©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - HT Olympiad Previous Year

Paper

TRIANGLES

Mathematical Reasoning

1. In the given figure, $\Delta A B C \sim \Delta D C B$, then
$A B \times D B=$

A. $O A \times O D$
B. $O B \times O C$
C. $A B \times D C$
D. $D C \times A C$

Answer: D

- Watch Video Solution

2. In rhombus $A B C D$,

$A B^{2}+B C^{2}+C D^{2}+D A^{2}=$

A. $O A^{2}+O B^{2}$
B. $O B^{2}+O C^{2}$
C. $O C^{2}+O D^{2}$
D. $A C^{2}+B D^{2}$

Answer: D

D Watch Video Solution

3. In the given figure, $\angle B A C=\angle A D C$, then
$\frac{C A}{C B}=$

A. $C B \times C D$
B. $C A^{2}$
c. $\frac{D C}{A C}$
D. $C D^{2}$

Answer: C

- Watch Video Solution

4. $A B C$ is a triangle and D, E, F are the midpoints of the sides $B C, C A, A B$ respectively. The ratio of the areas of $\triangle A B C$ and $\triangle D E F$ is:
A. $1: 2$
B. $4: 5$
C. $3: 4$
D. 1: 4

Answer: D

D Watch Video Solution

5. In the given figure, $\mathrm{AD} \perp \mathrm{BC}, \mathrm{BE} \perp \mathrm{AC}, \mathrm{CF}$
$\perp \mathrm{AB}$, then $A F^{2}+B D^{2}+C E^{2}=$

A. $O A^{2}+O B^{2}+O C^{2}$
B. $O D^{2}+O E^{2}+O F^{2}$
C. $A B^{2}+B C^{2}+A C^{2}$
D. $A E^{2}+B F^{2}+C D^{2}$

Answer: D

D Watch Video Solution

6. $A B C$ is a triangle right-angled at C. If p is the
length of the perpendicular from C to $A B$ and
a, b, c are the sides, then which one of the following is correct ?
A. $1 / p^{2}$
B. $2 / p^{2}$
C. p^{2}
D. $2 p^{2}$

Answer: A

- Watch Video Solution

7. In the given $\triangle A B C, A D \perp B C$ and $\angle A$ is
right angle. Then $A D^{2}=$

A. $A B \times A C$

$$
\text { B. } B D \times C D
$$

C. $B C \times A C$
D. $A B \times B C$

Answer: B
8. $\triangle A B C$ is such that $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=2 \mathrm{~cm}, \mathrm{CA}$
$=2.5 \mathrm{~cm}$. If $\triangle A B C \sim \Delta D E F$ and $\mathrm{EF}=4 \mathrm{~cm}$, then perimeter of $\triangle D E F$ is :
A. 7.5 cm
B. 15 cm
C. 22.5 cm
D. 30 cm

- Watch Video Solution

9. In the given figure, $D E \| B C$. Find the value of x.

A. $\sqrt{5}$
B. $\sqrt{6}$
C. $\sqrt{3}$
D. $\sqrt{7}$

Answer: D

- Watch Video Solution

10.

$\triangle A B C \sim \triangle P Q R$
and
$\operatorname{ar}(\triangle A B C)=4 \operatorname{ar}(\triangle P Q R)$ IF $B C=12 \mathrm{~cm}$
then find $Q R$
A. 9 cm

B. 10 cm

C. 6 cm
D. 8 cm

Answer: C

D Watch Video Solution

Everyday Mathematics

1. If a tree casts a 18 feet shadow and at the same time, a child of height 3 feet casts a 2
feet shadow, then the height of the tree is
A. 27 feet
B. 32 feet
C. 45 feet

D. 36 feet

Answer: A
2. Two poles of height 9 m and 14 m stand on a
plane ground. If the distance between their
feet is 12 m , find the distance between their tops.
A. 13 m
B. 12 m
C. 14 m
D. 15 m

Answer: A
3. A 12 cm rod is held between a flashlight and
a wall as shown. Find the length of the shadow on the wall if the rod is 45 cm from the wall and 15 cm from the light shadow

75 cm 96 cm 48 cm 60 cm
A. 75 cm
B. 96 cm
C. 48 cm
D. 60 cm

Answer: C

D Watch Video Solution

4. An aeroplane leaves an airport and flies due north at a speed of 1000 km per hour. At the
same tune, another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour. |How far apart will be the two planes after 1¹/2
A. $300 \sqrt{67} \mathrm{~km}$
B. $400 \sqrt{61} \mathrm{~km}$
C. $200 \sqrt{61} \mathrm{~km}$
D. $300 \sqrt{61} \mathrm{~km}$

Answer: D

D Watch Video Solution

5. A construction company wants to connect two parks on opposite sides of town with a road. Surveyors have laid out a map as shown.

