



## MATHS

# **BOOKS - CENGAGE**

# **BINOMIAL THEOREM**

Worked Examples

**1.** Expand  $(x + 1)^4$ .



**4.** Find the middle term in the expansion of  $(x + 2)^{12}$ .



**Test Yourself Level 1** 

**1.** Write down the expansion of  $(a + b)^6$ .

**2.** Write down the expansion of  $(1 + x)^5$ .



**3.** Write down the first three terms in the expansion of  $(a + 1/a)^8$ .

**4.** Write down the last two terms in the expansion of  $(2x - 1/x)^{10}$ .

View Text Solution

5. Write down the sum of the first three terms

in the expansion of  $(1 + 0.02)^{12}$ .



**Test Yourself Level 2** 

1. Evaluate (1.03)<sup>7</sup> correct to five decimal places using binomial theorem.
View Text Solution

2. Evaluate  $\left(0.99
ight)^{5}$  correct to five decimal

places using binomial theorem.

3. Find the seventh term in the expansion of

$$(x+2/x)^{10}.$$

View Text Solution

**4.** Find the tenth term in the expansion of  $(2x + 3/x)^{20}$ .



5. Find the middle term in the expansion of

$$(x+1/x)^9.$$

View Text Solution

6. Find the middle terms in the expansion of

$$\left(2x^{2} \, / \, 3 - 3 \, / \, 2x 
ight)^{11}$$
.



**Test Yourself Level 3** 

**1.** Find the value of 
$$\left(2+\sqrt{3}
ight)^5+\left(2-\sqrt{3}
ight)^5$$
.



**4.** Find the middle term/terms in the expansion of  $\left(4x^2/3 - 3/2x\right)^9$ .

View Text Solution

**5.** Find the coefficient of  $x^7$  in the expansion of

$$\left(x^2+1/x
ight)^{11}$$

6. Which term in the expansion of  $(2x^2 + 1/3x^3)^{10}$  does not contain x?

7. What is the coefficient of  $x^{-9}$  in the expansion of  $\left(x^2/2 + 2/x\right)^9$  ?



8. What is the coefficient of  $x^{-11}$  in the expansion of  $\left(\sqrt{x}-2/x\right)^{17}$  ?

**View Text Solution** 

**9.** If the first three terms in the expansion of  $(1 + ax)^n$  are 1, 6x, and  $16x^2$ , what are the values of a and n?

**View Text Solution** 

**Test Yourself Multiple Choice Questions** 

**1.** The number of terms in the expansion of  $(2x + 3y)^{17}$  is

#### A. 16

B. 17

C. 18

D. 34

#### Answer: C



2. The number of terms in the expansion of

 $\left(\sqrt{x}+\sqrt{y}
ight)^8+\left(\sqrt{x}-\sqrt{y}
ight)^8$  is

- A. 8
- B. 7
- C. 5
- D. 9

#### Answer: C

**3.** The number of terms in the expansion of  $\{5x + 2y\}^7 - \left\{(5x - 2y)^7\right\}$  is

A. 4

B. 8

C. 6

D. 3

**Answer: A** 



**4.** The number of terms in the expansion of  $\left\{ \left(\sqrt{2}x + \sqrt{3}y\right)^{10} - \left(\sqrt{2}x - \sqrt{3}y\right)^{10} \right\}$  is

