- Watch Video Solution

51. What do you mean by dispersion of light?

D Watch Video Solution

52. In the atmosphere which colour of light gets scattered the least?
53. Which characteristics of sound will change if there is a change in
its amplitude

D Watch Video Solution

54. Which characteristics of sound will change if there is a change in its waveform.
55. Name one factor which affects the frequency of sound emitted due to vibrations in an air column.

- Watch Video Solution

56. Name the unit used for measuring the sound level.

D Watch Video Solution

57. An electrical appliance is rated at $1000 \mathrm{KVA}, 220 \mathrm{~V}$.

If the appliance is operated for 2 hours, calculate the
energy consumed by the appliance in :
kWh

- Watch Video Solution

58. An electrical appliance is rated at 1000 KVA, 220 V .

If the appliance is operated for 2 hours, calculate the energy consumed by the appliance in :
joule

- Watch Video Solution

59. Calculate the equivalent resistance between P and

Q from the following diagram:

D Watch Video Solution
60. What is an a.c. generator or Dynamo used for ?

D Watch Video Solution
61. Name the principle on which it works.

D Watch Video Solution
62. Differentiate between heat capacity and specific heat capacity.

- Watch Video Solution

63. A hot solid of mass 60 g at $100^{\circ} \mathrm{C}$ is placed in 150 g of water at $20^{\circ} \mathrm{C}$. The final steady temperature recorded is $25^{\circ} \mathrm{C}$. Calculate the specific heat capacity of the solid. [Specific heat capacity of water $=4200$ $k g^{-1 \circ} C^{-1}$]
64. What is the value of the speed of gamma radiations in air or vacuum ?

D Watch Video Solution

65. Name a material which exhibits fluorescence when cathode rays fall on it.

D Watch Video Solution

66. Give any two important sources of background radiation.
67. Give any two effects of a force on a non-rigid body.

D Watch Video Solution

68. One end of a spring is kept fixed while the other end is stretched by a force as shown in the diagram.

Copy the diagram and mark on it the direction of the restoring force.
69. One end of a spring is kept fixed while the other end is stretched by a force as shown in the diagram.

Name one instrument which works on the above principle.

- Watch Video Solution

70. Where is the centre of gravity of a uniform ring situated?
71. The position of the centre of gravity of a body remains unchanged even when the body is deformed'. State whether the statement is true or false.

- Watch Video Solution

72. A force is applied on a body of mass 20 kg moving with a velocity of $40 \mathrm{~ms}^{-1}$. The body attains a velocity of $50 \mathrm{~ms}^{-1}$ in 2 second. Calculate the work done by the body.
73. Name the pulley which has no gain in mechanical advantage. Explain, why is such a pulley then used ?

- Watch Video Solution

74. A type of single pulley is very often used as a machine even though it does not give any gain in mechanical advantage.

For what purpose is such a pulley used?
75. What do you understand by an ideal machine ? How does it differ from a practical machine ?

D Watch Video Solution

76. When does a machine act as (a) a force multiplier,
(b) a speed multiplier. Can a machine act as a force multiplier and a speed multiplier simultaneously?

- Watch Video Solution

77. A girl of mass 35 kg climbs up from the first floor of a building at a height 4 m above the ground to the
third floor at a height 12 m above the ground. What will be the increase in her gravitational potential energy? $\left[g=10 \mathrm{~ms}^{-2}\right.$]

- Watch Video Solution

78. Which class of lever found in the human body is being used by a boy:
when he holds a load on the palm of his hand.

D Watch Video Solution

79. What type of lever is formed by a human body while (a) raising a load on the palm, and (b) raising
the weight of body on toes?

D Watch Video Solution

80. A ray of light is moving from a rarer medium to a denser medium and strikes a plane mirror placed at 90° to the direction of the ray as shown in the diagram.

Copy the diagram and mark arrows to show the path of the ray of light after it is reflected from the mirror.
81. A ray of light is moving from a rarer medium to a denser medium and strikes a plane mirror placed at 90° to the direction of the ray as shown in the diagram.

Name the principle you have used to mark the arrows to show the direction of the ray.
82. The refractive index of glass with respect to air is
1.5. What is the value of the refractive index of air with respect to glass?

- Watch Video Solution

83. A ray of light is incident as a normal ray on the surface of separation of two different mediums. What is the value of the angle of incidence in this case?
84. A bucket kept under a running tap is getting filled with water. A person sitting at a distance is able to get an idea when the bucket is about to be filled.

What change takes place in the sound to give this idea?

- Watch Video Solution

85. A bucket kept under a running tap is getting filled with water. A person sitting at a distance is able to get an idea when the bucket is about to be filled.

What causes the change in the sound ?
86. A sound made on the surface of a lake takes 3 s to reach a boatman.

How much time will it take to reach a diver inside the water at the same depth ?

Velocity of sound in air $=330 \mathrm{~ms}^{-1}$
Velocity of sound in water $=1450 \mathrm{~ms}^{-1}$

- Watch Video Solution

87. Calculate the equivalent resistance between the points A and B for the following combination of
resistors :

- Watch Video Solution

88. You have been provided with a solenoid AB.

What is the polarity at end A ?

- Watch Video Solution

89. You have been provided with a solenoid AB.

Give one advantage of an electromagnet over a permanent magnet.

D Watch Video Solution
90. Name the device used to protect the electric circuits from overloading and short circuits.

- Watch Video Solution

91. Name the device used to protect the electric circuits from overloading and short circuits. On what effect of electricity does the above device work?

- Watch Video Solution

92. Define heat capacity and state its SI unit.
93. What do you mean by global warming?

D Watch Video Solution

94. How much heat energy is released when 5 g of water at $20^{\circ} \mathrm{C}$ changes to ice at $0^{\circ} \mathrm{C}$?
[Specific heat capacity of water $=4.2 \mathrm{Jg}^{-10} \mathrm{C}^{-1}$
Specific latent heat of fusion of ice $=336 \mathrm{Jg}^{-1}$]

- Watch Video Solution

95. Which of the radioactive radiations :

can cause severe genetical disorders.

- Watch Video Solution

96. Which of the radioactive radiations:
are deflected by an electric field ?

- Watch Video Solution

97. A radioactive nucleus undergoes a series of decays
according to the sequence
$X \xrightarrow{\beta} X_{1} \xrightarrow{\alpha} X_{2} \xrightarrow{\alpha} X_{3}$.
f the mass number and atomic number of X_{3} are 172 and 69 respectively. what is the mass numberand atomic number of X ?

- Watch Video Solution

98. A force is applied on (i) a non-rigid body and (ii) a rigid body. How does the effect of the force differ in the above two cases ?

D Watch Video Solution

99. A ball is hanging by string from the ceiling of the roof. Draw a neat labelled diagram showing the
forces acting on the ball and the string.

D Watch Video Solution

100. The weight of a body at the centre of the earth is

- Watch Video Solution

101. What is the principle of an ideal machine ?

- Watch Video Solution

102. Is it possible to have an accelerated motion with a constant speed? Name such type of motion.

- Watch Video Solution

103. When does a force do work?

- Watch Video Solution

104. What is the work done by the moon when it revolves around the earth?
105. Calculate the change in the Kinetic energy of a moving body if its velocity is reduced to $1 / 3^{r d}$ of the initial velocity.

D Watch Video Solution

106. State the energy changes in the following cases while in use:
(a) loudspeaker (b) a steam engine
(c) microphone (d) washing machine
(e) a glowing electric bulb (f) burning coal
(g) a solar cell (h) bio-gas burner
(i) an electric cell in a circuit (j) a petrol engine of a
running car (k) an electric iron (I) a ceiling fan
(m) an electromagnet

D Watch Video Solution

107. State the energy changes in the following cases
while in use:
(a) loudspeaker (b) a steam engine
(c) microphone (d) washing machine
(e) a glowing electric bulb (f) burning coal
(g) a solar cell (h) bio-gas burner
(i) an electric cell in a circuit (j) a petrol engine of a running $\operatorname{car}(\mathrm{k})$ an electric iron (I) a ceiling fan
(m) an electromagnet

- Watch Video Solution

108. What is nuclear energy ?

D Watch Video Solution

109. What is nuclear energy? Name the process used
for producing electricity using the nuclear energy

D Watch Video Solution

110. State one important advantage and disadvantage each of using nuclear energy for producing electricity.
111. The conversion of part of the energy into an undesirable form is called

- Watch Video Solution

112. For a given height h, the length 1 of the inclined plane, lesser will be the effort required.
113. Draw the diagram given below and clearly show the path taken by the emergent ray:

D Watch Video Solution

114. What is consumed using different electrical appliances, for which electricity bills are paid ?

- Watch Video Solution

115. Name a common device that uses electro magnets.

D Watch Video Solution
116. A ray of light passes from water to air, How does the speed of light change?
117. Which colour of light travels fastest in any medium except air ?

- Watch Video Solution

118. Name the factors affecting the critical angle for the pair of media.

- Watch Video Solution

119. Name a prism required for obtaining a spectrum of ultraviolet light.
120. Name the radiations which can be detected by a thermopile.

D Watch Video Solution

121. Why is the colour red used as a sign of danger ?

D Watch Video Solution
122. What are mechanical waves?
123. Name one property of waves that do not change when the wave passes from one medium to another.

D Watch Video Solution

124. Find the equivalent resistance between points A and B

125. 50 g of metal piece at $27^{\circ} \mathrm{C}$ requires 2400 J of heat energy so as to attain a temperature of $327^{\circ} \mathrm{C}$.

Calculate the specific heat capacity of the metal.

- Watch Video Solution

126. An electrons emitter must have work function and ______ melting point.

- Watch Video Solution

127. Rishi is surprised when he sees water boiling at
$115^{\circ} \mathrm{C}$ in a container. Give reasons as to why water
can boil at the above temperature.

D Watch Video Solution

128. Why does a current carrying, freely suspended solenoid rest along a particular direction ?

D Watch Video Solution

129. A freely suspended magnet rests in :
(D) Watch Video Solution
130. Find the equivalent resistance between points A and B.

D Watch Video Solution

131. Give two similarities between an A.C. generator and a D.C. motor.

D Watch Video Solution
132. Why is a cathode ray tube evacuated to a low pressure?

D Watch Video Solution

133. What happens if the negative potential is changed on a grid ?

D Watch Video Solution

134. A ball is hanging by string from the ceiling of the roof. Draw a neat labelled diagram showing the forces acting on the ball and the string.
135. The distance between two bodies is doubled.

How is the magnitude of gravitational force between them affected?

D Watch Video Solution

136. A jack screw is provided with a long arm. Explain why?
(D) Watch Video Solution
137. If the power of a motor be 100 kW , at what speed can it raise a load of $50,000 \mathrm{~N}$?

- Watch Video Solution

138. Which class of lever will always have M. A. > 1 and why?

- Watch Video Solution

139. Define heat capacity and state its SI unit.
140. Why is the base of a cooking pan made thick and heavy?

- Watch Video Solution

141. A mass of 50 g of a certain metal at $150^{\circ} \mathrm{C}$ is immersed in 100 g of water at $11^{\circ} \mathrm{C}$. The final temperature is $20^{\circ} \mathrm{C}$. Calculate the specific heat capacity of the metal. Assume that the specific heat capacity of water is $4.2 g^{-1} K^{-1}$
142. How is the refractive index of a medium related to the real and apparent depths of an object in that medium?

- Watch Video Solution

143. Define the term refractive index of a medium in terms of velocity of light.

- Watch Video Solution

144. State the conditions required for total internal reflection of light to take place.

- Watch Video Solution

145. Draw a ray diagram to show the refraction of a monochromatic ray through a prism when it suffers minimum deviation. How is the angle of emergence related to the angle of incidence in the position.

- Watch Video Solution

146. The human ear can detect continuous sounds in the frequency range from 20 Hz to 20000 Hz .

Assuming that the speed of sound in air is $330 \mathrm{~ms}^{-1}$
for all frequencies, calculate the wavelengths
corresponding to the given extreme frequencies of the audible range.

- Watch Video Solution

147. An enemy plane is at a distance of 300 km from a radar. In how much time the radar will be able to detect the plane ? Take velocity of radio waves as $3 \times 10^{8} \mathrm{~ms}^{-1}$.

- Watch Video Solution

148. How is the frequency of a stretched string related to:

Its length?

