©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SELINA PHYSICS (ENGLISH)

SPECIMEN PAPER (SOLVED)

Section I

1. The figure alongside shows an axle $A B$ pivoted at a point 0 . Draw diagrams showing
the point of application and direction of
minimum force to rotate it (b) clockwise, and
(ii) anticlockwise.

D Watch Video Solution

2. Two forces each of magnitude 5 N are applied in opposite directions at the ends of a uniform nod of length 0.5 m. Draw diagram of
the arrangement and find the total moment of the two forces.

D Watch Video Solution

3. State two differences between centripetal and centrifugal force.

D Watch Video Solution

4. What is kWh ? State its value in S.I. unit.

D Watch Video Solution
5. A body of mass art is released from a height A. What energy will the body possess when (i)
it has fallen by a distance $x(x<h)$, and (ii) it reaches the ground.

D Watch Video Solution

6. A body of mass 500 g is moving with a speed $10 \mathrm{~ms}^{-1}$. A force acts on it which makes it to move with a speed $20 \mathrm{~ms}^{-1}$. Find
: (i) the change in kinetic energy of the body, and (ii) the work done by the force on the body.

D Watch Video Solution

7. A lever has fulcrum and load at the ends and effort in between them. Draw diagram and state whether the velocity ratio of the lever is greater, equal or less than 1 ? Can the velocity ratio of this lever be changed?
8. A pulley has a velocity ratio 2 . but mechanical advantage 1-6. Name the pulley and state factors which make the mechanical advantage less than the velocity ratio.

D Watch Video Solution

9. A block and tackle system has 5 pulleys. In
ideal situation,
(i) how is load L related to the effort E, and
(ii) how is the distance de moved by effort related to the distance d, moved by load?

D Watch Video Solution

10. A light ray in passing from medium A to medium B slows down.
(i) Draw a diagram to show the path of the light ray in the two media.
(ii) Name the medium which is optically denser than the other.
11. Define critical angle. How does it depend on the wavelength of incident light?

D Watch Video Solution

12. Draw a ray diagram to show the refraction of a monochromatic ray through a prism when it suffers minimum deviation. How is the angle of emergence related to the angle of incidence in the position.
13. A convex lens of focal length 20 cm forms a virtual image of size twice the size of the object.
(i) How is the distance of image v related to the distance of object ?
(ii) What is the power of lens?

D Watch Video Solution
14. A concave lens always forms a virtual image. Draw a ray diagram to show it. State the magnification of the image with sign, whether greater than, equal to or less than 1.

- Watch Video Solution

15. What is a sonar?

- Watch Video Solution

16. Name the wave used in sonar. Give reason to your answer.

D Watch Video Solution
17. An electric heater rated $2.2 \mathrm{~kW}, 220 \mathrm{~V}$ is operated for 2 h. Calculate :
the safe limit of current which can pass through it,
18. An electric heater rated $2.2 \mathrm{~kW}, 220 \mathrm{~V}$ is operated for 2 h. Calculate :
the cost of electricity consumed at a rate of 5.20 per unit.

D Watch Video Solution

19. Draw diagram to connect two appliances A
and B rated as ' $2.2 \mathrm{~kW}, 220 \mathrm{~V}$ ' and ' $110 \mathrm{~W}, 220 \mathrm{~V}$ '
respectively with the mains of 220 V . Show in
the diagram the switch and fuse with each
appliances. State the fuse of which appliance is thicker and why?

- Watch Video Solution

20. What is the approximate specific latent heat of melting of ice? State why for cooling botiled soft drinks, ice at $0^{\circ} C$ is better than the same mass of iced-water at $0^{\circ} C$
21. Differentiate between nuclear fusion and nuclear fission.

D Watch Video Solution

22. The figure alongside shows an axle $A B$
pivoted at a point 0 . Draw diagrams showing
the point of application and direction of minimum force to rotate it (b) clockwise, and
(ii) anticlockwise.

D Watch Video Solution

23. Two forces each of magnitude 5 N are applied in opposite directions at the ends of a uniform nod of length 0.5 m . Draw diagram of the arrangement and find the total moment of the two forces.

