



## MATHS

## BOOKS - HT Olympiad Previous Year Paper

## POLYNOMIALS

Mathematical Reasoning

1.  $px^3 + qx^2 + rx + s$  is said to be a cubic

polynomial, if \_\_\_\_.

A. s 
eq 0

- B. r 
  eq 0
- $\mathsf{C}.\,q\neq 0$
- D. p 
  eq 0

#### Answer: D

### Watch Video Solution

**2.** If sum of all zeros of the polynomial  $5x^2$ - (3 + k) x + 7 is zero, then zeroes of the polynomial  $2x^2$  - 2(k + 11)x + 30 are

A. 3,5

B. 7,9

C. 3,6

D. 2,5

Answer: A



**3.** If the sum of the product of the zeroes taken two at a time of the polynomial f(x) =

| $2x^3 - 3x^2$               | + 4tx - 5 | 5 is -8, | then | the | value | of t |
|-----------------------------|-----------|----------|------|-----|-------|------|
| is                          |           |          |      |     |       |      |
| A. 2                        |           |          |      |     |       |      |
| B.4                         |           |          |      |     |       |      |
| C2                          |           |          |      |     |       |      |
| D.-4                        |           |          |      |     |       |      |
|                             |           |          |      |     |       |      |
| Answer: D                   |           |          |      |     |       |      |
| <b>Watch Video Solution</b> |           |          |      |     |       |      |
|                             |           |          |      |     |       |      |

**4.** If  $\alpha$ ,  $\beta$  are zeroes of the polynomial f(x) =  $ax^2$  + bx + c, the c, then  $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$  =

A. 
$$\frac{b^2 - 2ac}{a^2}$$
B. 
$$\frac{b^2 - 2ac}{c^2}$$
C. 
$$\frac{b^2 + 2ac}{a^2}$$
D. 
$$\frac{b^2 + 2ac}{c^2}$$

#### Answer: B

**5.** A cubic polynomial with sum of its zeroes, sum of the product of its zeroes taken two at a time and the product of its zeroes as -3, 8, 4 respectively, is\_\_\_\_.

A. 
$$x^3-3x^2-8x-4$$

B. 
$$x^3 + 3x^2 - 8x - 4$$

$$C. x^3 + 3x^2 + 8x - 4$$

D. 
$$x^3-3x^2-8x+4$$

#### Answer: C

**6.** If p, q are the zeroes of the polynomial  $f(x) = x^2 + k(x - 1) - c$ , then (p - 1)(q- 1) is equal to

A. c-1

В.1-с

С. с

D. 1 + c

#### Answer: B

7. When  $x^3 - 3x^2 + 3x + 5$  is divided by  $x^2$  - x

- + 1, the quotient and remainder are
  - A. x + 2, 7
  - B. x-2, -7
  - C. x-2,7
  - D. x + 2 , -7

#### Answer: C

8. What should be subtracted from f(x) =  $6x^3 + 11x^2 - 39x - 65$  so that f(x) is exactly divisible by  $x^2 + x - 1$ ?

A. 38 x + 60

B. - 38 - 60

C. - 19x - 30

D.9x + 10

#### Answer: B



#### 9. Which of the following graph has more than

three distinct real roots?





#### Answer: C

**10.** If one root of the polynomial  $f(x) = 3x^2 + 11x$ + p is reciprocal of the other, then the value of p is

A. 0

- B. 3
- C.  $\frac{1}{3}$
- $\mathsf{D.}-3$

#### Answer: B



# **11.** A polynomial of the form $ax^5+bx^3+cx^2+dx+e$ has atmost \_\_\_\_\_ zeroes. A. 3 B. 5 C. 7 D. 11 **Answer: B**

**Everyday Mathematics** 

1. For 
$$x^2+2x+5$$
 to be a factor of  $x^4+lpha x^2+eta$  the values of  $lpha$  and  $eta$  respectively are

A. 2,5

B. 5,25

#### C. 6,25

#### D. 5,2

#### Answer: C



**2.** Akshay's father has given him money to buy some apples from the market at the rate of  $x^2 - 5x + 6$  per apple. The total amount of money given by his father is represented by  $4x^4+2x^3-2x^2+x-1$ . Find the maximum amount of money he should have so that he is able to buy exact number of apples from the market.