D Watch Video Solution

149. How is the frequency of a stretched string related to:

Its tension?

- Watch Video Solution

150. Define the term "specific resistance and state its
S.I. unit.
151. An electric bulb of resistance 500Ω, draws a current of 0.4 A. Calculate the power of the bulb and the potential difference at its end.

(D) Watch Video Solution

152. Name any two types of energy losses in a transformer. State how any one of them can be minimized.
153. State two characteristics of a good thermion emitter.

- Watch Video Solution

154. State two factors upon which the rate of emission of thermions depends.

- Watch Video Solution

155. When does the nucleus of an atom tend to be radioactive?
156. State and define the S.I. unit of power.

D Watch Video Solution

157. How is the unit horse power related to the S.I. unit of power?

- Watch Video Solution

158. State the energy changes in the following cases
while in use :

An electric iron

D Watch Video Solution

159. State the energy changes in the following cases
while in use :

A ceiling fan
160. The diagram below shows a lever in use :

To which class of levers does it belong ?

D Watch Video Solution

161. The diagram below shows a lever in use :

Without changing the dimensions of the lever, if the
load is shifted towards the fulcrum what happens to the mechanical advantage of the lever ?

- Watch Video Solution

162. Why is the ratio of the velocities of light of wavelengths $4000 \AA \AA$ and $8000 \AA$ in vacuum 1: 1?

D Watch Video Solution

163. (a) Write the approximate wavelength for (i) blue,
and (ii) red light
(b) The wavelength of violet and red light are $4000 \AA$
and $8000 \AA$ respectively. Which of the two has higher frequency?

- Watch Video Solution

164. Why is the motion of a body moving with a constant speed around a circular path said to be accelerated ?

Watch Video Solution

165. Name the unit of physical quantity obtained by
the formula $\frac{2 K}{v^{2}}$.
where K : kinetic energy, v: linear velocity.
166. The power of a lens is -5 D .

Find its focal length.

D Watch Video Solution
167. The power of a lens is -5 D .

Name the type of lens.

D Watch Video Solution
168. State the position of the object in front of a converging lens if:

It produces a real and same size image of the object.

D Watch Video Solution

169. State the position of the object in front of a converging lens if:

It is used as a magnifying lens.
170. (i) What is the relation between critical angle and refractive index of a material ?
(ii) Does critical angle depend on the color of light?

Explain.

- Watch Video Solution

171. Which colour of light has a higher critical angle?

Red light or Green light.

- Watch Video Solution

172. (i) Define scattering.
(ii) The smoke from a fire looks white.

Which of the following statements is true?
(1) Molecules of the smoke are bigger than the wavelength of light.
(2) Molecules of the smoke are smaller than the wavelength of light.

- Watch Video Solution

173. The following diagram shows a $60^{\circ}, 30^{\circ}, 90^{\circ}$ glass prism of critical angle 42°. Copy the diagram and complete the path of incident ray $A B$ emerging
out of the prism marking the angle of incidence on each surface.

- Watch Video Solution

174. Displacement distance graph of two sound waves
A and B, travelling in a medium, are as shown in the
diagram below:

Study the two sound waves and compare their :
Amplitudes

(D) Watch Video Solution

175. Displacement distance graph of two sound waves
A and B, travelling in a medium, are as shown in the diagram below:

Study the two sound waves and compare their :

Wavelengths

- Watch Video Solution

176. You have three resistors of values
$2 \Omega, 3 \Omega$ and 5Ω. How will you join them so that the total resistance is more than 7Ω ?

Draw a diagram for the arrangement.
177. You have three resistors of values $2 \Omega, 3 \Omega$ and 5Ω. How will you join them so that the total resistance is more than 7Ω ?

Calculate the equivalent resistance.

- Watch Video Solution

178. What do you understand by the term nuclear fusion?
179. Nuclear power plants use the nuclear fission reaction to produce electricity. What is the advantage of producing electricity by fusion reaction ?

D Watch Video Solution

180. What do you understand by free vibrations of a body?

- Watch Video Solution

181. Why does the amplitude of a vibrating body continuously decrease during damped vibrations?
182. How is the e.m.f. across primary and secondary coils of a transformer related with the number of turns of coil in them?

- Watch Video Solution

183. On which type of current do transformers work?

D Watch Video Solution
184. How can a temperature in degree Celsius be converted into S.I. unit of temperature?

D Watch Video Solution

185. A liquid X has the maximum specific heat capacity
and is used as a coolant in car radiators. Name the
liquid X .

- Watch Video Solution

186. A solid metal weighing 150 g melts at its melting point of $800^{\circ} \mathrm{C}$ by providing heat at the rate of 100
W. The time taken for it to completely melt at the same temperature is 4 min . What is the specific latent heat of fusion of the metal ?

- Watch Video Solution

187. Identify the following wires used in a household circuit :

The wire is also called as the phase wire.

D Watch Video Solution

188. Identify the following wires used in a household circuit :

The wire is connected to the top terminal of a three pin socket.

- Watch Video Solution

189. Two atoms are said to be isobars if

- Watch Video Solution

190. Give one example of isobars.
191. State two advantages of an electromagnet over a permanent magnet.

- Watch Video Solution

192. Define moment of force and its unit.

D Watch Video Solution

193. Write the relationship between the SI and CGS
unit of moment of force.
194. Define kilowatt hour.How is it reltated to joule?

- Watch Video Solution

195. A satellite revolves around a planet in a circular orbit. What is the work done by the satellite at any instant? Give a reason.

D Watch Video Solution

196. Identify the class of the lever shown in the diagram below:

(D) Watch Video Solution

197. How is it possible to increase the M. A. of the above lever without increasing its length ?

- Watch Video Solution

198. Give one example of each when :

Chemical energy changes into electrical energy.
199. Give one example of each when :

Electrical energy changes into sound energy.

- Watch Video Solution

200. A crane 'A' lifts a heavy load in 5 seconds, whereas another crane ' B ' does the same work in 2
seconds. Compare the power of crane ' A ' to that of crane ' B '.
201. A ray of light falls normally on a rectangular glass slab.

Draw a ray diagram showing the path of the ray till it emerges out of the slab.

D Watch Video Solution

202. Complete the path of the monochromatic light
ray $A B$ incident on the surface $P Q$ of the equilateral
glass prism PQR till it emerges out of the prism due
to refraction.

D Watch Video Solution

203. Where should an object be placed in front of a convex lens in order to get :
an enlarged real image

D Watch Video Solution
204. Where should an object be placed in front of a convex lens in order to get :
enlarged virtual image ?

- Watch Video Solution

205. A pond appears to be 2.7 m deep. If the refractive index of water is $\frac{4}{3}$, find the actual depth of the pond.
206. The wave lengths for the light of red and blue colours are nearly $7.8 \times 10^{-7} \mathrm{~m}$ and $4.8 \times 10^{-7} \mathrm{~m}$ respectively.

Which colour has the greater speed in a vacuum ?

D Watch Video Solution

207. The wave lengths for the light of red and blue colours are nearly $7.8 \times 10^{-7} \mathrm{~m}$ and $4.8 \times 10^{-7} \mathrm{~m}$ respectively.

Which colour has the greater speed in a vacuum ?

208. Draw a graph between displacement from mean

 position and time for a body executing free vibration in a vacuum.
- Watch Video Solution

209. A sound wave travelling in water has wavelength
0.4 m.

Is this wave audible in air ? (The speed of sound in water $=1400 \mathrm{~ms}^{-1}$)
210. Why does stone lying in the sun get heated up much more than water lying for the same duration of time?

D Watch Video Solution

211. Why is it not advisable to use a piece of copper wire as fuse wire in an electric circuit ?
212. Calculate the total resistance across $A B$:

D Watch Video Solution

213. Two metallic blocks P and Q having masses in ratio 2: 1 are supplied with the same amount of heat.

If their temperatures rise by same degree, compare their specific heat capacities.

D Watch Video Solution

214. When a current carrying conductor is placed in a magnetic field, it experiences a mechanical force.

What should be the angle between the magnetic field and the length of the conductor so that the force experienced is :
(i) Zero
(ii) Maximum ?

D Watch Video Solution

215. A nucleus ${ }_{84} X^{202}$ of an element emits an alpha particle followed by a beta particle. The final nucleus is ${ }_{a} Y^{b}$. Find a and b .

216. The diagram below shows a loop of wire carrying

current I:

What is the magnetic polarity of the loop that faces us?
217. The diagram below shows a loop of wire carrying

current I:

With respect to the diagram how can we increase the strength of the magnetic field produced by this loop

- Watch Video Solution

218. Write the SI unit of heat capacity.

- Watch Video Solution

219. What is the relationship between heat capacity and specific heat capacity of a substance ?

- Watch Video Solution

220. The diagram below shows the change of phases
of a substance on a temperature vs time graph on
heating the substance at a constant rate.

Why is the slope of CD less than slope of $A B$?

D Watch Video Solution

221. The diagram below shows the change of phases
of a substance on a temperature vs time graph on heating the substance at a constant rate.

What is the boiling and melting point of the substance?

- Watch Video Solution

222. A piece of ice of mass 60 g is dropped into 140 g of water at $50^{\circ} \mathrm{C}$.

Calculate the final temperature of water when all the ice has melted.
(Assume no heat is lost to the surrounding)
Specific heat capacity of water $=4.2 \mathrm{Jg}^{-1} k^{-1}$
Specific latent heat of fusion of ice $=336 \mathrm{Jg}^{-1}$

223. Draw neat labeled diagram of a d.c. motor.

D Watch Video Solution

224. Write any one use of a d.c motor.

D Watch Video Solution

225. Differentiate between nuclear fusion and nuclear

fission.
226. State one safety precaution in the disposal of nuclear waste.

D Watch Video Solution

227. An atomic nucleus A is composed of 84 protons
and 128 neutrons. The nucleus A emits and alpha particle and is transformed into a nucleus B.
(i) What is the composition of B ?
(ii) The nucleus B emits a beta particle and is transformed into a nucleus C. What is the composition of C ?
(iii) What is mass number of the nucleus A ?
(iv) Does the composition of C change if it emits gamma radiations ?

D Watch Video Solution

Section li

1. What do you understand by an ideal machine ? How does it differ from a practical machine ?

D Watch Video Solution
2. Write a relationship between the mechanical advantage (M. A.) and velocity ratio (V. R.) of an ideal machine.

- Watch Video Solution

3. A coolie carrying a load on his head and moving on
a frictionless horizontal platform does no work.
Explain the reason why.

D Watch Video Solution
4. Draw a diagram to show the energy changes in an oscillating simple pendulum. Indicate in your diagram how the total mechanical energy in it remains constant during the oscillation.

Watch Video Solution

5. A uniform metre scale can be balanced at the 70.0
cm mark when a mass of 0.05 kg is hung from the 94.0 cm mark.

Draw a diagram of the arrangement.
6. A uniform metre scale can be balanced at the 70.0 cm mark when a mass of 0.05 kg is hung from the 94.0 cm mark.

Find the mass of the metre scale.
(D) Watch Video Solution
7. State the laws of refraction of light. State at least three examples of refraction of light.

8. Write a relation between the angle of incidence

(i), angle of emergence (e), angle of prism (A) and angle of deviation (d) for a ray of light passing through an equilateral prism.

D Watch Video Solution

9. Suggest one way, in each case, by which we can detect the presence of:
(1) Infra-red radiations
(2) Ultraviolet radiations
10. State any one use of infrared radiations.

- Watch Video Solution

11. An object is placed in front of a lens between its optical centre and the focus and forms a virtual, erect and diminished image.

Name the lens which formed this image.

D Watch Video Solution

12. An object is placed in front of a lens between its optical centre and the focus and forms a virtual, erect
and diminished image.
Draw a ray diagram to show the formation of the image with the above stated characteristics.

D Watch Video Solution

13. Name the type of waves which are used for sound ranging.

Watch Video Solution

14. Why are these waves mentioned in (i) above, not audible to us?
15. Give one use of sound ranging.

- Watch Video Solution

16. A man standing 25 m away from a wall produces a sound and receives the reflected sound.

Calculate the time after which he receives the reflected sound if the speed of sound in air is $350 \mathrm{~ms}^{-1}$.
17. A man standing 25 m away from a wall produces a sound and receives the reflected sound.