The road can be built through the town or
around town through point R. The roads intersect at a right angle at point R. The line joining Park A to Park B is parallel to the line joining C and D.

(i) What is the distance between the parks through town?
(ii) What is the distance from Park A to Park R ?
(i) (ii)
A.
$9 m 13 m$
(i) (ii)
B.
$8 m \quad 12.5 m$

C.
 (ii)
 $8.75 m 12 m$
 (i) (ii)
 $9 m 14 m$

Answer: C

- Watch Video Solution

Achievers Section Hots

1. In figure, $A B C$ is a right triangle, right angled
at $B . A D$ and $C E$ are the two medians drawn
from A and C respectively. If $A C=5 \mathrm{~cm}$ and

$A D=\frac{3 \sqrt{5}}{2} \mathrm{~cm}$, find the length of $\mathrm{CE}:$

A. 4 cm
B. $2 \sqrt{5} \mathrm{~cm}$
C. $3 \sqrt{5} \mathrm{~cm}$
D. 5 cm

Answer: B

- Watch Video Solution

2. Match the following.

Column-1
(P) In $\triangle A B C$ and $\triangle P Q R$ $\frac{A B}{P Q}=\frac{A C}{P R}, \angle A=\angle P$
$\Rightarrow \triangle A B C \sim \triangle P Q R$
(Q) In $\triangle A B C$ and $\triangle P Q R$
$\angle A=\angle P, \angle B=\angle Q$
$\Rightarrow \triangle A B C \sim \triangle P Q R$
(R) In $\triangle A B C$ and $\triangle P Q R$
$\frac{A B}{P Q}=\frac{A C}{P R}=\frac{B C}{Q R}$
$\Rightarrow \triangle A B C \sim \triangle P Q R$
(S) In $\triangle A B C, D E \| B C$
$\Rightarrow \frac{A D}{B D}=\frac{A E}{E C}$

Column-II
(1) AA similarity
criterion
(2) SAS similarity criterion
(3) SSS similarity criterion
(4) BPT
A. $(\mathrm{P}) \rightarrow(1),(\mathrm{Q}) \rightarrow(2),(\mathrm{R}) \rightarrow(3),(\mathrm{S}) \rightarrow$
(4)

$$
\text { B. }(\mathrm{P}) \rightarrow(2),(\mathrm{Q}) \rightarrow(1),(\mathrm{R}) \rightarrow(3),(\mathrm{S}) \rightarrow
$$

(4)
C. $(\mathrm{P}) \rightarrow(4),(\mathrm{Q}) \rightarrow(2),(\mathrm{R}) \rightarrow(1),(\mathrm{S}) \rightarrow$
(3)

$$
\text { D. }(\mathrm{P}) \rightarrow(3),(\mathrm{Q}) \rightarrow(1),(\mathrm{R}) \rightarrow(4),(\mathrm{S}) \rightarrow
$$

(2)

Answer: B
3. Which of the following statements is correct?
A. The ratio of the areas of two similar
triangles is equal to the ratio of their
corresponding sides.
B. If a lines is drawn parallel to one side of
the triangle to intersect the other two
sides in distinct points, then the other two sides are divided in the same ratio.
C. All similar figures are congruent.
D. If in two triangles, two angles of one
triangle is equal to the two
corresponding angles of the other
triangle, then two triangle may or may
not be similar.

Answer: B

D Watch Video Solution

4. P and Q are the mid-points of the sides $C A$ and CB respectively of a $\Delta A B C$, right angled at C, then find :
(i) $4 A C^{2}+B C^{2}$
(ii) $4 B C^{2}+A C^{2}$
(iii) $4\left(A Q^{2}+B P^{2}\right)$
(i) (ii) (iii)
A.
$4 A Q^{2} \quad 4 B P^{2} \quad 5 A B^{2}$
(i) (ii) (iii)
B.
$5 A Q^{2} \quad 5 B P^{2} \quad 4 A B^{2}$
C.
(i) (ii) (iii)
$4 A Q^{2} \quad 5 B P^{2} \quad 5 A B^{2}$
(i) (ii) (iii)
D.
$5 A Q^{2} \quad 4 B P^{2} \quad 4 A B^{2}$

D Watch Video Solution

5. In the given figure, the line segment $X Y$ is parallel to side AC of $\triangle A B C$ and it divides the triangle into two parts of equal area. Then, find

(i) $A X: A B$ (ii) $\frac{A C}{X Y}$.
(i)
(ii)
A. $(2+\sqrt{2}): 2 \quad \sqrt{2}-2$
(i)
(ii)
B. $(2-\sqrt{2}): 2 \quad \sqrt{2}-1$
(i)
(ii)
C. $(2-\sqrt{3}): 3 \quad 3$
(i)
(ii)
D. $(2+\sqrt{2}): 3 \quad \sqrt{2}-3$

Answer: B
(D) Watch Video Solution