A. 11

B. 9

C. 6

D. 5

Answer: D

5. The number of terms in the expansion of  $\left\{ (x+a)^{16} + (x-a)^{16} 
ight\}$  is

A. 7

B. 8

C. 9

D. 17

Answer: C



**6.** The  $10^{th}$  term in the expansion of

$$\left(2x^2+rac{1}{x^2}
ight)^{12}$$
 is

A. 
$$264x^{\,-16}$$

B.  $220x^{-12}$ 

C. 
$$792x^{-14}$$

D.  $1760x^{-12}$ 

#### Answer: D



7. The  $4^{th}$  term in the expansion of  $\left(x-2y
ight)^{12}$  is

A.  $1760x^8y^6$ 

 $\mathsf{B.}-440x^7y^5$ 

 $C. - 1760x^9y^3$ 

D. None of these

#### Answer: C

8. The  $13^{th}$  term in the expansion of  $\left(9x-rac{1}{3\sqrt{x}}
ight)^{18}, x
eq 0$  is

A. 16854

B. 18564

C. 17954

D. 18832

#### Answer: B



**9.** The  $3^{rd}$  term from the end in the expansion

of 
$$\left(x+rac{1}{x}
ight)^6$$
 is

A. 
$$\frac{15}{x^2}$$
  
B.  $\frac{30}{x^3}$   
C.  $\frac{12}{x^2}$   
D.  $\frac{24}{x^3}$ 

#### Answer: A

**10.** The  $4^{th}$  term from the end in the expansion

of 
$$\left(\sqrt{x}-\sqrt{y}
ight)^{17}$$
 is

A. 
$${}^{17}C_6ig(\sqrt{x}ig){}^{11}y^3$$

B. 
$$-{}^{17}C_5x^6\Bigl(\sqrt{y}\Bigr)^5$$

C. 
$${}^{17}C_4 x^{13\,/\,2} y^2$$

D. 
$$-{}^{17}C_{13}x^2y^{13\,/\,2}$$

View Text Solution

### Answer: C

11. The middle term in the expansion of

$$\left(x-rac{1}{2y}
ight)^{10}$$
 is

A. 
$$\frac{-63}{8}x^5y^{-5}$$

B. 
$$rac{-21}{4}x^6y^{-6}$$

C. 
$$\frac{63}{8}x^4y^{-4}$$

D. 
$$rac{-63}{8}x^4y^{-4}$$

#### Answer: A



12. The middle term in the expansion of

$$\left(x^2-rac{2}{x}
ight)^{10}$$
 is

A.  $8064x^5$ 

- $\mathsf{B.}-8064x^5$
- C.  $6720x^4$
- $\mathsf{D.}-6720x^4$

#### **Answer: B**

**13.** The coefficient of  $x^2$  in the expansion of

$$\left(3x-rac{1}{x}
ight)^6$$
 is

A. 405

- B. 1215
- C. 2430
- D. 3645

#### Answer: B



14. The coefficient of  $x^6$  in the expansion of

$$\left(3x^2-rac{1}{3x}
ight)^9$$
 is

A. 576

- B. 756
- C. 189
- D. 378

#### Answer: D

15. The term independent of x in the expansion of  $\left(\sqrt{x} + \frac{1}{3x^2}\right)^{10}$  is

A. 135

B. 132

C. 15

D. 5

Answer: D

**16.** The term independent of 
$$x$$
 in the expansion of  $\left(x-\frac{1}{x}\right)^{12}$  is

A. 924

B. 462

C. 231

D. 693

Answer: A

17. The coefficient of  $x^{32}$  in the expansion of

$$\left(x^4-rac{1}{x^3}
ight)^{15}$$
 is

A. 273

- B. 546
- C. 1365
- D. 1032

#### Answer: C

**18.** The term independent of x in the expansion of  $\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$  is

A. 
$$\frac{1}{24}$$
  
B.  $\frac{7}{18}$   
C.  $\frac{8}{24}$   
D.  $\frac{5}{36}$ 

#### **Answer: B**

**19.** Which term contains  $x^3$  in the expansion of

$$\left(3x-rac{1}{2x}
ight)^8$$
 ?