Will the man be able to hear a distinct echo ? Give a reason for your answer.

- Watch Video Solution

18. Name two safety devices which are connected to
the live wire of a household electric circuit.

- Watch Video Solution

19. Give one important function of each of these two devices. i) Switch ii) Fuse

- Watch Video Solution

20. Draw a graph of Potential difference (V) versus

Current (I) for an ohmic resistor.

- Watch Video Solution

21. How can you find the resistance of the resistor from this graph?
22. What is a non-ohmic resistor ?

- Watch Video Solution

23. An electric bulb is marked $100 \mathrm{~W}, 250 \mathrm{~V}$. What information does this convey?

- Watch Video Solution

24. How much current will the bulb draw, if connected to a 250 V supply?
25. Three resistors are connected to a 12 V battery as shown in the figure given below :

What is the current through the 8 ohm resistor ?

- Watch Video Solution

26. Three resistors are connected to a 12 V battery as shown in the figure given below :

What is the potential difference across the parallel combination of 6 ohm and 12 ohm resistor?

- Watch Video Solution

27. Three resistors are connected to a 12 V battery as shown in the figure given below :

What is the current through the 6 ohm resistor ?

D Watch Video Solution

28. Explain why the weather becomes very cold after a hail storm.
29. What happens to the heat supplied to a substance when the heat supplied causes no change in the temperature of the substance?

D Watch Video Solution

30. When 1 g of ice at $0^{\circ} C$ melts to form 1 g of water at $0^{\circ} C$ then, is the latent heat absorbed by the ice or given out by it?
31. Give one example where high specific heat capacity of water is used as a heat reservoir.

- Watch Video Solution

32. Give one example where high specific heat capacity of water is used for cooling purposes.

- Watch Video Solution

33. 250 g of water at $30^{\circ} \mathrm{C}$ is present in a copper vessel of mass 50 g . Calculate the mass of ice required to bring down the temperature of the vessel
and its contents to $5^{\circ} C$.
Specific latent heat of fusion of ice $=336 \times 10^{3} \mathrm{Jkg}^{-1}$
Specific heat capacity of copper vessel = $400 \mathrm{Jkg}^{-1 \circ} \mathrm{C}^{-1}$

Specific heat capacity of water $=4200 \mathrm{Jkg}^{-1 \circ} \mathrm{C}^{-1}$.

- Watch Video Solution

34. State two properties which a substance should possess when used as a thermionic emitter.
35. When an alpha particle gains two electrons it becomes neutral and becomes an atom of an element which is a rare gas. What is the name of this rare gas?

- Watch Video Solution

36. Define radioactivity. Name various radioactive elements.

- Watch Video Solution

37. What happens inside the nucleus that causes the emission of beta particle ?
38. What happens inside the nucleus that causes emission of beta particle?

Express the above change in the form of an equation.

D Watch Video Solution

39. Name a device which is commonly used to convert an electrical signal into a visual signal.

D Watch Video Solution
40. The nucleus ${ }_{84}^{202} X$ emits an alpha particle and forms the nucleus Y . Represent this change in the form of an equation.

(D) Watch Video Solution

41. What happens to the mass number and atomic number of an element when it emits gammaradiation
42. Which of the following remains constant in uniform circular motion. Speed or Velocity or both ?

- Watch Video Solution

43. Name the force required for circular motion. State its direction.

- Watch Video Solution

44. State the class of levers and the relative positions of load (L), effort (E) and fulcrum (F) in each of the following cases.
(1) A bottle opener
(2) Sugar tongs.

- Watch Video Solution

45. Why is less effort needed to lift a load over an inclined plane as compared to lifting the load directly
?

Watch Video Solution

46. A moving body weighing 400 N possesses 500 J of
kinetic energy. Calculate the velocity with which the
body is moving. $\left(g=10 \mathrm{~ms}^{-2}\right)$
47. Under what condition will a set of gears produce :
(1) a gain in speed
(2) a gain in torque.

- Watch Video Solution

48. What is meant by the term 'critical angle'?
49. How is it related to the refractive index of the medium ?

- Watch Video Solution

50. A tank of water is viewed normally from above.
(a) State how does the depth of the tank appear to
change.
(b) Draw a labelled ray diagram to explain your answer.
51. A ray of light $P Q$ is incident normally on the hypotenuse of a right angled prism $A B C$ as shown in the diagram given below:

Copy the diagram and complete the path of the ray $P Q$ till it emerges from the prism.

- Watch Video Solution

52. A ray of light $P Q$ is incident normally on the hypotenuse of a right angled prism $A B C$ as shown in the diagram given below:

What is the value of the angle of deviation of the ray

- Watch Video Solution

53. A ray of light $P Q$ is incident normally on the hypotenuse of a right angled prism $A B C$ as shown in the diagram given below:

Name an instrument where this action of the prism is used.

- Watch Video Solution

54. A converging lens is used to obtain an image of an object placed in front of it. The inverted image is formed between F_{2} and $2 F_{2}$ of the lens.

Where is the object placed ?

- Watch Video Solution

55. A converging lens is used to obtain an image of an object placed in front of it. The inverted image is
formed between F_{2} and $2 F_{2}$ of the lens.

Draw a ray diagram to illustrate the formation of the image obtained.

D Watch Video Solution

56. What is meant by Resonance?

- Watch Video Solution

57. State two ways in which Resonance differs from

Forced vibrations.
58. A man standing between two cliffs produces a sound and hears two successive echoes at intervals of 3 s and 4 s respectively. Calculate the distance between the two cliffs.

The speed of sound in the air is $330 \mathrm{~ms}^{-1}$.

- Watch Video Solution

59. Why will an echo not be heard when the distance between the source of sound and the reflecting surface is 10 m ?
60. The diagram below shows the displacement-time
graph for a vibrating body.
Name the type of vibrations produced by the vibrating body.

D Watch Video Solution

61. The diagram in Fig. shows the displacement time
graph of a vibrating body.

Give one example of such vibrations.

- Watch Video Solution

62. The diagram in Fig. shows the displacement time graph of a vibrating body.

Why is the amplitude of vibrations gradually decreasing ?

D Watch Video Solution

63. The diagram in Fig. shows the displacement time
graph of a vibrating body.

What happens to the vibrations of the body after some time?

D Watch Video Solution
64. A cell is sending current in an external circuit.

How does the terminal voltage compare with the e.m.f. of the cell ?
65. What is the role of fuse, used in series with any electrical appliance? Why should a fuse with defined rating not be replaced by one with a larger rating?

D Watch Video Solution
66. What are the characteristic properties of fuse wire ?
67. Write an expression for the electrical energy spent in the flow of current through an electrical appliances in terms of I, R and t .

- Watch Video Solution

68. At what voltage is the alternating current supplied to our houses?

- Watch Video Solution

69. How should the electric lamps in a building be
connected ?
70. Three resistors are connected to a 6 V battery as shown in the figure given below :

Calculate :
the equivalent resistance of the circuit.
(D) Watch Video Solution
71. Three resistors are connected to a 6 V battery as
shown in the figure given below :

Calculate :

total current in the circuit.

D Watch Video Solution

72. Three resistors are connected to a 6 V battery as
shown in the figure given below :

Calculate :

potential difference across the 7.2Ω resistor.

D Watch Video Solution

73. Write an expression for the heat energy liberated
by a hot body.
74. Some heat is provided to a body to raise its temperature by $25^{\circ} C$. What will be the corresponding rise in temperature of the body as shown on the Kelvin scale?

D Watch Video Solution

75. What happens to the average kinetic energy of the molecules as ice melts at $0^{\circ} C$?

- Watch Video Solution

76. A piece of ice at $0^{\circ} C$ is heated at a constant rate and its temperature recorded at regular intervals till steam is formed at $100^{\circ} \mathrm{C}$. Draw a temperature-time graph to represent the change in phase. Label the different parts of your graph.

- Watch Video Solution

77. 40 g of ice at $0^{\circ} \mathrm{C}$ is used to bring down the temperature of a certain mass of water at $60^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$. Find the mass of water used.
[Specific heat capacity of water $=4200 \mathrm{Jkg}^{-1 \circ} \mathrm{C}^{-1}$]
[Specific latent heat of fusion of ice = $336 \times 10^{3} \mathrm{Jkg}^{-1}$]

- Watch Video Solution

78. The diagram below shows a current carrying loop or a circular coil passing through a sheet of cardboard at the points M and N. The sheet of cardboard is sprinkled uniformly with iron filings.

Copy the diagram and draw an arrow on the circular coil to show the direction of current flowing through it.

(D) Watch Video Solution

79. The diagram below shows a current carrying loop or a circular coil passing through a sheet of
cardboard at the points M and N. The sheet of
cardboard is sprinkled uniformly with iron filings.

Draw the pattern of arrangement of the iron filings
when current is passed through the loop.

D Watch Video Solution
80. Draw a simplified labelled diagram of a hot cathode ray tube.

- Watch Video Solution

81. Name a common device where a hot cathode ray tube is used.

- Watch Video Solution

82. A certain nucleus X has a mass number 14 and atomic number 6. The nucleus X changes to ${ }_{7} Y^{14}$
after the loss of a particle.
Name the particle emitted.

D Watch Video Solution

83. A certain nucleus X has a mass number 14 and
atomic number 6 . The nucleus X changes to ${ }_{7} Y^{14}$ after the loss of a particle.

Represent this change in the form of an equation.

- Watch Video Solution

84. A certain nucleus X has a mass number 14 and
atomic number 6. The nucleus X changes to ${ }_{7} Y^{14}$
after the loss of a particle.
A radioactive substance is oxidized. What change would you expect to take place in the nature of its radioactivity ? Give a reason for your answer.

- Watch Video Solution

85. With reference to the direction of action, how does a centripetal force differ from a centrifugal during uniform circular motion?

- Watch Video Solution

86. State the principle of conservation of energy.

- Watch Video Solution

87. Name the form of energy which a body may possess even when it is not in motion. Give an example to support your answer.

D Watch Video Solution

88. A coolie is pushing a box weighing 1500 N up an
inclined plane 7.5 m long on to a platform, 2.5 m
above the ground.
Calculate the mechanical advantage of the inclined plane.

- Watch Video Solution

89. A coolie is pushing a box weighing 1500 N up an inclined plane 7.5 m long on to a platform, 2.5 m above the ground.

Calculate the effort applied by the coolie.

D Watch Video Solution

90. A coolie is pushing a box weighing 1500 N up an
inclined plane 7.5 m long on to a platform, 2.5 m above the ground.

In actual practice, the coolie needs to apply more
effort than what is calculated. Give one reason why you think the coolie needs to apply more effort.

D Watch Video Solution

91. A block and tackle system of pulleys has velocity
ratio 4.
Draw a neat labelled diagram of the system indicating clearly the points of application and direction of load and effort.

- Watch Video Solution

92. A block and tackle system of pulleys has a velocity ratio 4.

What is the value of the mechanical advantage of the given pulley system if it is an ideal pulley system?

Watch Video Solution

93. Name the radiations:
that are used for photography at night.

- Watch Video Solution

94. Name the radiations:

used for detection of fracture in bones.

D Watch Video Solution

95. Name the radiations:
whose wavelength range is from $100 \AA$ to $4000 \AA$ (or
10 nm to 400 nm).

- Watch Video Solution

96. Define the term refractive index of a medium. Can
it be less than 1 ?

D Watch Video Solution

97. A coin placed at the bottom of a beaker appears to be raised by 4.0 cm . If the refractive index of water is $4 / 3$, find the depth of the water in the beaker.

D Watch Video Solution

98. An object AB is placed between $2 F_{1}$ and F_{1} on the principal axis of a convex lens as shown in the diagram :

Copy the diagram and using three rays starting from point A, obtain the image of the object formed by the lens.

(D) Watch Video Solution

99. What is the principle on which SONAR is based?
100. An observer stands at a certain distance away from a cliff and produces a loud sound. He hears the echo of the sound after 1.8 s . Calculate the distance between the cliff and the observer if the velocity of sound in air is $340 \mathrm{~ms}^{-1}$.

- Watch Video Solution

101. A vibrating tuning fork is placed over the mouth
of a burette filled with water. The tap of the burette is
opened and the water level gradually starts falling. It
is found that the sound from the tuning fork
becomes very loud for a particular length of the
water column.
Name the phenomenon taking place when this happens.