- Watch Video Solution

24. State two differences between centripetal and centrifugal force.

- Watch Video Solution

25. Define the term kilowatt-hour and state its
value in S.I. unit.

- Watch Video Solution

26. A body of mass art is released from a height A. What energy will the body possess when (i) it has fallen by a distance $x(x<h)$, and (ii) it reaches the ground.

D Watch Video Solution

27. A body of mass 500 g is moving with a speed $10 \mathrm{~ms}^{-1}$. A force acts on it which makes it to move with a speed $20 \mathrm{~ms}^{-1}$. Find
: (i) the change in kinetic energy of the body,
and (ii) the work done by the force on the body.

D Watch Video Solution

28. A lever has fulcrum and load at the ends and effort in between them. Draw diagram and state whether the velocity ratio of the lever is greater, equal or less than 1 ? Can the velocity ratio of this lever be changed?
29. A pulley has a velocity ratio 2 . but mechanical advantage 1-6. Name the pulley and state factors which make the mechanical advantage less than the velocity ratio.

D Watch Video Solution

30. A block and tackle system has 5 pulleys. In ideal situation,
(i) how is load L related to the effort E, and
(ii) how is the distance de moved by effort related to the distance d, moved by load?
31. A light ray in passing from medium A to medium B slows down.
(i) Draw a diagram to show the path of the light ray in the two media.
(ii) Name the medium which is optically denser than the other.
32. Define critical angle. How does it depend on the wavelength of incident light?

D Watch Video Solution

33. Draw a ray diagram to show the refraction of a monochromatic ray through a prism when
it suffers minimum deviation. How is the angle
of emergence related to the angle of incidence in the position.
34. A convex lens of focal length 20 cm forms a virtual image of size twice the size of the object.
(i) How is the distance of image v related to the distance of object ?
(ii) What is the power of lens?

- Watch Video Solution

35. A concave lens always forms a virtual image. Draw a ray diagram to show it. State
the magnification of the image with sign, whether greater than, equal to or less than 1.

D Watch Video Solution

36. What is a sonar?

D Watch Video Solution

37. Name the wave used in sonar. Give reason to your answer.
38. An electric heater rated $2.2 \mathrm{~kW}, 220 \mathrm{~V}$ " is operated for 2 h . Calculate :
the safe limit of current which can pass through it,

D Watch Video Solution

39. An electric heater rated $2.2 \mathrm{~kW}, 220 \mathrm{~V}$ " is operated for 2 h . Calculate :
the cost of electricity consumed at a rate of 5.20 per unit.

D Watch Video Solution

40. Draw diagram to connect two appliances A and B rated as ' $2.2 \mathrm{~kW}, 220 \mathrm{~V}$ ' and ' $110 \mathrm{~W}, 220 \mathrm{~V}$ ' respectively with the mains of 220 V . Show in the diagram the switch and fuse with each appliances. State the fuse of which appliance is thicker and why?
41. What is the approximate specific latent heat of melting of ice? State why for cooling botiled soft drinks, ice at $0^{\circ} \mathrm{C}$ is better than the same mass of iced-water at $0^{\circ} \mathrm{C}$

- Watch Video Solution

42. Differentiate between nuclear fusion and nuclear fission.
43. The diagram alongside shows a uniform metre rule of weight 100 gf being balanced on
a knife edge placed at the 40 cm mark, by suspending a weight w gf at the mark 20 cm , find:

the value of w.
44. The diagram alongside shows a uniform metre rule of weight 100 gf being balanced on
a knife edge placed at the 40 cm mark, by suspending a weight w gf at the mark 20 cm , find:

the resultant moment and its direction if the weight w is moved to the mark 30 cm .
45. The diagram alongside shows a uniform metre rule of weight 100 gf being balanced on
a knife edge placed at the 40 cm mark, by suspending a weight w gf at the mark 20 cm , find:

the position of another weight of 50 gf to balance the rule in part (ii).

