©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SELINA PHYSICS (ENGLISH)

SAMPLE PAPER 2011

Section I

1. Define one newton.

D Watch Video Solution

2. Write the relation between S.I. unit and C.G.S. unit of force.

- Watch Video Solution

3. Where does the position of centre of gravity lie for
(1) A circular lamina
(2) A triangular lamina
4. Where does the position of centre of gravity
lie for
(1) A circular lamina
(2) A triangular lamina

- Watch Video Solution

5. A man opens a nut by applying a force of

150 N by using a lever handle of length $0 \cdot 4 m$.
What should be the length of the handle if he wants to open it by applying a force of 60 N ?
6. Name a machine which is used to :
(a) multiply force,
(ii) multiply speed, and
(c) change the direction of force applied.

D Watch Video Solution
7. Name a machine which can be used to :
change the direction of force applied.
(Watch Video Solution
8. The diagram below shows a lever in use.

(a) To which class of lever does it belong ? Give one example of this class.
(b) How will the mechanical advantage of lever change if load is shifted towards the fulcrum without changing it's dimensions.

- Watch Video Solution

9. The diagram below shows a lever in use.

If $\mathrm{FA}=40 \mathrm{~cm}, A B=60 \mathrm{~cm}$, then find the mechanical advantage of the lever.

- Watch Video Solution

10. A ball of mass 200 g falls from a height of 5
m . What will be its kinetic energy when it just
reaches the ground ? $\left(g=9.8 m s^{-2}\right)$

(Watch Video Solution

11. In the diagram below, $P Q$ is a ray of light incident on a rectangular glass block.

Copy the diagram and complete the path of
the ray of light through the glass block. In
your diagram, mark the angle of incidence by letter ' i ' and the angle of emergence by the letter 'e'.

D Watch Video Solution

12. In the diagram below, $P Q$ is a ray of light incident on a rectangular glass block.

How are the angles i and 'e' related to each other?

- Watch Video Solution

13. A ray of monochromatic light enters a
liquid from air as shown in the diagram given
below:

Copy the diagram and show in the diagram the path of the ray of light after it strikes the mirror and reenters the medium of air.

D Watch Video Solution

14. A ray of monochromatic light enters a
liquid from air as shown in the diagram given
below:

Copy the diagram and show in the diagram the path of the ray of light after it strikes the mirror and reenters the medium of air.
15. When does a ray of light falling on a lens pass through it undeviated ?

- Watch Video Solution

16. Which lens can produce a real and inverted image of an object ?

- Watch Video Solution

17. How is the refractive index of a medium related to the real and apparent depths of an object in that medium?

D Watch Video Solution

18. Which characteristic property of light is responsible for the blue colour of the sky?

D Watch Video Solution

19. When acoustic resonance takes place, a loud sound is heard. Why does this happen?

Explain.

D Watch Video Solution

20. Three musical instruments give out notes
at the frequencies listed below. Flute : 400 Hz ,

Guitar : 200 Hz , Trumpet : 500 Hz . Which one of these has the highest pitch ?
21. With which of the following frequencies does a tuning fork of 256 Hz resonate : 288 Hz , $314 \mathrm{~Hz}, 333 \mathrm{~Hz}, 512 \mathrm{~Hz}$?

- Watch Video Solution

22. Two bulbs are marked $100 \mathrm{~W}, 220 \mathrm{~V}$ and 60

W , 110 V . Calculate the ratio of their resistances.
23. What is the colour code for the insulation on the earth wire ?

- Watch Video Solution

24. Write an expression for calculating electrical power in terms of current and resistance.

D Watch Video Solution
25. Calculate the equivalent resistance between A and B from the following diagram :

A. 5
B. 3
C. 8
D. 4

Answer: 3

D Watch Video Solution
26. Write the difference between heat and temperature .

- Watch Video Solution

27. Define Calorimetry.
28. What is meant by Energy degradation?

- Watch Video Solution

29. 200 g of hot water at $80^{\circ} \mathrm{C}$ is added to 300 g of cold water at $10^{\circ} \mathrm{C}$. Calculate the final temperature of the mixture of water.

Consider the heat taken by the container to be
negligible. [specific heat capacity of water is $4200 \mathrm{Jkg}^{-1 \circ} \mathrm{C}^{-1}$]

D Watch Video Solution

30. Fill in the blanks in the following sentences
with appropriate words:

During the emission of a beta particle, the number remains the same.

D Watch Video Solution

31. Fill in the blanks in the following sentences with appropriate words:

The minimum amount of energy required to emit an electron from a metal surface is called

- Watch Video Solution

32. A mixture of radioactive substances gives off three types of radiations :

Name the radiation which travels with the speed of light

D Watch Video Solution

33. A mixture of radioactive substances gives
off three types of radiations:

Name the radiation which has the highest ionizing power.

1. What do you understand by an ideal machine ? How does it differ from a practical machine?

- Watch Video Solution

2. Write a relationship between the mechanical advantage (M. A.) and velocity ratio
(V. R.) of an ideal machine.
3. A coolie carrying a load on his head and moving on a frictionless horizontal platform does no work. Explain the reason why.