- Watch Video Solution

102. A vibrating tuning fork is placed over the mouth of a burette filled with water. The tap of the burette is opened and the water level gradually starts falling. It is found that the sound from the tuning fork becomes very loud for a particular length of the water column.

Why does the sound become very loud for this lenght of the water column?

- Watch Video Solution

103. What is meant by the terms (1) amplitude (2) frequency, of a wave?

- Watch Video Solution

104. Explain, why stringed musical instruments, like the guitar, are provided with a hollow box
105. It is observed that the temperature of the surroundings starts falling when the ice in a frozen lake starts melting. Give a reason for the observation.

- Watch Video Solution

106. How is the heat capacity of the body related to its specific heat capacity ?

- Watch Video Solution

107. Why does a bottle of soft drink cool faster when surrounded by ice cubes than by ice cold water, both

- Watch Video Solution

108. A certain amount of heat Q will warm 1 g of material X by $3^{\circ} \mathrm{C}$ and 1 g of material Y by $4^{\circ} \mathrm{C}$. Which material has a higher specific heat capacity ?

D Watch Video Solution

109. A calorimeter of mass 50 g and specific heat capacity $0.42 \mathrm{Jg}^{-1 \circ} \mathrm{C}^{-1}$ contains some mass of water at $20^{\circ} \mathrm{C}$. A metal piece of mass 20 g at $100^{\circ} \mathrm{C}$ is dropped into the calorimeter. After stirring, the final
temperature of the mixture is found to be $22^{\circ} \mathrm{C}$. Find the mass of water used in the calorimeter.
[specific heat capacity of the metal piece $=$ $0.3 J g^{-1 \circ} C^{-1}$

- Watch Video Solution

110. State Ohm's law and draw a neat labelled circuit diagram containing a battery, a key, a voltmeter, an ammeter, a rheostat and an unknown resistance to verify it.
111. A metal wire of resistance 6Ω is stretched so that its length is increased to twice its original length.

Calculate its new resistance.

D Watch Video Solution

112. An electrical gadget can give an electric shock to its user under certain circumstances. Mention any two of these circumstances.
113. What preventive measure provided in a gadget can protect a person from an electric shock?

- Watch Video Solution

114. The figure shows a circuit.

When the circuit is switched on, the ammeter reads
0.5A.

Calculate the value of the unknown resistor R .
115. The figure shows a circuit.

When the circuit is switched on, the ammeter reads
0.5A.

Calculate the charge passing through the 3Ω resistor in 120 s .
116. The figure shows a circuit.

When the circuit is switched on, the ammeter reads 0.5A.

Calculate the power dissipated in the 3Ω resistor.

(D) Watch Video Solution

117. Name the three main parts of a Cathode Ray

Tube.
118. What is meant by Radioactivity ?

- Watch Video Solution

119. What is meant by nuclear waste ? State one way for the safe disposal of nuclear waste.

- Watch Video Solution

120. Suggest one effective way for the safe disposal of nuclear waste.
121. Draw neat labeled diagram of a d.c. motor.

D Watch Video Solution

122. What is the function of the split rings in a d.c. motor ?

Watch Video Solution
123. State one advantage of a.c. over d.c.
124. A man having a box on his head, climbs up a slope and another man having an identical box walks the same distance on a levelled road. Who does more work against the force of gravity and why?

D Watch Video Solution

125. The forces each of magnitude 10 N act vertically
upwards and downwards respectively at the two ends
A and B of a uniform rod of length $4 m$ which is pivoted at its mid point O as shown is fig. 1.30, Determine the magnitude of the resultant moment of
forces about the pivot 0 .

- Watch Video Solution

126. A body is thrown vertically upwards. Its velocity keeps on decreasing. What happens to its kinetic energy as its velocity becomes zero ?

D Watch Video Solution

127. Draw a diagram to show how a single pulley can be used so as to have its ideal M.A. $=2$.

D Watch Video Solution

128. Derive a relationship between mechanical advantage, velocity ratio and efficiency of a machine.

D Watch Video Solution

129. Light passes through a rectangular glass slab
and through a triangular glass prism. In what way
does the direction of the two emergent beams differ and why?

- Watch Video Solution

130. Ranbir claims to have obtained an image twice the size of the object with a concave lens. Is he correct? Give a reason for your answer.

- Watch Video Solution

131. A lens forms an erect, magnified and virtual image of an object.

Name the lens.
132. A lens forms an erect, magnified and virtual image of an object.

Draw a labelled ray diagram to show the image formation.

- Watch Video Solution

133. Define the power of a lens.
134. The lens mentioned in 6 (b) above is of focal
length 25 cm . Calculate the power of the lens.

- Watch Video Solution

135. The adjacent diagram shows three different modes of vibrations P, Q and R of the same string.

Which vibration will produce a louder sound and why?

- Watch Video Solution

136. The adjacent diagram shows three different modes of vibrations P, Q and R of the same string.

The sound of which string will have maximum shrillness?

- Watch Video Solution

137. The adjacent diagram shows three different modes of vibrations P, Q and R of the same string.

State the ratio of wavelengths of P and R .
138. A type of electromagnetic wave has wavelength 50 Å.

Name the wave.

D Watch Video Solution

139. A type of electromagnetic wave has wavelength

50 Å.

What is the speed of the wave in vacuum?

Watch Video Solution

140. A type of electromagnetic wave has wavelength 50 Å.

State one use of this type of wave.

- Watch Video Solution

141. State one important property of waves used for echo depth sounding.

- Watch Video Solution

142. A radar sends a signal to an aircraft at a distance of 30 km away and receives it back after 2×10^{-4}
second. What is the speed of the signal ?

D Watch Video Solution

143. Two resistors of 4Ω and 6Ω are connected in parallel to a cell to draw 0.5 A current from the cell. Draw a labelled circuit diagram showing the above arrangement.

Watch Video Solution

144. Two resistors of 4Ω and 6Ω are connected in parallel to a cell to draw 0.5 A current from the cell.

Calculate the current in each resistor.

- Watch Video Solution

145. What is an Ohmic resistor ?

- Watch Video Solution

146. Two copper wires are of the same length, but one is thicker than the other.
(1) Which wire will have more resistance ?
(2) Which wire will have more specific resistance ?
147. Two sets A and B, of three bulbs each, are glowing in two separate rooms. When one of the bulbs in set A is fused, the other two bulbs also cease to glow. But in set B, when one bulb fuses, the other two bulbs continue to glow. Explain why this phenomenon occurs.

- Watch Video Solution

148. Two sets A and B, of three bulbs each, are glowing in two separate rooms. When one of the bulbs in set A is fused, the other two bulbs also cease to glow. But in set B, when one bulb fuses, the other
two bulbs continue to glow. Why do we prefer arrangements of Set B for house circuiting?

- Watch Video Solution

149. Heat energy is supplied at a constant rate to 100 g of ice at $0^{\circ} \mathrm{C}$. The ice is converted into water at $0^{\circ} C$ in 2 minutes. How much time will be required to raise the temperature of water from $0^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$? [Given : sp. Heat capacity of water $4.2 g^{-1 \circ} C^{-1}$, sp. latent heat of ice $=336 \mathrm{Jg}^{-1}$]

- Watch Video Solution

150. The specific heat capacity of a substance A is $3,800 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ and that of a substance B is $400 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$. Which of the two substances is a good conductor of heat ? Give a reason for your answer.

- Watch Video Solution

151. Specific heat capacity of substance A is $3.8 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$ whereas the specific heat capacity of substance B is $0.4 J g^{-1} K^{-1}$.

How is one led to the above conclusion?
152. Specific heat capacity of substance A is $3.8 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$ whereas the specific heat capacity of substance B is $0.4 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$.

If substances A and B are liquids then which one would be more useful in car radiators ?

- Watch Video Solution

153. State two ways to minimise the impact of global warming.

154. What is the greenhouse effect?

D Watch Video Solution

155. Name two factors on which the magnitude of an induced e.m.f. in the secondary coil depends.

D Watch Video Solution

156. In the following diagram an arrow shows the motion of the coil towards the bar magnet.
(1) State in which direction the current flows, A to B or B to A ?
(2) Name the law used to come to the conclusion.

D Watch Video Solution

157. A nucleus ${ }_{11} N a^{24}$ emits a beta particle to change into Magnesium (Mg).

Write the symbolic equation for the process.

D Watch Video Solution
158. A nucleus ${ }_{11} N a^{24}$ emits a β-particle to change into magnesium (Mg).

What are numbers 24 and 11 called?

D Watch Video Solution

159. A nucleus ${ }_{11} N a^{24}$ emits a beta particle to change into Magnesium (Mg).

What is the general name ${ }_{12}^{24} \mathrm{Mg}$ with respect to ${ }_{11}^{24} \mathrm{Na}$

?

160. In a cathode ray tube state:
the purpose of covering cathode by thorium and carbon.

- Watch Video Solution

161. In a cathode ray tube state :
the purpose of the fluorescent screen.

- Watch Video Solution

162. In a cathode ray tube state:

How is it possible to increase the rate of emission of

- Watch Video Solution

163. Draw a simplified diagram of a lemon crusher, indicating direction of load and effort.

(D) Watch Video Solution

164. Name the physical quantity measured in terms of horse power.
165. A nut is opened by a wrench of length 20 cm . If the least force required is 2 N , find the moment of force needed to loosen the nut.

D Watch Video Solution

166. Explain briefly why the work done by a fielder when he takes a catch in a cricket match is negative.

- Watch Video Solution

167. A block and tackle system has V.R. $=5$.

Draw a neat labelled diagram of a system indicating
the direction of its load and effort.

D Watch Video Solution

168. A block and tackle system has V.R. $=5$.

Rohan exerts a pull of 150 kgf . What is the maximum load he can raise with this pulley system if its efficiency $=75 \%$?

- Watch Video Solution

169. Where should an object be placed so that a real and inverted image of the same size as the object is obtained using a convex lens ?
A. f
B. $2 f$
C. f/2
D. centre

Answer: 2f

D Watch Video Solution

(a) (i) Where should an object be placed so that a real and inverted image of the same size as the object is
170. obtained using a convex lens ?

Draw a ray diagram to show the formation of the image as specified in the part a.

171. Why does the Sun appear reddish early in the

 morning?
D Watch Video Solution

172. Name the subjective property of light related to its wavelength.
173. Jatin puts a pencil into a glass container having water and is surprised to see the pencil in a different state.

What change is observed in the appearance of the pencil?

- Watch Video Solution

174. Jatin puts a pencil into a glass container having water and is surprised to see the pencil in a different state.

Name the phenomenon responsible for the change.
175. Jatin puts a pencil into a glass container having water and is surprised to see the pencil in a different state.

Draw a ray diagram showing how the eyes saw the pencil.

- Watch Video Solution

176. State the safe limit of sound level in terms of decibel for human hearing.
177. Name the characteristic of sound in relation to its waveform.

- Watch Video Solution

178. A person standing between two vertical cliffs and

480 m from the nearest cliff shouts. He hears the first
echo after 3 s and the second echo 2 s later.
Calculate :
The speed of sound.
179. A person standing between two vertical cliffs and 480 m from the nearest cliff shouts. He hears the first echo after 3 s and the second echo 2 s later.

Calculate :

The distance of the other cliff from the person.

- Watch Video Solution

180. In the diagram below, A, B, C, D are four pendulums suspended from the same elastic string PQ. The length of A and Care equal to each other while the length of pendulum B is smaller than that of D. Pendulum A is set into a mode of vibrations.

Name the type of vibrations taking place in pendulums B and D ?

- Watch Video Solution

181. In the diagram below, A, B, C, D are four pendulums suspended from the same elastic string

PQ . The length of A and Care equal to each other while the length of pendulum B is smaller than that of D. Pendulum A is set into a mode of vibrations.

What is the state of pendulum C ?

- Watch Video Solution

182. In the diagram below, A, B, C, D are four pendulums suspended from the same elastic string PQ. The length of A and Care equal to each other while the length of pendulum B is smaller than that of D. Pendulum A is set into a mode of vibrations.

State the reason for the type of vibrations in pendulums B and C .

D Watch Video Solution
183. Name the device used to increase the voltage at
a generating station.
184. At what frequency is A.C. supplied to residential houses?