- Watch Video Solution

4. A pulley system with a velocity ratio 4 is
used to lift a load of 300 kgf to a vertical height of 10 m by applying an effort of 100 kgf downwards.

Draw the arrangement of pulley showing the load (L), effort (E) and tension (T) in each strand.

- Watch Video Solution

5. A pulley system with a velocity ratio 4 is used to lift a load of 300 kgf to a vertical
height of 10 m by applying an effort of 100 kgf downwards.
ind the efficiency of the pulley system and the work done by the effort.

- Watch Video Solution

6. Differentiate between energy and power

D Watch Video Solution
7. Amit weighing 60 kgf climbs up a ladder of height 10 m in 15 minutes. Calculate the increase in his potential energy and the power spent by him. Take $1 \mathrm{kgf}=10 \mathrm{~N}$.

- Watch Video Solution

8. A coin is placed at the bottom of a glass trough containing water (refractive index $=\frac{4}{3}$) up to a height 20 cm . At what depth it will appear when it is viewed from air, vertically
above the coin. Draw a suitable ray diagram in

support of your answer.

D Watch Video Solution

9. The diagram alongside shows a beam of light (red + blue) incident normally on an equilateral triangular prism. If the critical angle for the material of prüsm is 60° for the light of red colour, complete the diagram showing the path of light of each colour emerging out of the prism. Mark in the
diagram the angles wherever necessary.

- Watch Video Solution

10. An object of height 2 cm is placed in front of a convex lens of focal length 20 cm at a
distance of 15 cm from it. Find the position and magnification of the image.

D Watch Video Solution

11. Arrange the following electromagnetic radiations in increasing order of their wavelengths : micro-waves, X-rays, infrared radiations, Y-rays, radio waves and ultraviolet rays.
12. Name the constituent colour of white light
for which
the deviation produced by the glass prism is least

- Watch Video Solution

13. Name the constituent colour of white light for which
the refractive index of glass is maximum.
14. There is a sunken ship at a depth of 50 m in
a sea. From the surface of sea, waves are sent to locate it. Find the time when the wave after reflection will reach the surface. State whether echo is heard or not? Give reason. Take speed of sound in water $=1400 \mathrm{~m} \mathrm{~s}^{-1}$

- Watch Video Solution

15. State two differences between the forced and resonant vibrations.
16. State two ways by which the frequency of a note given out by a stretched vibrating string can be increased.

- Watch Video Solution

17. Name the quantity which determines
loudness, pitch and quality of a sound.
18. Two waves A and B given out from a source are of amplitudes $2: 3$ and frequencies 3:2.

Compare their loudness, pitch and quality.

D Watch Video Solution

19. In an electric circuit shown alongside, find

current in resistor 2Ω

D Watch Video Solution

20. In an electric circuit shown alongside, find

current in resistor 1Ω

D Watch Video Solution
21. In an electric circuit shown alongside, find

terminal voltage of the battery

D Watch Video Solution

22. Define the term "specific resistance and
state its S.I. unit.

Watch Video Solution

23. A metallic wire is doubled on itself. How do its resistance and specific resistance change?

D Watch Video Solution

24. Two resistors of resistance
$R_{1}=2 \Omega$ and $R_{2}=1 \Omega$ are connected in parallel with a current source of 3 A . Draw the arrangement and deduce the current I_{1} in R_{1} and I_{2} in R_{2}.
25. What do you mean by earthing of an electric appliance ?

- Watch Video Solution

26. What energy change takes place in a dc motor ? On what principle does it work? State one factor to increase its speed of rotation.
27. Name the phenomenon on which an a.c. dynamo works.

D Watch Video Solution

28. You are given two coils A and B. Through
each coil, the initial magnetic flux is same. In
which coil, the em.f. induced will be more if the
number of turns in the coil A is twice that of
the coil B and the magnetic flux is reduced to
zero in coil A, two times faster than in coil B ?

- Watch Video Solution

29. Name the device you will use to obtain 220

V a.c. from 11 V a.c. Draw a labelled diagram of
the device. Name one type of loss of energy in
it and state how is it remedied.

