©゙ doubtnut

India's Number 1 Education App

MATHS

BOOKS - HT Olympiad Previous Year
 Paper

POLYNOMIALS

Mathematical Reasoning

1. $p x^{3}+q x^{2}+r x+s$ is said to be a cubic
A. $s \neq 0$
B. $r \neq 0$
C. $q \neq 0$
D. $p \neq 0$

Answer: D

D Watch Video Solution

2. If sum of all zeros of the polynomial $5 x^{2}$ - (3
$+k) x+7$ is zero, then zeroes of the polynomial $2 x^{2}-2(k+11) x+30$ are
A. 3,5
B. 7,9
C. 3,6
D. 2,5

Answer: A

D Watch Video Solution

3. If the sum of the product of the zeroes
taken two at a time of the polynomial $f(x)=$
$2 x^{3}-3 x^{2}+4 \mathrm{tx}-5$ is -8 , then the value of t is \qquad
A. 2
B. 4
C. -2
D. -4

Answer: D
(Watch Video Solution
4. If α, β are zeroes of the polynomial $\mathrm{f}(\mathrm{x})=$
$a x^{2}+\mathrm{bx}+\mathrm{c}$, the c , then $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=$

$$
\begin{aligned}
& \text { A. } \frac{b^{2}-2 a c}{a^{2}} \\
& \text { B. } \frac{b^{2}-2 a c}{c^{2}} \\
& \text { C. } \frac{b^{2}+2 a c}{a^{2}} \\
& \text { D. } \frac{b^{2}+2 a c}{c^{2}}
\end{aligned}
$$

Answer: B

D Watch Video Solution

5. A cubic polynomial with sum of its zeroes, sum of the product of its zeroes taken two at a time and the product of its zeroes as $-3,8,4$ respectively, is \qquad .

$$
\begin{aligned}
& \text { A. } x^{3}-3 x^{2}-8 x-4 \\
& \text { B. } x^{3}+3 x^{2}-8 x-4 \\
& \text { C. } x^{3}+3 x^{2}+8 x-4 \\
& \text { D. } x^{3}-3 x^{2}-8 x+4
\end{aligned}
$$

Answer: C

6. If p, q are the zeroes of the polynomial $f(x)=$ $x^{2}+\mathrm{k}(\mathrm{x}-1)-\mathrm{c}$, then $(\mathrm{p}-1)(\mathrm{q}-1)$ is equal to
A. $c-1$
B. 1 - c
C. c
D. $1+\mathrm{c}$

Answer: B
7. When $x^{3}-3 x^{2}+3 x+5$ is divided by $x^{2}-\mathrm{x}$ +1 , the quotient and remainder are
A. $x+2,7$
B. $x-2,-7$
C. $x-2,7$
D. $x+2,-7$

Answer: C
8. What should be subtracted from $f(x)=$ $6 x^{3}+11 x^{2}-39 x-65$ so that $\mathrm{f}(\mathrm{x})$ is exactly divisible by $x^{2}+x-1$?
A. $38 x+60$
B. $-38-60$
C. $-19 x-30$
D. $9 x+10$

Answer: B

D Watch Video Solution

9. Which of the following graph has more than

three distinct real roots?

A.

$C \rightarrow$
D.

Answer: C

10. If one root of the polynomial $\mathrm{f}(\mathrm{x})=3 x^{2}+11 \mathrm{x}$
$+p$ is reciprocal of the other, then the value of p is
A. 0
B. 3
C. $\frac{1}{3}$
D. -3

Answer: B

- Watch Video Solution

11. A polynomial of the form
$a x^{5}+b x^{3}+c x^{2}+d x+e$ has atmost
zeroes.
A. 3
B. 5
C. 7
D. 11

Answer: B

Everyday Mathematics

1. For $x^{2}+2 x+5$ to be a factor of
$x^{4}+\alpha x^{2}+\beta$ the values of α and β
respectively are
A. 2,5
B. 5,25
C. 6,25
D. 5,2

Answer: C

D Watch Video Solution

2. Akshay's father has given him money to buy
some apples from the market at the rate of
$x^{2}-5 x+6$ per apple. The total amount of money given by his father is represented by
$4 x^{4}+2 x^{3}-2 x^{2}+x-1$. Find the maximum amount of money he should have so that he is able to buy exact number of apples from the market.
A. $4 x^{4}+2 x^{3}-2 x^{2}+288 x+504$
B. $4 x^{4}+2 x^{3}-2 x^{2}-288 x-504$
C. $4 x^{4}+2 x^{3}-2 x^{2}-288 x+504$
D. None of these

Answer: C

D Watch Video Solution

3. A rectangular garden of length
$\left(2 x^{3}+5 x^{2}-7\right) \quad \mathrm{m}$ has the perimeter
$\left(4 x^{3}-2 x^{2}+4\right) m$. Find the breadth of the garden.