D Watch Video Solution

185. Name the wire in a household electrical circuit to which the switch is connected.

D Watch Video Solution

186. The relationship between the potential difference and the current in a conductor is stated in
the form of a law.

Name the law.

D Watch Video Solution

187. The relationship between the potential difference
and the current in a conductor is stated in the form
of a law.
What does the slope of V-I graph for a conductor represent?
188. The relationship between the potential difference and the current in a conductor is stated in the form of a law.

Name the material used for making the connecting wire.

- Watch Video Solution

189. A cell of emf 2 V and internal resistance 1.2Ω is
connected with an ammeter of resistance 0.8Ω and
two resistors of 4.5Ω and 9Ω as shown in the diagram below:

What would be the reading on the Ammeter ?

D Watch Video Solution
190. A cell of emf 2 V and internal resistance 1.2Ω is
connected with an ammeter of resistance 0.8Ω and
two resistors of 4.5Ω and 9Ω as shown in the diagram below:

What is the potential difference across the terminals of the cell ?

D Watch Video Solution

191. Name a gas caused by the Greenhouse effect.

- Watch Video Solution

192. Which property of water makes it an effective coolant?
A. latent heat
B. specific heat
C. melting point
D. boiling point

Answer: specific heat

193. Water in lakes and ponds do not freeze at once in cold countries. Give a reason in support of your answer.

D Watch Video Solution

194. What is the principle of Calorimetry?

- Watch Video Solution

195. Name the law on which this principle is based.
196. State the effect of an increase of impurities on the melting point of ice.

- Watch Video Solution

197. A refrigerator converts 100 g of water at $20^{\circ} \mathrm{C}$ to ice at $-10^{\circ} C$ in 35 minutes.

Calculate the average rate of heat extraction in terms of watts.

Given : Specific heat capacity of ice $=2.1 \mathrm{Jg}^{-1{ }^{\circ}} \mathrm{C}^{-1}$
Specific heat capacity of water $=4.2 \mathrm{Jg}^{-10} \mathrm{C}^{-1}$
Specific Latent heat of fusion of ice $=336 \mathrm{Jg}^{-1}$
198. Thermionic emissions are related to

D Watch Video Solution

199. Name the unit in which the work function of a metal is expressed.

D Watch Video Solution

200. Complete the diagram by drawing the deflection

 of radioactive radiations in an electric field.

D Watch Video Solution
201. Mention two important precautions that should be taken while handling radioactive materials

D Watch Video Solution
202. An atomic nucleus A is composed of 84 protons and 128 neutrons. The nucleus A emits and alpha particle and is transformed into a nucleus B.
(i) What is the composition of B ?
(ii) The nucleus B emits a beta particle and is transformed into a nucleus C. What is the composition of C?
(iii) What is mass number of the nucleus A ?
(iv) Does the composition of C change if it emits gamma radiations ?

- Watch Video Solution

203. An atomic nucleus A is composed of 84 protons and 128 neutrons. The nucleus A emits and alpha particle and is transformed into a nucleus B.
(i) What is the composition of B ?
(ii) The nucleus B emits a beta particle and is transformed into a nucleus C. What is the composition of C ?
(iii) What is mass number of the nucleus A ?
(iv) Does the composition of C change if it emits gamma radiations ?

- Watch Video Solution

204. An atomic nucleus A is composed of 84 protons and 128 neutrons.

Does the composition of nucleus C change if it emits gamma radiations?

D Watch Video Solution

205. A uniform half metre rule balances horizontally on a knife edge at 29 cm mark when a weight of 20 gf is suspended from one end.

Draw a diagram of the arrangement.

206. A uniform half metre rule balances horizontally

 on a knife edge at 29 cm mark when a weight of 20 gf is suspended from one end.What is the weight of the half metre rule ?

- Watch Video Solution

207. A boy uses a single fixed pulley to lift a load of 50
kgf to some height. Another boy uses a single movable pulley to lift the same load to the same height. Compare the effort applied by them. Give a reason to support your answer.
208. How does uniform circular motion differ from uniform linear motion?

- Watch Video Solution

209. Name the process used for producing electricity using nuclear energy.

- Watch Video Solution

210. A pulley system with V.R. $=4$ is used to lift a load
of 175 kgf through a vertical height of 15 m . The effort
required is 50 kgf in the downward direction.
$\left(g=10 \mathrm{Nkg}^{-1}\right)$
Calculate :

Distance moved by the effort.

- Watch Video Solution

211. A pulley system with V.R. $=4$ is used to lift a load of 175 kgf through a vertical height of 15 m . The effort required is 50 kgf in the downward direction. $\left(g=10 \mathrm{Nkg}^{-1}\right)$

Calculate :
Work done by the effort.
212. A pulley system with V.R. $=4$ is used to lift a load of 175 kgf through a vertical height of 15 m . The effort required is 50 kgf in the downward direction. $\left(g=10 \mathrm{Nkg}^{-1}\right)$

Calculate :
M.A. of the pulley system.

- Watch Video Solution

213. A pulley system with V.R. $=4$ is used to lift a load of 175 kgf through a vertical height of 15 m . The effort required is 50 kgf in the downward direction.
$\left(g=10 \mathrm{Nkg}^{-1}\right)$
Calculate :
Efficiency of the pulley system.

- Watch Video Solution

214. How is the transference of heat energy by radiation prevented in a calorimeter ?

- Watch Video Solution

215. You have a choice of three metals A, B and C, of specific heat capacities
$900 \mathrm{Jkg}^{-1 \circ} \mathrm{C}^{-1}, 380 \mathrm{Jkg}^{-1 \circ} \mathrm{C}^{-1}$ and $460 \mathrm{Jkg}^{-1 \circ} \mathrm{C}^{-1}$
respectively, to make a calorimeter. Which material will you select? Justify your answer.

- Watch Video Solution

216. Calculate the mass of ice needed to cool 150 g of water contained in a calorimeter of mass 50 g at 32°

C such that the final temperature is $5^{\circ} \mathrm{C}$. Specific heat capacity of calorimeter $=0.4 \mathrm{~J}^{-1} \wedge \circ C^{-1}$, specific heat capacity of water $=4.2 \mathrm{~J} \mathrm{~g}{ }^{-10} \mathrm{C}^{-1}$, latent heat capacity of ice $=330 \mathrm{~J} g^{-1}$.

D Watch Video Solution

217. Name the radiations which are absorbed by the green house gases in the earth's atmosphere.

D Watch Video Solution

218. A radiation X is focused by a particular device on
the bulb of a thermometer and mercury in .the thermometer shows a rapid increase. Name the radiation X .
219. Name two factors on which the heat energy
liberated by a body depends.

- Watch Video Solution

220. A lens forms an upright and diminished image of an object when the object is placed at the focal point of the given lens.

Name the lens.
221. A lens forms an upright and diminished image of an object when the object is placed at the focal point of the given lens.

Draw a ray diagram to show the image formation.

D Watch Video Solution

222. A ray of light travels from water to air as shown
in the diagram given below:

Copy the diagram and complete the path of the ray.
Given the critical angle for water is 48°.

(D) Watch Video Solution

223. A ray of light travels from water to air as shown in the diagram given below:

State the condition so that total internal reflection occurs in the above diagram.

- Watch Video Solution

224. The diagram below shows a point source P inside a water container. Four rays A, B, C, D starting from the source P are shown up to the water surface.

Show in the diagram the path of these rays after striking the water surface. The critical angle for water air surface is 48°.

D Watch Video Solution

225. The diagram below shows a point source P inside
a water container. Four rays A, B, C, D starting from the source P are shown up to the water surface.

Name the phenomenon which the rays B and D exhibit.

- Watch Video Solution

226. State two physical factors which determine loudness of sound.
227. Name the factor that determines :

Quality of the note.

- Watch Video Solution

228. Name the factor that determines:

Pitch of the note.

- Watch Video Solution

229. What are damped vibrations ?

230. Give examples of damped oscillation.

- Watch Video Solution

231. Name the phenomenon that cause a loud sound when the stem of a vibration tuning fork is kept pressed on the surface of a table.

- Watch Video Solution

232. A certain sound has a frequency of 256 hertz and a wavelength of 1.3 m .
(a) Calculate the speed with which this sound travels.
(b)What difference would be felt by a listener between the above sound and another sound travelling at the same speed, but of wavelength 2.6 m ?

Watch Video Solution

233. Derive a relationship between S.I. and C.G.S. unit of work.

D Watch Video Solution

234. A Force F acts on a body and displaces it by a
distance S in direction at an angle θ with the
direction of force ,(a) Write the expression for the work done by the force,(b)What should be the angle between the force and displacement so that the work done is (i)zero ,(ii)Maximum ?

D Watch Video Solution

235. A half metre rod is pivoted at the centre with two weights of 20 gf and 12 gf suspended at a perpendicular distance of 6 cm and 10 cm from the pivot respectively as shown below.

Which of the two forces acting on the rigid rod causes clockwise moment?

- Watch Video Solution

236. A half metre rod is pivoted at the centre with two weights of 20 gf and 12 gf suspended at a perpendicular distance of 6 cm and 10 cm from the pivot respectively as shown below:

Is the rod in equilibrium?

D Watch Video Solution

237. A half metre rod is pivoted at the centre with two
weights of 20 gf and 12 gf suspended at a perpendicular distance of 6 cm and 10 cm from the pivot respectively as shown below:

The direction of 20 kgf force is reversed. What is the magnitude of the resultant moment of the forces on the rod?

D Watch Video Solution

238. Draw a diagram to show a block and tackle pulley
system having a velocity ratio of 3 marking the
direction of load (L), effort (E) and tension (T).

239. A pulley system has a velocity ratio 3 . draw a diagram showing the point of applicationi and direction of load (L), effort (E) and tension (T). It lifts a load of 150 N by an effot of 60 N . calculate its mechanical advantage. Is the pulley system ideal ?

Give reason.
240.
 support

Is the above pulley system an ideal machine or not ?

- Watch Video Solution

241.

A ray of light XY passes through a right angled isosceles prism as shown alongside Figure.
(a) What is the angle through which the incident ray
deviates and emerges out of the prism?
9b) Name the instrument where this action of prism is put into use.
(c) Which prism surface will behave as a mirror ?

- Watch Video Solution

242. A ray of light $X Y$ passes through a right angled isosceles prism as shown alongside.

Name the instrument where this action of prism is
put into use.

D Watch Video Solution
243. A ray of light XY passes through a right angled isosceles prism as shown below:

Which prism surface will behave as a mirror?

D Watch Video Solution
244. An object $A B$ is placed between O and F_{1} on the principal axis of a converging lens as shown in the diagram.

Mark is an error by the Council. We suggest you to use ' $2 F_{1}$ ' instead of ' $1 F_{1}$ '.

Copy the diagram and by using three standard rays starting from point A , obtain an image of the object AB.

- Watch Video Solution

245. An object is placed at a distance of 12 cm from a convex lens of focal length 8 cm . Find :
the position of the image

Watch Video Solution

246. An object is placed at a distance of 12 cm from a convex lens of focal length 8 cm . Find : nature of the image

- Watch Video Solution

247. Draw a diagram of a right angled isoscels prism which is used to make an inverted image erect.

- Watch Video Solution

248. The diagram below shows a wire stretched over a sonometer. Stems of two vibrating tuning forks A and B are touched in turn to the wooden box of the sonometer. It is observed that the paper rider (a small piece of paper folded at the centre) present on the wire flies off when the stem of vibrating tuning fork B is touched to the wooden box but the paper just vibrates when the stem of vibrating tuning fork A is touched to the wooden box.

Name the phenomenon when the paper rider just vibrates.

249.

The diagram above shows a wire stretched over a sonometer. Stems of two vibrating tuning forks A and B are touched to the wooden box of the sonometer. It is observed that the paper rider (a small piece of paper folded at the centre) present on the wire flies off when the stem of vibrating tuning fork B is
touched to the wooden box but the paper just vibrates when the stem of vibrating tuning fork A is touched to the wooden box.

Name the phenomenon when the paper rider flies off.

- Watch Video Solution

250.

The diagram above shows a wire stretched over a
sonometer. Stems of two vibrating tuning forks A and
B are touched to the wooden box of the sonometer. It
is observed that the paper rider (a small piece of paper folded at the centre) present on the wire flies off when the stem of vibrating tuning fork B is touched to the wooden box but the paper just vibrates when the stem of vibrating tuning fork A is touched to the wooden box.

