©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SELINA PHYSICS (ENGLISH)

SELF ASSESSMENT PAPER 4

Section A

1. Calculate the wavelength of an electromagnetic wave of frequency 15 MHz .
2. We can burn a piece of paper by focusing the sun rays by using a particular type of lens.

Name the type of lens used for the above purpose.

- Watch Video Solution

3. We can burn a piece of paper by focusing the sun rays by using a particular type of lens.

Name the type of lens used for the above purpose.

D Watch Video Solution

4. How does a trawler man catch fish in deep water?

- Watch Video Solution

5. The refractive index of diamond is 2.42 .

What is the meaning of this statement?
6. What do you understand by the term loudness of sound?

D Watch Video Solution

7. In which units is the loudness of sound measured?
A. hurtz
B. decible
C. kg
D. m / s

Answer: decible

D Watch Video Solution

8. Draw a diagram to illustrate the determination of the focal length of a convex lens using an auxiliary plane mirror.
9. Find the resistance between points A and B.

- Watch Video Solution

10. Define equilibrium.
11. In a beam balance, when the beam is balanced in horizontal position, it is in equilibrium.
A. static
B. kinetic
C. balance
D. unbalance

Answer: static

D Watch Video Solution
12. Four resistances of 2.0Ω each are joined end to end, to form a square $A B C D$. Calculate the equivalent resistance of the combination between any two adjacent corners

D Watch Video Solution

13. Define the power of a lens.

D Watch Video Solution
14. The lens mentioned in 6 (b) above is of focal length 25 cm . Calculate the power of the lens.

D Watch Video Solution

15. A ray of light incident at an angle of incidence 'I' passes through an equilateral glass prism such that the refracted ray inside the prism is parallel to its base and emerges from the prism at an angle of emergence 'e'.

How is the angle of emergence 'e' related to the angle of incidence ' i ' ?

D Watch Video Solution

16. A ray of light incident at an angle of incidence 'I' passes through an equilateral glass prism such that the refracted ray inside the prism is parallel to its base and emerges from the prism at an angle of emergence 'e'.

What can you say about the value of the angle of deviation in such a situation ?

Watch Video Solution

17. What is the colour code for the insulation on the earth wire?

- Watch Video Solution

18. Write an expression for calculating electrical power in terms of current and resistance
(Watch Video Solution
19. Name two factors on which the heat energy
liberated by a body depends.

D Watch Video Solution

20. Calculate the change in the kinetic energy
of a moving body if its velocity is reduced to
$1 / 3$ rd of the initial velocity?

D Watch Video Solution
21. Explain why the weather becomes very cold after a hail storm.

D Watch Video Solution

22. Define heat capacity and state its SI unit.

- Watch Video Solution

23. A type of single pulley is very often used as
a machine even though it does not give any
gain in mechanical advantage.

Name the type of pulley used.

D Watch Video Solution

24. A type of single pulley is very often used as
a machine even though it does not give any
gain in mechanical advantage.

Name the type of pulley used.

- Watch Video Solution

25. State the energy changes in the following while in use:

Burning of a candle.

D Watch Video Solution

26. State the energy changes in the following while in use:

A steam engine.
27. Mention any two differences between nuclear energy and chemical energy.

D Watch Video Solution

28. Name the factors affecting the critical angle for the pair of media.

D Watch Video Solution

Section B

1. Name the type of single pulley that can act as a force multiplier. Draw a labelled diagram of the above named pulley.

- Watch Video Solution

2. A person standing between two vertical cliffs and 480 m from the nearest cliff shouts.

He hears the first echo after 3 s and the second echo 2 s later.

Calculate :
The speed of sound.

- Watch Video Solution

3. A person standing between two vertical cliffs and 480 m from the nearest cliff shouts.

He hears the first echo after 3 s and the second echo 2 s later.

Calculate :

The distance of the other cliff from the person.

D Watch Video Solution

4. A monochromatic point source of light O is seen through a rectangular glass block ABCD.

Paths of two rays, in and outside the block, are shown in the figure below.

Does the source at point O appear to be
nearer or farther with respect to the surface
$A B$?

D Watch Video Solution
5. A monochromatic point source of light O is seen through a rectangular glass block ABCD.

Paths of two rays, in and outside the block, are
shown in the figure below.

How does the shift depend on the thickness

(AD or $B C$) of the block?

- Watch Video Solution

6. A monochromatic point source of light O is seen through a rectangular glass block ABCD.

Paths of two rays, in and outside the block, are shown in the figure below.

Justify your answer with the help of an appropriate ray diagram as shown in figure.

D Watch Video Solution

7. A monochromatic point source of light O is

 seen through a rectangular glass block $A B C D$.Paths of two rays, in and outside the block, are shown in the figure below.

For the same rectangular glass block, which
colour from the visible spectra will produce the maximum shift?

D Watch Video Solution

8. A ray of light $X Y$ passes through a right angled isosceles prism as shown below.

What is the angle through which the incident ray deviates and emerges out of the prism?

- Watch Video Solution

9. A ray of light XY passes through a right angled isosceles prism as shown below.

Name the instrument where this action of prism is put into use.
10. A ray of light $X Y$ passes through a right angled isosceles prism as shown below:

Which prism surface will behave as a mirror ?