- Watch Video Solution

4. Draw a diagram to show the energy changes
in an oscillating simple pendulum. Indicate in
your diagram how the total mechanical energy
in it remains constant during the oscillation.

- Watch Video Solution

5. A uniform metre scale can be balanced at the 70.0 cm mark when a mass of 0.05 kg is hung from the 94.0 cm mark.

Draw a diagram of the arrangement.

- Watch Video Solution

6. A uniform metre scale can be balanced at the 70.0 cm mark when a mass of 0.05 kg is
hung from the 94.0 cm mark.

Find the mass of the metre scale.

D Watch Video Solution
7. State the laws of refraction of light. State at least three examples of refraction of light.

D Watch Video Solution

8. Write a relation between the angle of
(i), angle of emergence (e), angle of prism (A) and angle of deviation (d) for a ray of light passing through an equilateral prism.

D Watch Video Solution

9. Suggest one way, in each case, by which we can detect the presence of:
(1) Infra-red radiations
(2) Ultraviolet radiations

D Watch Video Solution

10. State any one use of infrared radiations.

(Watch Video Solution

11. An object is placed in front of a lens between its optical centre and the focus and forms a virtual, erect and diminished image.

Name the lens which formed this image.

D Watch Video Solution

12. An object is placed in front of a lens between its optical centre and the focus and
forms a virtual, erect and diminished image.

Draw a ray diagram to show the formation of
the image with the above stated characteristics.

D Watch Video Solution

13. Name the type of waves which are used for sound ranging.
14. Why are these waves mentioned in (i) above, not audible to us?

D Watch Video Solution

15. Give one use of sound ranging.

D Watch Video Solution
16. A man standing 25 m away from a wall produces a sound and receives the reflected sound.

Calculate the time after which he receives the reflected sound if the speed of sound in air is $350 \mathrm{~ms}^{-1}$.

D Watch Video Solution

17. A man standing 25 m away from a wall produces a sound and receives the reflected

sound.

Will the man be able to hear a distinct echo ?

Give a reason for your answer.

D Watch Video Solution

18. Name two safety devices which are connected to the live wire of a household electric circuit.
19. Give one important function of each of these two devices. i) Switch ii) Fuse

D Watch Video Solution

20. Draw a graph of Potential difference (V)
versus Current (I) for an ohmic resistor.
(Watch Video Solution
21. How can you find the resistance of the resistor from this graph?

D Watch Video Solution
22. What is a non-ohmic resistor ?

- Watch Video Solution

23. An electric bulb is marked $100 \mathrm{~W}, 250 \mathrm{~V}$.

What information does this convey?

- Watch Video Solution

24. How much current will the bulb draw, if connected to a 250 V supply?

- Watch Video Solution

25. Three resistors are connected to a 12 V battery as shown in the figure given below :

What is the current through the 8 ohm resistor ?

D Watch Video Solution

26. Three resistors are connected to a 12 V battery as shown in the figure given below :

What is the potential difference across the parallel combination of 6 ohm and 12 ohm resistor?

D Watch Video Solution

27. Three resistors are connected to a 12 V battery as shown in the figure given below :

What is the current through the 6 ohm resistor?

D Watch Video Solution

28. Explain why the weather becomes very cold after a hail storm.
29. What happens to the heat supplied to a substance when the heat supplied causes no change in the temperature of the substance?

D Watch Video Solution

30. When 1 g of ice at $0^{\circ} C$ melts to form 1 g of
water at $0^{\circ} C$ then, is the latent heat absorbed by the ice or given out by it?
31. Give one example where high specific heat capacity of water is used as a heat reservoir.

- Watch Video Solution

32. Give one example where high specific heat capacity of water is used for cooling purposes.

D Watch Video Solution

33. 250 g of water at $30^{\circ} \mathrm{C}$ is present in a copper vessel of mass 50 g . Calculate the mass
of ice required to bring down the temperature of the vessel and its contents to $5^{\circ} \mathrm{C}$.

Specific latent heat of fusion of ice $=$ $336 \times 10^{3} \mathrm{Jkg}^{-1}$

Specific heat capacity of copper vessel = $400 \mathrm{Jkg}^{-1 \circ} \mathrm{C}^{-1}$

Specific heat capacity of water = $4200 \mathrm{Jkg}^{-10} \mathrm{C}^{-1}$.
34. State two properties which a substance should possess when used as a thermionic emitter.

D Watch Video Solution

35. When an alpha particle gains two electrons
it becomes neutral and becomes an atom of an element which is a rare gas. What is the name of this rare gas?
36. Define radioactivity. Name various radioactive elements.

D Watch Video Solution

37. What happens inside the nucleus that causes the emission of beta particle ?

- Watch Video Solution

38. What happens inside the nucleus that causes emission of beta particle?

Express the above change in the form of an equation.

D Watch Video Solution

39. Name a device which is commonly used to convert an electrical signal into a visual signal.
40. The nucleus ${ }_{84}^{202} X$ emits an alpha particle and forms the nucleus Y. Represent this change in the form of an equation.

- Watch Video Solution

41. What happens to the mass number and atomic number of an element when it emits gamma- radiation

D Watch Video Solution