Why does the paper rider fly off when the stem of tuning fork B is touched to the box ?

- Watch Video Solution

251. A person is standing at the sea shore. An observer on the ship which is anchored in between a vertical cliff and the person on the shore fires a gun. the person on the shore hears two sounds, 2 seconds and 3 seconds after seeing the smoke of the fired gun. If the speed of sound in the air is $320 \mathrm{~ms}^{-1}$-, then calculate :

the distance between the observer on the ship and the person on the shore.
252. A person is standing at the sea shore. An observer on the ship which is anchored in between a vertical cliff and the person on the shore fires a gun. the person on the shore hears two sounds, 2 seconds and 3 seconds after seeing the smoke of the fired gun. If the speed of sound in the air is $320 \mathrm{~ms}^{-1}$-, then calculate :

the distance between the cliff and the observer on the ship.
253. A fuse is rated 8 A . Can it be used with an electrical appliance rated $5 \mathrm{~kW}, 200 \mathrm{~V}$? Give a reason.

- Watch Video Solution

254. Name two safety devices which are connected to the live wire of a household electric circuit.
255. Find the equivalent resistance between A and B.

- Watch Video Solution

256. State whether the resistivity of a wire changes with the change in the thickness of the wire.
257. An electric iron is rated $220 \mathrm{~V}, 2 \mathrm{~kW}$.

If the iron is used for 2 h daily find the cost of running it for one week if it costs Rs. 4.25 per kWh.

(D) Watch Video Solution

258. An electric iron is rated at $220 \mathrm{~V}, 2 \mathrm{~kW}$.

Why is the fuse absolutely necessary in a power circuit?
259. Heat supplied to a solid changes it into liquid. What is this change in phase called ?

- Watch Video Solution

260. During the phase change does the average kinetic energy of the molecules of the substance increase?

D Watch Video Solution

261. What is the energy absorbed during the phase
change called ?
262. State two differences between "Heat Capacity" and "Specific Heat Capacity"

- Watch Video Solution

263. What is the relationship between heat capacity and specific heat capacity of a substance ?
264. The temperature of 170 g of water at $50^{\circ} \mathrm{C}$ is lowered to $5^{\circ} \mathrm{C}$ by adding certain amount of ice to it.

Find the mass of ice added. Given : Specific heat capacity of water $=4200 \mathrm{Jkg}^{-1} \wedge \circ C^{-1}$ and specific latent heat of ice $=336000 \mathrm{~J} \mathrm{~kg}^{-1}$.

- Watch Video Solution

265. The diagram shows a coil wound around a U
shape soft iron bar AB.

What is the polarity induced at the ends A and B when the switch is pressed ?

D Watch Video Solution
266. The diagram shows a coil wound around a U shape soft iron bar AB.

Suggest one way to strengthen the magnetic field in the electromagnet.
267. The diagram shows a coil wound around a U shape soft iron bar AB.

What will be the polarities at A and B if the direction of current is reversed in the circuit ?
268. The ore of Uranium found in nature contains
${ }_{92}^{238} \operatorname{Uand}_{92}^{235} U$. Although both the isotopes are fissionable, it is found out experimentally that one of the two isotopes is more easily fissionable.

Name the isotope of Uranium which is easily fissionable

D Watch Video Solution

269. The ore of uranium found in nature contains ${ }_{92} U^{238}$ and ${ }_{92} U^{235}$. Although both the isotopes are fissionable, it is found out experimentally that one of
the two isotopes is more easily fissionable.

Give a reason for your answer.

- Watch Video Solution

270. The ore of uranium found in nature contains
${ }_{92} U^{238}$ and ${ }_{92} U^{235}$. Although both the isotopes are fissionable, it is found out experimentally that one of the two isotopes is more easily fissionable.

Write a nuclear reaction when Uranium 238 emits an alpha particle to form a Thorium (Th) nucleus.

- Watch Video Solution

271. Radiations given out from a source when subjected to an electric field in a direction perpendicular to their path are shown below in the diagram. The arrows show the path of the radiation A, B and C. Answer the following question in terms of A, B and C.

Name the radiation B which is unaffected by the electrostatic field.

- Watch Video Solution

272. Radiations given out from a source when subjected to an electric field in a direction perpendicular to their path are shown below in the diagram. The arrows show the path of the radiation
A, B and C. Answer the following question in terms of
A, B and C.

Why does the radiation C deflect more than A ?
(D) Watch Video Solution
273. Radiations given out from a source when subjected to an electric field in a direction perpendicular to their path are shown below in the
diagram. The arrows show the path of the radiation
A, B and C. Answer the following question in terms of
A, B and C.

Which among the three causes the least biological damage extremlly?
274. Radiations given out from a source when subjected to an electric field in a direction perpendicular to their path are shown below in the diagram. The arrows show the path of the radiation
A, B and C. Answer the following question in terms of
A, B and C.

Name the radiation which is used in carbon dating.

(Watch Video Solution

275. The figure below shows a simple pendulum of mass 200 g . It is displaced from the mean position A to the extreme position B. The potential energy at the position A is zero. At the position B the pendulum bob is raised by 5 m .

(i) What is the potential energy of the pendulum at
the position B ?
(ii) What is the total mechanical energy at point C ?
(iii) What is the speed of the bob at the position A when released from B ?
(Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$ and there is no loss of energy.)

- Watch Video Solution

276. With reference to the direction of action, how does a centripetal force differ from a centrifugal during uniform circular motion?
(D) Watch Video Solution
277. Is centrifugal force the force of reaction of centripetal force ?

- Watch Video Solution

278. Compare the magnitudes of centripetal and centrifugal force.

- Watch Video Solution

279. A block and tackle system of pulleys has velocity
ratio 4.

Draw a neat labelled diagram of the system
indicating clearly the points of application and direction of load and effort.

- Watch Video Solution

280. A block and tackle system of pulleys has velocity ratio 4.

What will be its V. R. if the weight of the movable block is doubled?

D Watch Video Solution

281. A diver in water looks obliquely at an object $A B$ in air.

Does the object appear taller, shorter or of the same size to the diver?

- Watch Video Solution

282. A diver in water looks obliquely at an object $A B$ in air.

Show the path of two rays $A C$ and $A D$ starting from
the tip of the object as it travels towards the diver in water and hence obtain the image of the object.

- Watch Video Solution

283. Complete the path of the ray $A B$ through the glass prism in $P Q R$ till it emerges out of the prism.

Given the critical angle of the glass as 42°.

- Watch Video Solution

284. A lens of focal length 20 cm forms an inverted image at a distance 60 cm from the lens.
(i) Identify the lens.
(ii) How far is the lens present in front of the object?
(iii) Calculate the magnification of the image.

- Watch Video Solution

285. Give reasons for the following:

During the day :
Clouds appear white.
286. Give reasons for the following:

During the day :
Sky appears blue.

D Watch Video Solution

287. Name the system which enables us to locate underwater objects by transmitting ultrasonic waves and detecting the reflecting impulse.
288. What are acoustically measurable quantities related to pitch and loudness?

- Watch Video Solution

289. When a tuning fork (vibrating) is held close to ear, one hears a faint hum. The same (vibrating tuning fork) is held such that its stem is in contact with the table surface, then one hears a loud sound.

Explain.

- Watch Video Solution

290. A man standing in front of a vertical cliff fires a gun. He hears the echo after 3.5 seconds. On moving closer to the cliff by 84 m , he hears the echo after 3 seconds. Calculate the distance of the cliff from the initial position of the man.

- Watch Video Solution

291. The diagram below shows the core of a transformer and its input and output connections.

State the material used for the core.

- Watch Video Solution

292. The diagram below shows the core of a transformer and its input and output connections.

Copy and complete the diagram of the transformer by drawing input and output coils.

- Watch Video Solution

293. Superconductors are:
294. Calculate the current drawn by an appliance rated $110 \mathrm{~W}, 220 \mathrm{~V}$ when connected across 220 V supply.

- Watch Video Solution

295. Name a substance whose resistance decreases
with the increase in temperature.

D Watch Video Solution

296.

The diagram above shows three resistors connected across a cell of e.m.f. 1.8 V and internal resistance r . Calculate :

Current through 3Ω resistor.
(D) Watch Video Solution
297.

The diagram above shows three resistors connected across a cell of e.m.f. 1.8 V and internal resistance r .

Calculate :

The internal resistance r.

(D) Watch Video Solution

298. Define heat capacity of a substance.
299. The diagram below shows a claw hammer used to remove a nail :

(i) To which class of lever does it belong?
(ii) Give one more example of the same class of lever mentioned by you in (i) for which the mechanical advantage is greater than one.
300. Two bodies A and B have masses in the ratio $5: 1$ and their kinetic energies are in the ratio $125: 9$. Find the ratio of their velocities.

- Watch Video Solution

3. Name the physical quantity which is measured in calorie.How is it related to the S.I. unit of that quantity?
4. Name the physical quantity which is measured in calorie.How is it related to the S.I. unit of that quantity?

D Watch Video Solution
5. Define couple.

D Watch Video Solution

6. State the S.I. unit of moment of couple.
7. Define critical angle. How does it depend on the wavelength of incident light?

D Watch Video Solution

8. State one important factor which affects the critical angle of a given medium.

- Watch Video Solution

9. An electromagnetic radiation is used for photography in fog.

Identify the radiation.

D Watch Video Solution

10. An electromagnetic radiation is used for photography in fog.

Why is this radiation mentioned by you, ideal for this purpose?

Watch Video Solution

11. What is the relation between the refractive index of water with respect to air $\left({ }_{a} \mu_{w}\right)$ and the refractive index of air with respect to water $\left({ }_{w} \mu_{a}\right)$.
12. If the refractive index of water with respect to air $\left({ }_{a} \mu_{w}\right)$ is $\frac{5}{3}$. Calculate the refractive index of air with respect to water $\left({ }_{w} \mu_{a}\right)$.

- Watch Video Solution

13. The specific heat capacity of a substance A is
$3,800 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ and that of a substance B is
$400 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$. Which of the two substances is a
good conductor of heat ? Give a reason for your answer.
14. A man playing a flute is able to produce notes of different frequencies. If he closes the holes near his mouth, will the pitch of the note produced, increase or decrease? Give a reason.

- Watch Video Solution

15. The diagram alongside shows a light source P embedded in a rectangular glass block $A B C D$ of critical angle 42°. Complete the path of the ray PQ till
it emerges out of the block. [Write necessary angles.]

- Watch Video Solution

16. If the lens is placed in water instead of air, how does its focal length change?
(D) Watch Video Solution
17. Which lens, thick or thin has greater focal length?

- Watch Video Solution

18. Two waves of the same pitch have amplitudes in the ratio 1 : 3 . What will be the ratio of their : intensities and

- Watch Video Solution

19. Two waves of the same pitch have amplitudes in the ratio $1: 3$. What will be the ratio of their :
frequencies?
A. 1:9
B. 9:1
C. 1:1
D. no change

Answer: no change

D Watch Video Solution

20. How does an increase in the temperature affect the specific resistance of a :

Metal and
21. How does an increase in the temperature affect the specific resistance of a:

Semiconductor?
(D) Watch Video Solution
22. State two differences between the forced and resonant vibrations.
23. Which characteristic of sound, makes it possible to recognize a person by his voice without seeing him ?

- Watch Video Solution

24. Is it possible for a hydrogen $\left({ }_{1}^{1} H\right)$ nucleus to emit an alpha particle ? Give a reason for your answer.

- Watch Video Solution

25. Calculate the effective resistance across AB :

- Watch Video Solution

26. State whether the specific heat capacity of a substance remains the same when its state changes from solid to liquid.

27. Give one example to support your answer.

D View Text Solution

28. A magnet kept at the centre of two coils A and B is moved to and fro as shown in the diagram. The two galvanometers show deflection.

State with a reason whether :
$x>y$
or $x<y$. [x and y are magnitudes of deflection]

D Watch Video Solution
29. Why is a nuclear fusion reaction called a thermo nuclear reaction?

Watch Video Solution
30. State two ways to increase the speed of rotation of a D.C. motor.

1. A body of mass 10 kg is kept at a height of 5 m . It is allowed to fall and reach the ground.

What is the total mechanical energy possessed by the body at the height of 2 m assuming it is a frictionless medium ?

