# ©゙doubtnut 

India's Number 1 Education App

## MATHS

# BOOKS - HT Olympiad Previous Year Paper 

## IMO QUESTION PAPER 2017 SET A

## Mathematical Reasoning

1. In the given figure, $P Q R$ is a tangent to the circle with centre $O . O Q$ is the radius of the circle at the point of contact. $R$ and $O$ are joined and produced to the point S on the circle. If $\angle Q R O=28^{\circ}, \angle Q O R=x$ and
$\angle O Q S=y$, then find the value of x and y respectively.

A. $31^{\circ}, 31^{\circ}$
B. $62^{\circ}, 62^{\circ}$
C. $62^{\circ}, 31^{\circ}$
D. $90^{\circ}, 45^{\circ}$

## Answer: C

2. Find the roots of the equation
$\frac{1}{a+b+x}-\frac{1}{x}=\frac{1}{a}+\frac{1}{b}$ ?
A. a,b
B. $-a, b$
C. a,-b
D. $-a,-b$

## Answer: D

## - Watch Video Solution

3. From a pack of 52 cards, a card is chosen at random. Find the probability that the chosen card is :
(i) A black king.
(ii) Neither a heart nor a king.
(i) (ii)
A.
$\frac{1}{26} \quad \frac{7}{13}$
(i) (ii)
B. $\frac{1}{13} \frac{9}{13}$
(i) (ii)
C. $\frac{1}{13} \frac{7}{13}$
(i) (ii)
D. $\frac{1}{26} \frac{9}{13}$

## Answer: D

## - Watch Video Solution

4. In the given figure $A B C D$ is $a$ trapezium in which $A B|\mid D C, A B=18 \mathrm{~cm}, D C=32 \mathrm{~cm}$ and the distance between AB and DC is 14 cm . If arcs of equal radii 7 cm hav been drawn with centres $A, B, C$ and $D$ then find the area of the shaded region.

A. $196 \mathrm{~cm}^{2}$
B. $225 \mathrm{~cm}^{2}$
C. $350 \mathrm{~cm}^{2}$
D. $154 \mathrm{~cm}^{2}$

## Answer: A

## - Watch Video Solution

5. The side of solid metallic cube is 20 cm . The cube is melted and recast into 8 equal solid cubical dice. Determine the side of the dice.
A. 2.8 cm
B. 3 cm
C. 8 cm
D. 2.5 cm
6. A point $P$ divides the line joining the points $(2,1)$ and $(5,-8)$ in ratio 1:2. Also, the point P lies on the line $2 x-y+k=0$. Find the value of k .
A. 8
B. -8
C. -6
D. 6

## Answer: B

## - Watch Video Solution

7. In an AP, it is given that $S_{5}+S_{7}=167$ and $S_{10}=235$, then find the AP, where $S_{n}$ denotes the sum of its first n terms.

[^0]B. $1,5,9,13,17, \ldots$.
C. $2,8,14,20,26, \ldots$.
D. $2,5,8,11,14, \ldots$.

## Answer: A

## - Watch Video Solution

8. If $\alpha$ and $\beta$ are the zeroes of the polynomial $x^{2}+4 x+3=0$, find the polynomial whose zeroes are $1+\frac{\beta}{\alpha}$ and $1+\frac{\alpha}{\beta}$
A. $x^{2}+16 x+16$
B. $x^{2}-16 x+16$
C. $3 x^{2}-16 x+16$
D. $3 x^{2}+16 x+16$

## Answer: C

9. The decimal representation of $\frac{3}{2^{15} \times 5^{10}}$ will terminate after how many places of decimals?
A. 15
B. 10
C. 5
D. None of these

## Answer: A

## Watch Video Solution

10. Determine the values of mandn so that the following system of linear equations have infinite number of solutions: . $3 x+(n-1) y-2=0$
A. $\frac{11}{2}, \frac{17}{2}$
B. $\frac{17}{5}, \frac{11}{5}$
C. $\frac{17}{4}, \frac{11}{5}$
D. $\frac{17}{4}, \frac{11}{2}$

## Answer: C

## - Watch Video Solution

11. In trapezium $A B C D . A B \| D C$ and $D C=2 A B$. $A$ line segment $E F$ drawn parallel to $A B$ cuts $A D$ in $F$ and $B C$ in $E$ such that $\frac{B E}{E C}=\frac{3}{4}$. Diagonal DB intersects EF at G. prove that \&EF=10AB.