> A. $\left(6 x^{2}-9\right) \mathrm{m}$
> B. $\left(-6 x^{2}+9\right) \mathrm{m}$
> C. $\left(2 x^{3}-7 x^{2}+11\right) m$
> D. $\left(6 x^{3}+7 x^{2}+9\right) \mathrm{m}$

Answer: B

- Watch Video Solution

4. Raghav had $₹\left(6 x^{3}+2 x^{2}+3 x\right)$ and he bought $\left(4 x^{2}+3\right)$ shirts. The price of each shirt is ₹ $(x+5)$. How much money is left with Raghav?

$$
\begin{aligned}
& \text { A. ₹ }\left(2 x^{3}-18 x^{2}-15\right) \\
& \text { B. } ₹\left(4 x^{2}+2 x+3\right) \\
& \text { C. } ₹\left(x^{3}-3 x\right) \\
& \text { D. } ₹\left(2 x^{3}+2 x^{2}-15\right)
\end{aligned}
$$

Answer: A

5. Two different container contains
$\left(2 x^{3}+2 x^{2}+3 x+3\right)$
L and
$\left(4 x^{3}-2 x^{2}+6 x-3\right) \mathrm{L}$ water, What is biggest measure that can measure both quantities exactly?
A. $\left(x^{2} 2 x\right) L$
B. $\left(2 x^{2}+3\right) L$
C. $(2 x-1) L$
D. $(x+1) L$

Answer: B

D Watch Video Solution

6. Length and breadth of a rectangular park
are $\left(3 x^{2}+2 x\right) \quad \mathrm{m}$ and $\left(2 x^{3}-3\right) \quad \mathrm{m}$
respectively. Find the area of the park, when x
$=3$.
A. $1924 m^{2}$
B. $1492 m^{2}$
C. $1881 m^{2}$

D. $1683 m^{2}$

Answer: D

D Watch Video Solution

Achievers Section Hots

1. Which of the following options hold?

Statement - I : If $\mathrm{p}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are two polynomials with $g(x) \neq 0$, then we can find polynomials $q(x)$ and $r(x)$ such that $p(x)=g(x)$
$\times q(x)+r(x)$, where degree of $r(x)$ is greater
than degree of $g(x)$.
Statement - II : When $4 x^{5}+3 x^{3}+2 x^{2}+8$ is
divided by $4 x^{2}+2 x+1$, then degree of remainder is 1 . Read the given statements carefully
A. Both Statement - I and Statement - Il are
true.
B. Statement - I is true but Statement - II is
false.

C. Statement -I is false but Statement - II is

 true.D. Both Statement - I and Statement - II are

false

Answer: C

D View Text Solution

2. Obtain all the zeros of the polynomial
$f(x)=3 x^{4}+6 x^{3}-2 x^{2}-10 x-5, \quad$ if two
of its zeros are $\sqrt{ }$ and $-\sqrt{\frac{5}{3}}$
A. 1,-1
B. 1,1
C. $-1,-1$
D. 1, 0

Answer: C
(Watch Video Solution

3. Match the following.

Column - I
(P) If one of the zero of the polynomial $f(x)=\left(k^{2}+4\right) x^{2}$
$+13 x+4$ is reciprocal of the other, then k is equal to
(Q) If sum of the zeroes
(ii) 0
of the polynomial
$f(x)=2 x^{3}+k x^{2}+4 x+5$
is 3 , then k is equal to
(R) If the polynomial
$f(x)=a x^{3}+b x-c$
is exactly divisible by
$g(x)=x^{2}+b x+c$,
then $a b$ is equal to
A. $(P) \rightarrow(i i i),(Q) \rightarrow(i),(R) \rightarrow(i i)$
B. $(P) \rightarrow(i i),(Q) \rightarrow(i i i),(R) \rightarrow(i)$
C. $(P) \rightarrow(i i),(Q) \rightarrow(i i i),(R) \rightarrow(i)$
D. $(P) \rightarrow(i i),(Q) \rightarrow(i),(R) \rightarrow(i i i)$

Answer: B
(D) Watch Video Solution