- Watch Video Solution

30. 200 g of water at $50.5^{\circ} \mathrm{C}$ is cooled down
to $10^{\circ} \mathrm{C}$ by adding mg of ice cubes at $0^{\circ} \mathrm{C}$ in
it. Find m. Take, specific heat capacity of water
$=4.2 \mathrm{Jg}^{-1 \circ} \mathrm{C}^{-1}$ and specific latent heat of ice
$=336 J g^{-1}$

D Watch Video Solution

31. Define the following terms: (i) calorie, (ii)
heat capacity, (iii) specific heat capacity, and
(iv) specific latent heat of ice.

- Watch Video Solution

32. Write the approximate specific heat capacity of copper in S.I. unit.

D Watch Video Solution

33. A certain mass of ice at $0^{\circ} C$ is converted to steam at $100^{\circ} \mathrm{C}$ by constant heating, Draw temperature-time graph showing the change in phases.

34. Calculate the equivalent energy in MeV of a

 unified atomic mass unit.
D Watch Video Solution

35. Name one radio isotope and state its use.

D Watch Video Solution

36. A nucleus Pu emits an alpha particle and
changes to U which emits a beta particle and
then a gamma particle to change into ${ }_{93}^{235} N p$.
Write the above nuclear changes in form of an
equation stating the atomic number and mass number of each nucleus.

D Watch Video Solution

37. State one safety precaution for each of the following:
in handling a radioactive source,

D Watch Video Solution

38. State one safety precaution for each of the following:
in establishment of nuclear power plant

D Watch Video Solution

39. State one safety precaution for each of the
following:
in safe disposal of nuclear waste.

- Watch Video Solution

40. The diagram alongside shows a uniform metre rule of weight 100 gf being balanced on
a knife edge placed at the 40 cm mark, by suspending a weight w gf at the mark 20 cm , find:

the value of w.

- Watch Video Solution

41. The diagram alongside shows a uniform metre rule of weight 100 gf being balanced on
a knife edge placed at the 40 cm mark, by suspending a weight w gf at the mark 20 cm , find:

the resultant moment and its direction if the weight w is moved to the mark 30 cm .
42. The diagram alongside shows a uniform metre rule of weight 100 gf being balanced on
a knife edge placed at the 40 cm mark, by suspending a weight w gf at the mark 20 cm , find:

the position of another weight of 50 gf to balance the rule in part (ii).

- Watch Video Solution

43. A pulley system with a velocity ratio 4 is
used to lift a load of 300 kgf to a vertical height of 10 m by applying an effort of 100 kgf downwards.

Draw the arrangement of pulley showing the load (L), effort (E) and tension (T) in each strand.

- Watch Video Solution

44. A pulley system with a velocity ratio 4 is
used to lift a load of 300 kgf to a vertical
height of 10 m by applying an effort of 100 kgf downwards.
ind the efficiency of the pulley system and the work done by the effort.

D Watch Video Solution

45. State two differences between energy and power.
46. Amit weighing 60 kgf climbs up a ladder of height 10 m in 15 minutes. Calculate the increase in his potential energy and the power spent by him. Take $1 \mathrm{kgf}=10 \mathrm{~N}$.

D Watch Video Solution

47. A coin is placed at the bottom of a glass trough containing water (refractive index $=\frac{4}{3}$) up to a height 20 cm . At what depth it will appear when it is viewed from air, vertically
above the coin. Draw a suitable ray diagram in

support of your answer.

D Watch Video Solution

48. The diagram alongside shows a beam of
light (red + blue) incident normally on an equilateral triangular prism. If the critical angle for the material of prüsm is 60° for the light of red colour, complete the diagram showing the path of light of each colour emerging out of the prism. Mark in the
diagram the angles wherever necessary.

- Watch Video Solution

49. An object of height 2 cm is placed in front of a convex lens of focal length 20 cm at a
distance of 15 cm from it. Find the position and magnification of the image.