A. 7
B. 9
C. 10
D. 11

## Answer: D

## - Watch Video Solution

12. If $15 \tan ^{2} \theta+4 \sec ^{2} \theta=23$, then find the value of $(\sec \theta+\operatorname{cosec} \theta)^{2}-\sin ^{2} \theta$.
A. $\frac{13}{\sqrt{12}}$
B. $\frac{13}{2}$
C. $\frac{15}{2}$
D. $\frac{15}{\sqrt{2}}$

## Answer: C

## - Watch Video Solution

13. If the median for the following frequency distribution is 28.5 , then find the values of x and y respectively.

| Classes | Frequency |
| :---: | :---: |
| $0-10$ | 5 |
| $10-20$ | $x$ |
| $20-30$ | 20 |
| $30-40$ | 15 |
| $40-50$ | $y$ |
| $50-60$ | 5 |
| Total | 60 |

A. 8,7
B. 7, 8
C. 9,6
D. 6,9
14. What should be added in the polynomial $x^{3}-6 x^{2}+11 x+8$ so that it is completely divisible by $x^{2}-3 x+2$ ?
A. 2
B. -2
C. 14
D. -14

## Answer: D

## - Watch Video Solution

15. 

Evaluate

$$
\left[4\left(\sin ^{2} 30^{\circ}+\cos ^{4} 60^{\circ}\right)-3\left(\cos ^{2} 45^{\circ}-\sin ^{2} 90^{\circ}\right)\right] \times \frac{2 \cos ^{2} 60^{\circ}+3 \sec ^{2} 30}{\sin ^{2} 30^{\circ}+\mathrm{cc}}
$$

A. $\frac{55}{6}$
B. 0
C. 1
D. $\frac{32}{3}$

## Answer: A

## - Watch Video Solution

16. $O$ is the centre of a circle of radius $5 \mathrm{~cm} . T$ is a point such that $O T=13 \mathrm{cmand} O T$ intersects the circle at $E$. If $A B$ is the tangent to the circle at $E$, find length of $A B$.
A. $6 \frac{2}{5} \mathrm{~cm}$
B. $6 \frac{2}{3} \mathrm{~cm}$
C. $6 \frac{2}{9} \mathrm{~cm}$
D. $3 \frac{1}{3} \mathrm{~cm}$

## Answer: B

17. If the centroid of the triangle formed by the points $A(a, b), B(b, c)$ and $\mathrm{C}(c, a)$ is at the origin, then what is the value of $\frac{a^{2}}{b c}+\frac{b^{2}}{c a}+\frac{c^{2}}{a b}$ ?
A. 0
B. $a+b+c$
C. 3
D. $a^{3}+b^{3}+c^{3}$

## Answer: C

## - Watch Video Solution

18. The positive value of $k$ for which the equation $x^{2}+k x+64=0$ and $x^{2}-8 x+k=0$ will both have real roots, is 4 (b) 8 (c) 12 (d) 16

## A. 16

B. -16
C. 12
D. -12

## Answer: A

## - Watch Video Solution

19. A solid metallic right circular cone 20 cm high and whose vertical angle is $60^{\circ}$, is cut into two parts at the middle of its height by a plane parallel to its base. If the frustum so obtained be drawn into a wire of diameter $1 / 12 \mathrm{~cm}$, find the length of the wire.
A. 2440 m
B. 2560 m
C. 4480 m
D. 3280 m

## Answer: C

## - Watch Video Solution

20. Which of the following statements is CORRECT?
A. A tangent to a circle is perpendicular to the radius through the point of contact.
B. A line which intersects a circle in two distinct points is called a secant of the circle.
C. The lengths of the two tangents drawn from an external point to a circle are equal.
D. All of these