- Watch Video Solution

11. Draw a graph of potential difference (V)
versus current (I) for an ohmic resistor.

D Watch Video Solution
12. How can you find the resistance of the resistor from this graph?

D Watch Video Solution

13. What is a non-ohmic resistor ?

- Watch Video Solution

14. Sometimes when a vehicle is driven at a particular speed, a rattling sound is heard. Explain briefly, why this happens and give the name of the phenomenon taking place?

D Watch Video Solution

15. Suggest one way by which the rattling sound could be stopped.
16. An electric bulb is marked $100 \mathrm{~W}, 250 \mathrm{~V}$.

What information does this convey?

- Watch Video Solution

17. How much current will the bulb draw, if connected to a 250 V supply?
18. Draw a labelled ray diagram to illustrate (a)
critical angle (b) total internal reflection for a ray of light moving from one medium to another.

D Watch Video Solution

19. Write a formula to express the relationship
between refractive index of the denser medium with respect to rarer medium and its critical angle for that pair of media.
20. A battery of e.m.f. 12 V and internal resistance 2Ω is connected with two resistors

A and B of resistance 4Ω and 6Ω respectively joined in series.

Find Current in the circuit.

D Watch Video Solution

21. A battery of e.m.f. 12 V and internal resistance 2Ω is connected with two resistors

A and B of resistance 4Ω and 6Ω respectively joined in series.

Find The terminat voltage of the cell .

- Watch Video Solution

22. A battery of e.m.f. 12 V and internal
resistance 2Ω is connected with two resistors

A and B of resistance 4Ω and 6Ω respectively
joined in series.

Find The potential difference across 6Ω Resistor.

D Watch Video Solution

23. A battery of e.m.f. 12 V and internal resistance 2Ω is connected with two resistors

A and B of resistance 4Ω and 6Ω respectively
joined in series.

Find Electrical energy spent per minute in 4Ω Resistor.

D Watch Video Solution
24. Name the liquid which has the highest specific heat capacity.
A. milk
B. gas
C. solid
D. water

Answer: water

D Watch Video Solution
25. Name two factors on which the heat absorbed or given out by a body depends.

- Watch Video Solution

26. An equal quantity of heat is supplied to
two substances A and B. The substance A
shows a greater rise in temperature. What can
you say about the heat capacity of A as compared to that of B ?

D Watch Video Solution
27. State in brief, the meaning of each of the
following:
The heat capacity of body is $50 J^{\circ} C^{-1}$

D Watch Video Solution

28. State in brief, the meaning of each of the following:

The specific latent heat of fusion of ice is $336000 \mathrm{Jkg}^{-1}$
29. State in brief, the meaning of each of the following:

The specific heat capacity of copper is 0.4 $J g^{10} C^{-1}$

- Watch Video Solution

30. Radioactive materials as an alternative source of energy must be wisely used. Give reasons to justify this statement.
31. An engine can pump $30,000 \mathrm{~L}$ of water to a vertical height of 45 m in 10 min . Calculate the work done by the machine and the power.

(Density

 of water$\left.10^{3} \mathrm{~kg} / \mathrm{m}^{3}, 1000 L-1 \mathrm{~m}^{3}, g=9.8 m \mathrm{~s}^{-2}\right)$

- Watch Video Solution

32. An object of mass ' m ' is allowed to fall freely from a point A as shown in the figure.

Calculate the total mechanical energy of object at:

Point A

D Watch Video Solution

33. An object of mass ' m ' is allowed to fall freely from a point A as shown in the figure.

Calculate the total mechanical energy of object at:

Point B

34. An object of mass ' m ' is allowed to fall freely from a point A as shown in the figure.

Calculate the total mechanical energy of object at:

State the law which is verified by your calculations

- Watch Video Solution

35. State three characteristics of musical sound.

D Watch Video Solution
36. How does the musical sound differ from
the noise?
-
Watch Video Solution
37. A nut is opened by a wrench of length 20
cm . If the least force required is 2 N , find the moment of force needed to loosen the nut.

D Watch Video Solution

38. Can the centre of mass of a body be at a point outside the body?

D Watch Video Solution

39. A nucleus ${ }_{11} N a^{24}$ emits a beta particle to change into Magnesium (Mg).

Write the symbolic equation for the process.

- Watch Video Solution

40. A nucleus ${ }_{11} N a^{24}$ emits a β-particle to change into magnesium (Mg).

What are numbers 24 and 11 called?

- Watch Video Solution

41. A nucleus ${ }_{11} N a^{24}$ emits a beta particle to change into Magnesium (Mg).

What is the general name ${ }_{12}^{24} M g$ with respect to ${ }_{11}^{24} N a$?

D Watch Video Solution

42. Define the emf (E) of a cell and the potential difference (V) across a resistor (R) in
terms of the work done in moving a unit
charge. State the relation between these two
works and the work it charge through a cell
connected across the resistor. Take the internal resistance of the cell as r. Hence, obtain expression for the current i in the circuit.

D View Text Solution