- Watch Video Solution

2. A body of mass 10 kg is kept at a height of 5 m . It is allowed to fall and reach the ground.

What is the kinetic energy possessed by the body just before hitting the ground? (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$).
3. A uniform meter scale is in equilibrium as shown in the diagram : Calculate the weight of the meter scale.
(ii) Which of the following options is correct to keep the ruler in equilibrium when 40 gf wt is shifted to 0 cm mark?

F is shifted towards 0 cm .

Or

F is shifted towards 100 cm .
4. The diagram below shows a pulley arrangemnet :
(i) Copy the diagram and mark the direction of tension on each strand of the string.
(ii) What is the velocity ratio of the arrangement ?
(iii) If the tension acting on the string is T, then what is the relationship between T and effort E ?
(iv) If the free end of the string moves through a distance x, find the distance by which the load is raised.

- Watch Video Solution

5. How does the angle of deviation formed by a prism change with the increase in the angle of incidence ?

Draw a graph showing the variation in the angle of deviation with the angle of incidence at a prism surface.

- Watch Video Solution

6. A virtual, diminished image is formed when an object is placed between the optical centre and the principal focus of a lens.

Name the type of lens which forms the above image.
B. concave
C. both
D. none

Answer: concave

D Watch Video Solution

7. A virtual, diminished image is formed when an object is placed between the optical centre and the principal focus of a lens.

Draw a ray diagram to show the formation of the image with the above stated characteristics.
8. An object is placed at a distance 24 cm in front of a convex lens of focal length 8 cm .
(i) What is the nature of the image so formed ?
(ii) Calculate the distance of the image from the lens.
(iii) Calculate the magnification of the image.

D Watch Video Solution

9. It is observed that during march-past we hear a base drum distinctly from a distance compared to the side drums.

Name the characteristics of sound associated with the above observation.

D Watch Video Solution

10. It is observed that the temperature of the surroundings starts falling when the ice in a frozen lake starts melting. Give a reason for the observation.

- Watch Video Solution

11. A pendulum has a frequency of 4 vibrations per
second. An observer starts the pendulum and fires a gun simultaneously. He hears the echo from the cliff
after 6 vibrations of the pendulum. If the velocity of sound in air is $340 \mathrm{~m} / \mathrm{s}$, find the distance between the cliff and the observer.

- Watch Video Solution

12. Two pendulums C and D suspended from a wire as
shown in the figure given below. Pendulum C is made to oscillate by displacing it from its mean position. It is seen that D also starts oscillating.
(i) Name the type of oscillation, C will execute.
(ii) Name the type of oscillation, D will execute.
(iii) If the length of D is made equal to C then what difference will you notice in the oscillations of D ?
(iv) What is the name of the phenomenon when the length of D is made equal to C ?
13. Write one advantage of connecting electrical appliances in parallel combination.

- Watch Video Solution

14. What characteristics should a fuse wire have?
A. high melting point, high specific resistance
B. low melting point, low specific resistance
C. high melting point, low specific resistance
D. low melting point, high specific resistance

(D) Watch Video Solution

15. Which wire in a power circuit is connected to the metallic body of the appliance?

D Watch Video Solution

16. The diagram below shows a dual control switch circuit connected to a bulb.

Copy the diagram and complete it so that the bulb is

 switched ON.
- Watch Video Solution

17. The diagram below shows a dual control switch circuit connected to a bulb.

Out of A and B which one is the live wire and which one is the neutral wire?
18. The diagram alongside shows a circuit with the
key k open. Calculate :

the resistance of the circuit when the key k is open.

-
 Watch Video Solution

19. The diagram alongside shows a circuit with the key k open. Calculate :

the current drawn from the cell when the key k is open.
20.

The diagram above shows a circuit with the key k open. Calculate :
the resistance of the circuit when the key k is closed.

D Watch Video Solution
21.

The diagram above shows a circuit with the key k open. Calculate :
the current drawn from the cell when the key k is closed.

D Watch Video Solution
22. Define Calorimetry.
23. Name the material used for making a Calorimeter.

- Watch Video Solution

24. Why is a Calorimeter made up of thin sheets of the above material.

- Watch Video Solution

25. The melting point of naphthalene is $80^{\circ} C$ and
the room temperature is $30^{\circ} \mathrm{C}$. A sample of liquid naphthalene at $100^{\circ} \mathrm{C}$ is cooled down to the room
temperature. Draw a temperature time graph to represent this cooling. In the graph, mark the region which corresponds to the freezing process.

- Watch Video Solution

26. 104 g of water at $30^{\circ} \mathrm{C}$ is taken in a calorimeter made of copper of mass 42 g . When a certain mass of ice at $0^{\circ} \mathrm{C}$ is added to it, the final steady temperature of the mixture after the ice has melted, was found to be $10^{\circ} \mathrm{C}$. Find the mass of ice added. [Specific heat capacity of water $=4.2 \mathrm{~J} g^{-1 \circ} C^{-1}$, Specific latent
heat of fusion of ice $=336 \mathrm{~J} g^{-1}$, Specific heat capacity of copper $=0.4 \mathrm{Jg}^{-1 \circ} \mathrm{C}^{-1} \mathrm{]}$.

- Watch Video Solution

27. Draw a neat labelled diagram of an A.C. generator.

D Watch Video Solution

28. Define nuclear fission.

D Watch Video Solution
29. Rewrite and complete the following nuclear reaction by filling in the atomic number of Ba and
mass number of Kr :
${ }_{92}^{235} U+{ }_{0}^{1} n \rightarrow{ }_{.}^{144} B a+\underset{36}{\dddot{2}} K r+3{ }_{0}^{1} n+$ Energy

- Watch Video Solution

30. The diagram below shows a magnetic needle kept
just below the conductor AB which is kept in North
South direction.

In which direction will the needle deflect when the key is closed?
31. The diagram below shows a magnetic needle kept just below the conductor AB which is kept in North South direction.

Why is the deflection produced?

D Watch Video Solution
32. The diagram below shows a magnetic needle kept just below the conductor $A B$ which is kept in North South direction.

What will be the change in the deflection of the magnetic needle is taken just above the conductor $A B$
?
33. The diagram below shows a magnetic needle kept just below the conductor AB which is kept in North South direction.

Name one device which works on this principle.

D Watch Video Solution

Multiple Choice Questions

1. A physical change that a particular individual undergoes may be termed as:
A. Growth
B. Development
C. Progress
D. Improvement

Answer: A

- View Text Solution

2. Which of the below stages is called as a "Period of storm \& stress"?
A. Childhood
B. Adulthood
C. Adolescence
D. Infancy

Answer: C

A. The growth of a child's ability to think and reason
B. Being able to speak in full sentences and have quite a good vocabulary.
C. Eating ice cream with chop sticks.
D. Physical development involves developing
control over the body, particularly muscles and physical

Answer: D

4. Choose the best definition of gross motor skills.
A. Gross motor skills involve developing the ability
to be able to think about things that happen to
you.
B. Gross motor skills are those which require
whole body movement, and which involve the
large muscles of the body to perform everyday
functions, such as standing walking, running
C. Gross motor skilis involve the ability to
understand your emotions and feelings.

D. Gross motor skills involve the development of

 the ability to use scissors accurately.
Answer: B

D View Text Solution

5. Locomotor skills include:
A. The ability to sleep for 8 hours
B. Walking, running and hopping
C. Sharing and tum taking
D. Eating and pencil control

Answer: B

D View Text Solution

6. Which among these is a not a factor that influences growth and development?
A. Hereditary
B. Nutrition
C. Lifestyle
D. Environmental

Answer: C

7. The ability to use SMALL muscle groups is known as

 __- motor skills.A. Gross
B. Moral
C. Fine
D. Social

Answer: C
8. The number of times you exercise each week:
A. Frequency
B. Frequent

C. Training Schedule

D. Time

Answer: A

- View Text Solution

9. How hard the exercise is?
A. Intensity
B. Overload

C. Difficulty

D. Type

Answer: A

D View Text Solution

10. Focusing training on activities and exercises relevant to an individual's sporting goals and needs:
A. Specificity
B. Variation

C. Adaptation

D. Type

Answer: A

D View Text Solution

11. Training at an appropriate intensity and gradually increasing the amount of stress placed on the body:
A. Progressive Overload
B. Adaptation
C. Intensity

D. Type

Answer: A

- View Text Solution

12. By ensuring that you progressively overload your body you encourage it to adapt to new stresses being placed upon it
A. Adaptation
B. Variation
C. Intensity
D. Specificity

D View Text Solution

13. Simon is 43 years old. Calculate his max heart rate.
A. $220-43=177$
B. 200-43=157
C. $230-43=187$
D. 220-53=167

Answer: A

14. Changes that occur in an individual's personality, emotions, and relationships with others refer to development.
A. Biological
B. Physical
C. Cognitive
D. Socio-emotional

Answer: D

- View Text Solution

15. What component would be the most important to a long-distance runner?
A. Reaction time
B. Cardiovascular endurance
C. Agility
D. Muscular strength

Answer: B

- View Text Solution

16. The push-up test measures

A. Flexibility

B. Cardiovascular Endurance

C. Body Composition

D. Muscular Endurance and Muscle Strength

Answer: D

D View Text Solution

17. Skill component that describes the ability to stabilise or control the body while standing or moving
A. Agility
B. Speed

C. Balance

D. Reaction time

Answer: C

- View Text Solution

18. What skill component describes the amount of
force you can create when performing a task?
A. Speed
B. Power
C. Balance
D. Coordination

Answer: B

D View Text Solution

19. What do we call physical activity done to keep the body fit and healthy?
A. Program
B. Flexibility
C. Endurance

D. Exercise

Answer: D

D View Text Solution

20. What is an advantage to exercise?

A. Improves quality of life
B. Decreases chronic disease
C. Stress relief
D. All of these
21. What type of exercise is more appropriate in the cool down as they help the muscles to relax?
A. Static stretching
B. Strength exercise
C. Dynamic stretching
D. Endurance exercise

Answer: A
22. What is the correct sequence of an exercise program?
A. Cool down, warm up, work out
B. Work out, cool down, warn up
C. Work out, warm up, cool down
D. Warm up, work out, cool down

Answer: D

- View Text Solution

23. What principles of exercise state that we are unique to each other in terms of fitness level, fitness goals, and nutritional preferences?
A. Specificity
B. Adaptation
C. Individuality
D. Progression

Answer: C
24. This is an instructional program that gives attention to the development and care of the body.
A. Physical Education
B. Physical Development
C. Physical Fitness
D. Physical Curriculum

Answer: A

- View Text Solution

25. This development can be acquired through physical education when someone acquires positive traits such as confidence, discipline, courage and perseverance.
A. Emotional Development
B. Mental Development
C. Physical Development
D. Social Development

Answer: A

26. What is flexibility?

A. The ability to maintain centre of mass over a
base of support
B. The ability to move a joint fluidly through its
complete range of motion
C. The maximum amount of force that can be generated by a muscle or muscle group
D. The ability to quickly and precisely move or
change direction without losing balance or time
27. An immediate and temporary care given to a person who has been injured or suddenly taken ill.
A. Moral Support
B. Therapy
C. First Aid
D. Exercise

Answer: C
28. When the two bones that come together to form
a joint become separated, the joint is described as being \qquad
A. Dislocated
B. Fractured
C. Sprained
D. Strained

Answer: A

29. The " E " in the RICE method is

A. Enquire
B. Emergency
C. Elongate
D. Elevate

Answer: D

- View Text Solution

30. What does aerobic mean?
A. Without oxygen
B. With oxygen
C. Bows and arrows
D. None of these

Answer: B

- View Text Solution

31. What is reaction time?
A. The time taken to respond to a stimulus.
B. The ability to perform strength performances quickly
C. The ability to put body parts into motion quickly.
D. The ability to use two or more body parts together.