## Answer: D

## D Watch Video Solution

1. Amita, Suneha and Raghav start preparing cardsfor all the persons of an old age home. In order to complete one card, they take 10, 16 and 20 minutes respectively. If all of them started together, after what time will they start preparing a new card together?
A. 40 minutes
B. 50 minutes
C. 60 minutes
D. 80 minutes

## Answer: D

## - Watch Video Solution

2. Mohit and Rohit each have certain number of oranges. Mohit says to Rohit, "if you give me 10 of your oranges, I will have twice the number of
oranges left with you". Rohit replies, "if you give me 10 of your oranges, I will have the same number of oranges as left with you." Find the number of oranges with Mohit and Rohit respectively.
A. 50,70
B. 70,50
C. 60,60
D. 80,40

## Answer: B

## - Watch Video Solution

3. A shopkeeper sold an air-conditioner for Rs. 25935 with a discount of $9 \%$ and earned a profit of $3.74 \%$. What would have been the percentage of profit if no discount were offered? $12.3 \%$ b. $16 \%$ c. $15.6 \%$ d. none of these
A. $12.3 \%$
B. $15.6 \%$
C. $16 \%$
D. None of these

## Answer: D

## - Watch Video Solution

4. Raghav buys a shop of Rs. $1,20,000$. He pays half of the amount in cash and agrees to pay the balance in 12 annual instalments of Rs. 5000 each. If the rate of interest is $12 \%$ and the pays with the instalment the interest due on the unpaid amount, find the total cost of the shop.
A. Rs. 1,60,800
B. Rs. 1,66,800
C. Rs. 1,68,800
D. Rs. 1,60,000

## Answer: B

## D Watch Video Solution

5. A shopkeeper buys a number of books for Rs 80 . If the had bought 4 more books for the same amount, each book would have cost Rs 1 less. How many books did he buy?
A. 16
B. 20
C. 18
D. 22

## Answer: A

6. There is a small island in the middle of a 100 m wide river and a tall tree stands on the island. $P$ and $Q$ are points directly opposite to each other on two banks and in line with the tree. If the angles of elevation of the top of the tree from $P$ and $Q$ are respectively $30^{\circ}$ and $45^{\circ}$ find the height of the tree
A. 35.3 m
B. 35.6 cm
C. 35 m
D. 36.60 m

## Answer: D

## - Watch Video Solution

7. A child has a block in the shape of a cube with one letter written on each face as shown here:


The cube is thrown once. What is the probability of getting a vowel?
A. $5 / 6$
B. 1
C. $1 / 3$
D. $1 / 6$

## Answer: C

## - Watch Video Solution

8. The short and long hands of a clock are 4 cm and 6 cm long respectively.

Find the sum of distances travelled by their tips in 2 days. (Take $\pi \frac{22}{7}$ )
A. 1901.85 cm
B. 1940.85 cm
C. 1910.85 cm
D. 1900 cm

## Answer: C

## - Watch Video Solution

9. A circus tent is cylindrical upto a height of 3 m and conical above it. If the diameter of the base is 105 m and the slant height of the conical part is 53 m , find the total canvas used in making the tent.
A. $9735 \mathrm{~m}^{2}$
B. $9755 \mathrm{~m}^{2}$
C. $9753 \mathrm{~m}^{2}$
D. $9537 \mathrm{~m}^{2}$

## Answer: A

10. A girl of height 90 cm is walking away from the base of a lamp-post at a speed of $1.2 \mathrm{~m} / \mathrm{s}$. If the lamp is 3.6 m above the ground, find the length of her shadow after 4 seconds.
A. 0.6 m
B. 2.6 m
C. 1.4 m
D. 1.6 m

## Answer: D

## - Watch Video Solution

Achievers Section

1. Match the following.

## Column-I

$P$. If points $(\mathrm{k}, 3),(6,-2)$ and $(-3,4)$ are collinear, then the value of k is
$Q$. If the points $\mathrm{A}(7,-2), \mathrm{B}(5,1)$ and $\mathrm{C}(3,2 \mathrm{k})$ are collinear, then the valu
$R$. If the point $\mathrm{P}(\mathrm{m}, 3)$ lies on the line segment joining the points $A(-$
$S$. The value of a for which the area of the triangle formed by the points
A. $(P) \rightarrow(i v),(Q) \rightarrow(i i i),(R) \rightarrow(i),(S) \rightarrow(i i)$
B. $(P) \rightarrow(i),(Q) \rightarrow(i v),(R) \rightarrow(i i i),(S) \rightarrow(i i)$
C. $(P) \rightarrow(i),(Q) \rightarrow(i v),(R) \rightarrow(i i),(S) \rightarrow(i i i)$
D. $(P) \rightarrow(i v),(Q) \rightarrow(i i i),(R) \rightarrow(i i),(S) \rightarrow(i)$