A. 
$$4x^4 + 2x^3 - 2x^2 + 288x + 504$$
  
B.  $4x^4 + 2x^3 - 2x^2 - 288x - 504$   
C.  $4x^4 + 2x^3 - 2x^2 - 288x + 504$   
D. None of these

#### Answer: C



 $\left(2x^3+5x^2\!-7
ight)$  m has the perimeter

 $\left(4x^3-2x^2+4
ight)$  m. Find the breadth of the

#### garden.

A. 
$$(6x^2 - 9)$$
 m  
B.  $(-6x^2 + 9)$  m  
C.  $(2x^3 - 7x^2 + 11)m$   
D.  $(6x^3 + 7x^2 + 9)$  m

#### Answer: B

**4.** Raghav had  $\neq (6x^3 + 2x^2 + 3x)$  and he bought  $(4x^2 + 3)$  shirts. The price of each shirt is  $\neq$  (x + 5). How much money is left with Raghav?

A. ₹
$$(2x^3 - 18x^2 - 15)$$
  
B. ₹ $(4x^2 + 2x + 3)$   
C. ₹ $(x^3 - 3x)$   
D. ₹ $(2x^3 + 2x^2 - 15)$ 

#### Answer: A



#### 

5. Two different container contains  $(2x^3 + 2x^2 + 3x + 3)$  L and  $(4x^3 - 2x^2 + 6x - 3)$  L water, What is biggest measure that can measure both quantities exactly?

A. 
$$\left(x^22x
ight)L$$

- $\mathsf{B.}\left(2x^2+3\right)L$
- C. (2x 1)L
- $\mathsf{D}.\,(x+1)L$

#### Answer: B



6. Length and breadth of a rectangular park are  $(3x^2 + 2x)$  m and  $(2x^3 - 3)$  m respectively. Find the area of the park, when x = 3.

A.  $1924m^2$ 

B.  $1492m^2$ 

C.  $1881m^2$ 

#### D. $1683m^2$

#### Answer: D

Watch Video Solution

#### **Achievers Section Hots**

**1.** Which of the following options hold? Statement - I : If p(x) and g(x) are two polynomials with  $g(x) \neq 0$ , then we can find polynomials q(x) and r(x) such that p(x) = g(x) × q(x) + r(x), where degree of r(x) is greater than degree of g(x). Statement - II : When  $4x^5 + 3x^3 + 2x^2 + 8$  is divided by  $4x^2 + 2x + 1$ , then degree of remainder is 1. Read the given statements carefully

A. Both Statement - I and Statement - II are true.

B. Statement - I is true but Statement - II is false.

#### C. Statement -I is false but Statement - II is

true.

D. Both Statement - I and Statement - II are

false

#### Answer: C



2. Obtain all the zeros of the polynomial  $f(x)=3x^4+6x^3-2x^2-10x-5,\,\,$  if two

of its zeros are
$$\sqrt{and}-\sqrt{rac{5}{3}}$$

A. 1,-1

B. 1,1

- C. -1, -1
- D.1, 0

#### Answer: C



#### **3.** Match the following.

Column - I Column - II If one of the zero of the (i) 1 (P) polynomial  $f(x) = (k^2 + 4)x^2$ + 13x + 4 is reciprocal of the other, then k is equal to If sum of the zeroes (ii) 0 (Q)of the polynomial  $f(x) = 2x^3 + kx^2 + 4x + 5$ is 3, then k is equal to (R) If the polynomial (iii) --6  $f(x) = ax^3 + bx - c$ is exactly divisible by  $g(x) = x^2 + bx + c$ . then ab is equal to

A. 
$$(P) 
ightarrow (iii), (Q) 
ightarrow (i), (R) 
ightarrow (ii)$$

 $\mathsf{B}.\,(P) \to (ii),\,(Q) \to (iii),\,(R) \to (i)$ 

 $\mathsf{C}.\,(P) o (ii),\,(Q) o (iii),\,(R) o (i)$ 

 $\mathsf{D}.\,(P) o (ii),\,(Q) o (i),\,(R) o (iii)$ 