Answer: A

D View Text Solution

32. Ideal choice of sport for Endomorphs can be
A. Weightlifting
B. Marathon running
C. Long Jump
D. High Jump

Answer: A

- View Text Solution

33. Which of the following is not a body type?
A. Ectomorph
B. Mesomorph
C. Hectomorph
D. Endomorph

Answer: C

D View Text Solution

34. What is a somatotype?
A. The size of your foot
B. A bunch of tomatoes
C. Classifying a body type
D. How you play sport

Answer: C

D View Text Solution

35. This body type typically has narrow shoulders, chest, hips, and abdomen.
A. Ectomorph
B. Mesomorph
C. Hectomorph
D. Endomorph

36. Mesomorph's are

A. Hard muscular body
B. Delicate built
C. Lightly muscled
D. Round shape

Answer: A

D View Text Solution
37. What is the reason for a warm up?
A. To increase likelihood of injuries
B. To decrease muscle temperature
C. To burn more calories
D. To increase heart rate and blood flow to muscles

Answer: D

- View Text Solution

38. Which of the following is not a soft tissues?
A. Ligaments
B. Skin
C. Bone
D. Muscle

Answer: C

D View Text Solution
39. Overload in sports training relates to when:
A. the oxygen is adequate to supply the need of the body.
B. the oxygen supplying mechanisms are not able to increase.
C. the intake of oxygen is insufficient to meet the demand.
D. the supply of oxygen is more than required.

Answer: C

D View Text Solution

40. The definite general purpose of leading towards
the aim are generally known as:
A. Target
B. Goals
C. Objectives
D. Motives

Answer: C

- View Text Solution

41. Major Aim of Physical Education is to ensure a/an:
A. child's optimum physical development.
B. programme of activity and sports for all.
C. all-round development of the individual.
D. complete removal of boredom of the class-
room activity.

Answer: C

- View Text Solution

42. A good muscle tone is highly related to:
A. reflex time
B. movement time
C. transmission time
D. reaction time

Answer: D

- View Text Solution

43. Which of the following is not an objective of sports training?
A. To accelerate athlete's growth and development
B. To make athlete dream about winning only
C. To bring about change in athlete's attitude, habits and behaviour
D. To make the athlete highly skillful technically and tactically

Answer: B

D View Text Solution

44. What does cruciate mean?
A. To cross
B. To separate

C. To join at an intersection

D. To collide

Answer: A

D View Text Solution

45. An important piece of equipment to help prevent concussion and damage to the mouth.
A. Helmet with no face shield
B. Face shield
C. Gumshield

D. Shin pads

Answer: C

- View Text Solution

46. The ligament that is most commonly injured when
your foot is planted and your body is rotating around your leg-a rotation injury is \qquad
A. CL
B. PCL
C. MCL
D. CL

D View Text Solution

47. What treatment should you not use immediately after an injury, such as an ankle sprain?
A. Rest
B. Ice
C. Compression
D. Heat

Answer: D
48. Which of the following is not a common knee injury?
A. Runners Knee
B. Cruciate Ligament Injury
C. Hernia
D. Tom Cartilage

Answer: C

- View Text Solution

49. Which of these is a common running injury?
A. Runners Knee
B. Shin Splint
C. Blister
D. All of these

Answer: D

- View Text Solution

50. Injuries to muscles are known as tears or
A. Sprain

B. Strain

C. Breaks

D. Cracks

Answer: B

- View Text Solution

Questions

1. Choose the correct statement with respect to Refraction of light
A. The ray of light does not necessarily deviate
from its original path
B. The light ray bends away from the normal when
density of second medium is less than the first
medium
C. Speed of light decreases when it enters from one optical rarer medium to another denser medium due to decrease in wavelength of light
wave
D. All of the above
2. When a light ray enters from one optical medium to another and bends towards the normal then,
A. Angle of incidence is less than angle of refraction
B. it is travelling from optically denser medium to
optically rarer medium
C. it is travelling from optically rarer medium to a
optically denser medium
D. Speed of light remains unchanged

Answer: C

D Watch Video Solution

3. In the diagram below the lateral displacement is
given as:

A. ray $A B$
B. ray BA

C. segment AB

D. segment BA

Answer: D

D Watch Video Solution

4. Identify the lens which exhibits the following characterstics of image virtual, erect and diminished A. Convex lens
B. Concave lens
C. Plano convex lens

D. Concavo convex lens

Answer: B

- Watch Video Solution

5. A coin is dropped in a glass through containing benzene filled to a depth of 4 cm . When viewed from the outside it appears to be raised by 2 cm . The refractive index of benzene with respect to air is calculated as:
A. dividing real depth by shift that is $[4 / 2]=2$
B. First finding the apparent depth as real depthshift and then using the relation refractive index is real depth upon apparent depth $=$ $[4 /(4-2)]=2$
C. Finding the real depth and then using the relation refractive index is real depth/apparent depth
D. None of the above

Answer: B

6. The diagram below shows a spherical lens in which the image obtained is highly magnified and has a power of 4.0 D. With reference to this answer the following questions:

The spherical lens used is :
A. convex
B. convexo concave

C. concave

D. plano convex

Answer: A

D View Text Solution

7. The diagram below shows a spherical lens in which
the image obtained is highly magnified and has a power of 4.0 D. With reference to this answer the following questions:

The focal length of lens is :
A. 100 cm
B. 25 cm
C. 0.25 m
D. both 2 and 3

- Watch Video Solution

8. The diagram below shows a spherical lens in which the image obtained is highly magnified and has a power of 4.0 D . With reference to this answer the following questions:

The screen is placed at a distance of :
A. 15 cm

B. 20 cm

C. 12.5 cm
D. data insufficient

Answer: D

D View Text Solution

9. The diagram below shows a spherical lens in which the image obtained is highly magnified and has a power of 4.0 D . With reference to this answer the following questions:

If this lens is blackened at the lower half
A. The focal length would be halved
B. The focal length is doubled
C. The focal length remains unaffected
D. The focal length is $1 / 4 t h$

10. What are the two forms of mechanical energy?

A. Elastic potential and vibrational kinetic
B. Gravitational potential and rotational kinetic
C. kinetic energy and potential energy
D. None of the above

Answer: C

11. One kilowatt hour is equal to
A. 36 kJ
B. 0.36 MJ
C. 3.6 MJ
D. 0.36 KJ

Answer: C

D Watch Video Solution
12. Ram and Shyam each of mass 45 kg reach the fourth floor of a building in time 4 sec and 5 sec
respectively. The ratio of their inertia is :
A. $4: 5$
B. $5: 4$
C. 1:1
D. Information is incomplete

Answer: C

- Watch Video Solution

13. Identify in which of the case it constitutes a couple

A.

B.

D.

Answer: D
14. The kinetic energy of body becomes one third when
A. mass is same velocity is tripled
B. mass is doubled and velocity tripled
C. mass is $1 / 3^{r d}$ while velocity is also $1 / 3^{r d}$
D. mass is tripled and velocity is $1 / 3^{r d}$

Answer: D

15. The diagram shows a boy drawing water from a well by means of bucket through a height of 15 m . If the volume of bucket is 2 litre. $\left[g=10 \mathrm{Nkg}^{-1}\right]$

The mass of water lifted is
A. 20 kg
B. 2 kg

C. 200g

D. 20 g

Answer: B

D Watch Video Solution

16. The diagram shows a boy drawing water from a well by means of bucket through a height of 15 m . If the volume of bucket is 2 litre. $\left[g=10 \mathrm{Nkg}^{-1}\right]$

The mechanical energy possessed by the bucket at height of 7.5 m is
A. potential energy
B. kinetic energy
C. translational kinetic energy

D. gravitational potential energy

Answer: D

- View Text Solution

17. The diagram shows a boy drawing water from a well by means of bucket through a height of 15 m . If the volume of bucket is 2 litre. [$g=10 \mathrm{Nkg}^{-1}$]

The total energy when the empty bucket of mass
500 g is falling freely under gravity at a height of 5 m
from the surface of water is
A. 150J
B. 75J
C. 300 J
D. 50 J

Answer: B

D View Text Solution

18. The diagram shows a boy drawing water from a well by means of bucket through a height of 15 m . If the volume of bucket is 2 litre. [$g=10 \mathrm{Nkg}^{-1}$]

What is the mass of water collected by the boy after 20 rounds of the bucket been dropped inside the well
A. 2 kg
B. 22 kg
C. 40 kg

D. 220 kg

Answer: C

D Watch Video Solution

19. The relationship to evaluate the efficiency is
A. Mechanical advantage/velocity ratio
B. load x displacement of load/effort x

displacement of effort

C. work output/work input
D. All of the above

Answer:

D View Text Solution

20. State which of the following statements are true.

A. Mechanical advantage is always a unitless quantity
B. Velocity ratio is also called displacement ratio
C. Efficiency is always less than one
D. both 1 and 2
21. In case of cranes and hoist the velocity ratio is
A. number of movable pulleys
B. 2 number of pulleys
C. Total number of pulleys
D. displacement of load/displacement of effort

Answer: C

22. A sprinter covers a distance of $2 \pi r$ while running across joggers track of circumference 44 cm . Find the work done by the sprinter if the distance travelled by him is $1.76 \times 10^{3} \mathrm{~km}$
A. zero J
B. 10J
C. 100J
D. 1000 J

Answer: A

23. If the wave velocity of sound in air is $336 \mathrm{~ms}^{-1}$ then the minimum distance for echo to occur is
A. 17 m
B. 18 m
C. 16.6m
D. 17.6 m

Answer: C

24. Observe the figure and answer the questions below.

Describe the type of motion possessed by Charlene
A. Acrobat
B. Free fall
C. Fall due to gravitational force
D. both 2 and 3

(D) Watch Video Solution

25. Observe the figure and answer the questions below.

Which form of energy conserved in this case
A. mechanical energy
B. kinetic energy
C. gravitational potential energy
D. wind energy

Answer: A

D Watch Video Solution

26. Observe the figure and answer the questions below.

How would you relate energy at the top to energy at
bottom
A. Potential energy is greater than kinetic energy
B. Potential energy is less than kinetic energy
C. Gravitational potential energy is equal to kinetic energy
D. Wind energy is equal to kinetic energy

Answer: C

D Watch Video Solution

27. Observe the figure and answer the questions
below.

Name the law which governs the above relation
A. Newton's law of gravitation
B. Law of conservation of mass
C. Law of conservation of mass
D. Law of conservation of mechanical energy

Answer: D

28. Select the correct reason why diamond appears to sparkle in the dark
A. It has a low critical angle of 24°
B. Due to the light getting entrapped inside the diamond as a result of successive total internal reflection
C. Due to refraction of light
D. both 1 and 2

Answer: D

29. The energy transformation taking place in an electric fan is
A. Mechanical energy to electrical energy
B. electrical energy to mechanical energy
C. Mechanical kinetic rotational energy to electrical energy
D. Electrical energy to Mechanical kinetic
rotational energy

Answer: D

30. A girl sitting on a swing and a boy having the same mass as the girl swings to the same height as that of the girl as shown in the figure below. Which of the statements are correct pertaining to the boy and girl

A. The boy and girl posses same gravitational potential energy at extreme
B. The boy and girl possess the same total energy during its oscillation
C. Both 1 and 2
D. None of the above

Answer: C

- View Text Solution

31. A convex lens is used to burn a piece of paper as
shown in the figure. What is its focal length and
power?

A. Focal length $=15 \mathrm{~cm}$ and Power $=+6.67 D$
B. Focal length greater than 15 cm and Power $=$ 6.67 D
C. Focal length less than 15 cm and Power less
than 6.67 D
D. Focal length equal to 15 cm and Power is more than 6.67 D

Answer: A

D Watch Video Solution

32. The figure shows the deviation of a ray of light when in minimum deviation position. Answer the following questions:

Is the diagram correct?
A. Yes
B. No
C. Inlet ray angle must be equal to exit ray angle
D. none of these

Answer: A

D Watch Video Solution

33. The figure shows the deviation of a ray of light when in minimum deviation position. Answer the following questions:

The relation between angle of incidence and angle of emergence is:
A. angle of incidence is greater than angle of
emergence
B. angle of emergence is greater than angle of incidence
C. angle of incidence is equal to angle of emergence
D. angle of incidence is alf the angle of emergence

Answer: C

D View Text Solution

34. The figure shows the deviation of a ray of light when in minimum deviation position. Answer the following questions:

The refracted ray is
To the base of the prism
A. parallel
B. equidistant
C. coplanar and non-intersecting
D. All of the above

Answer: D
35. The figure shows the deviation of a ray of light when in minimum deviation position. Answer the following questions:

The measure of angular deviation for a particular colour of light while passing through a glass prism is called:
A. deviation

B. refractibility

C. Refrangibility

D. Scattering

Answer: C

- View Text Solution