D Watch Video Solution

50. Arrange the following electromagnetic radiations in increasing order of their wavelengths : micro-waves, X-rays, infrared radiations, Y-rays, radio waves and ultraviolet rays.
51. Name the constituent colour of white light for which
the deviation produced by the glass prism is least

- Watch Video Solution

52. Name the constituent colour of white light for which
the refractive index of glass is maximum.
53. There is a sunken ship at a depth of 50 m
in a sea. From the surface of sea, waves are sent to locate it. Find the time when the wave after reflection will reach the surface. State whether echo is heard or not? Give reason. Take speed of sound in water $=1400 \mathrm{~m} \mathrm{~s}^{-1}$

- Watch Video Solution

54. State two differences between the forced and resonant vibrations.
55. State two ways by which the frequency of a note given out by a stretched vibrating string can be increased.

- Watch Video Solution

56. Name the quantity which determines loudness, pitch and quality of a sound.
57. Two waves A and B given out from a source are of amplitudes $2: 3$ and frequencies 3:2.

Compare their loudness, pitch and quality.

D Watch Video Solution

58. In an electric circuit shown alongside, find

current in resistor 2Ω

D Watch Video Solution

59. In an electric circuit shown alongside, find

current in resistor 1Ω

D Watch Video Solution
60. In an electric circuit shown alongside, find

terminal voltage of the battery

D Watch Video Solution

61. Define the term "specific resistance and state its S.I. unit.

Watch Video Solution

62. A metallic wire is doubled on itself. How do its resistance and specific resistance change?

D Watch Video Solution

63. Two resistors of resistance
$R_{1}=2 \Omega$ and $R_{2}=1 \Omega$ are connected in parallel with a current source of 3 A . Draw the arrangement and deduce the current
I_{1} in R_{1} and I_{2} in R_{2}.
64. What do you mean by earthing of an electric appliance ?

- Watch Video Solution

65. What energy change takes place in a dc motor? On what principle does it work? State one factor to increase its speed of rotation.

- Watch Video Solution

66. Name the phenomenon on which an a.c. dynamo works.

D Watch Video Solution

67. You are given two coils A and B. Through
each coil, the initial magnetic flux is same. In
which coil, the em.f. induced will be more if the
number of turns in the coil A is twice that of
the coil B and the magnetic flux is reduced to
zero in coil A, two times faster than in coil B ?

- Watch Video Solution

68. Name the device you will use to obtain 220

V a.c. from 11 V a.c. Draw a labelled diagram of
the device. Name one type of loss of energy in
it and state how is it remedied.

- Watch Video Solution

69. 200 g of water at $50.5^{\circ} \mathrm{C}$ is cooled down to $10^{\circ} \mathrm{C}$ by adding mg of ice cubes at $0^{\circ} \mathrm{C}$ in
it. Find m. Take, specific heat capacity of water
$=4.2 \mathrm{Jg}^{-1 \circ} \mathrm{C}^{-1}$ and specific latent heat of ice
$=336 J g^{-1}$

D Watch Video Solution

70. Define the following terms: (i) calorie, (ii)
heat capacity, (iii) specific heat capacity, and
(iv) specific latent heat of ice.

- Watch Video Solution

71. Write the approximate specific heat capacity of copper in S.I. unit.

- Watch Video Solution

72. A certain mass of ice at $0^{\circ} C$ is converted to steam at $100^{\circ} \mathrm{C}$ by constant heating, Draw temperature-time graph showing the change in phases.

73. Calculate the equivalent energy in MeV of a

 unified atomic mass unit.
D Watch Video Solution

74. Name one radio isotope and state its use.

D Watch Video Solution

75. A nucleus Pu emits an alpha particle and
changes to U which emits a beta particle and
then a gamma particle to change into ${ }_{93}^{235} N p$.
Write the above nuclear changes in form of an
equation stating the atomic number and mass number of each nucleus.

D Watch Video Solution

76. State one safety precaution for each of the following:
in handling a radioactive source,

D Watch Video Solution

77. State one safety precaution for each of the
following:
in establishment of nuclear power plant

- Watch Video Solution

78. State one safety precaution for each of the
following:
in safe disposal of nuclear waste.
(Watch Video Solution