## Answer: A

## - Watch Video Solution

2. State 'T' for true and ' F ' for false and select the correct option.
I. If a quadratic polynomial $f(x)$ is a square of a linear polynomial, then its two zeroes are coincident.
II. If a quadratic polynomial $f(x)$ is not factorisable into linear factors, then
it has no real zero.
III. If graph of quadratic polynomial $a x^{2}+b x+c$ cuts positive direction of $y$-axis, then the sign of $c$ is positive.

If fourth degree polynomial is divided by a quadratic polynomial, then the degree of the remainder is 2.
A II III IV
A.
$\begin{array}{llll}F & F & T & T\end{array}$
I II III IV
B. $\begin{array}{lllll}T & T & T & F\end{array}$
$\begin{array}{llll}I & I I & I I I & I V\end{array}$
C. $\begin{array}{llll}F & T & T & F\end{array}$
D. $\begin{array}{llll}I & I I & I I I & I V \\ T & T & T & T\end{array}$

## Answer: B

## - Watch Video Solution

3. $V_{1}, V_{2}, V_{3}$ and $V_{4}$ are the volumes of four cubes of side lengths $\mathrm{x} \mathrm{cm}, 2 \mathrm{x}$ $\mathrm{cm}, 3 \mathrm{~cm}$ and 4 xcm respectively. Some statements regarding these volumes are shown here
(1) $V_{1}+V_{2}+2 V_{3}<V_{4}$
(2) $V_{1}+4 V_{2}+V_{3}<V_{4}$
(3) $2\left(V_{1}+V_{3}\right)+V_{2}=V_{4}$

Which of the given statements is CORRECT ?
A. (1) and (2) only
B. (2) and (3) only
C. (1) and (3) only
D. (1), (2) and (3)

## Answer: D

## - Watch Video Solution

4. $T F$ is a tower with $F$ on the ground. The angle of elevation of $T$ from $A$ is $x o$ such that $\tan x o=\frac{2}{5}$ and $A F=200 \mathrm{~m}$. The angle of elevation of $T$ from a nearer point $B$ is $y o$ with $B F=80 \mathrm{~m}$. The value of $y o$ is $75 o$
(b) $45 o$ (c) $60 o$ (d) $30 o$
A. Both Statement I and Statement II are true.
B. Statement I is true but Statement II is false.
C. Statement I is false but Statement II is true.
D. Both Statement I and Statement II are false.

## Answer: B

## - Watch Video Solution

5. In the given figure, D is the midpoint of side BC and $A E \perp B C$. If $B C=a, A C=b, A B=c, E D=x A D=p$ and $A E=h$ prove that (i) $b^{2}=p^{2}+a x+\frac{a^{2}}{4}$
(ii) $c^{2}=p^{2}-a x+\frac{a^{2}}{4}$
(iii) $\left(b^{2}+c^{2}\right)=2 p^{2}+\frac{1}{2} a^{2}$
$(i v)\left(b^{2}-c^{2}\right)=2 a x$.

A. $\begin{array}{lll}P & Q & R \\ a^{2} x & a^{2} / 2 & 2 p^{2}\end{array}$
B. $P \quad Q \quad R$
B. $a x \quad a^{2} / 4 \quad 4 p^{2}$
C. $\begin{array}{lll}P & Q & R \\ a x & a^{2} / 4 & 2 p^{2}\end{array}$
D. $\begin{array}{lll}P & Q & R \\ a^{2} x & a^{2} / 2 & 2 p\end{array}$

Answer: C

## - Watch Video Solution


[^0]:    A. $1,6,11,16,21, \ldots .$.