A. 
$$2^{nd}$$

 $\mathsf{B.}\,\mathbf{3}^{rd}$ 

$$\mathsf{C.}\,5^{th}$$

D. None of these

#### Answer: D

**20.** The coefficient of  $x^{-4}$  in the expansion of

$$\left(rac{4x}{5}+rac{5}{2x}
ight)^8$$
 is

 $\mathsf{A.}\ 625$ 

- B. 1875
- C. 4375
- D. None

#### Answer: C

21. The total number of terms in the expansion of  $(x + k)^{100} + (x - k)^{100}$  after simplification is A. 50 B. 51 C. 101

D. 202

#### **Answer: B**



22. If the coefficients of the second, third and fourth terms in the expansion of  $(1 + x)^n$  are in A.P., then n =

A. 5

B. 6

C. 7

D. 9

#### Answer: C



23. If p and q are positive integers, then the coefficients of  $x^p$  and  $x^q$  in the expansion of  $(1+x)^{p+q}$  are

A. equal

- B. equal with opposite signs
- C. reciprocal to each other

D. none of these

Answer: A

24. Let the coefficient of  $x^n$  in the expansion of  $(1+x)^{2n}$  be P and the coefficient of  $x^n$  in the expansion of  $(1+x)^{2n-1}$  be q, then

A. 
$$P=2q$$

$$\mathsf{B.}\,2P=q$$

$$\mathsf{C.}\,2P=3q$$

D. 
$$3P=2q$$

#### Answer: A

**25.** In the expansion of  $(1 + x)^n$ , the binomial coefficient of three consecutive terms are respectively 220, 495 and 792. The value of n is

A. 10

B. 11

C. 12

D. 13

#### Answer: C



**26.** If the coefficients of  $x^7$  and  $x^8$  are equal in the expansion of  $\left(2+rac{x}{3}
ight)^n$ , then n=

A. 15

B.45

C. 55

D. 56

Answer: C

**1.** If rth and (r+1)th terms in the expansion

of 
$$\left(p+q
ight)^n$$
 are equal, then  $\displaystyle rac{(n+1)q}{r(p+q)}$  is

A. 
$$\frac{1}{2}$$
  
B.  $\frac{1}{4}$ 

D. 0

### Answer: C





2. If the coefficients of  $T_r, T_{r+1}$  and  $T_{r+2}$  terms of  $\left(1+x
ight)^{14}$  are in A.P., then r=

A. 6

B. 7

C. 8

D. 9

#### Answer: D

**3.** The ratio of the coefficient of  $x^{15}$  to the term independent of x in the expansion of

$$\left(x^2+rac{2}{x}
ight)^{15}$$
 is

A. 1:32

B.1:16

C. 1: 12

D.1:8

#### **Answer: A**





# **4.** The approximate value of $\left(1.0002 ight)^{3000}$ is

A. 1.6

- $B.\,1.4$
- C. 1.8
- $D.\,1.2$

### Answer: A



5.  $10^n+3ig(4^{n+2}ig)+5$  is divisible by  $(n\in N)$ 

#### A. 7

B. 5

C. 9

D. 17

#### Answer: C



**6.** If n is an odd natural number, then number

of zeros at the end of  $99^n + 1$  is

A. 2n

B. *n* 

 $\mathsf{C.}\,2$ 

D. None of these

#### Answer: C

7. If the three consecutive coefficients in the expansion of  $(1+x)^n$  are 28, 56 and 70, then the value of n is A. 6 B. 4 C. 8 D. 10

#### Answer: C

8. The number of integral terms in the expansion of  $\left(5^{1/2}+7^{1/6}
ight)^{642}$  is

A. 106

B. 108

C. 103

D. 109

**Answer: B** 

### 9. Match the given columns:

| Column I |                                                                                                                   |     | Column II |  |
|----------|-------------------------------------------------------------------------------------------------------------------|-----|-----------|--|
| (a)      | If ${}^{(n+1)}C_4 + {}^{(n+1)}C_3 + {}^{(n+2)}C_3 > {}^{(n+3)}C_3$ ,<br>then possible value(s) of <i>n</i> is/are | (p) | 4         |  |
| (b)      | The remainder when (3053) <sup>456</sup> - (2417) <sup>353</sup> is divided by 9 is less than                     | (q) | 5         |  |

| (c) | The digit in the units place of the number $183! + 3^{183}$ is greater than                                                                                                                          | (r) | 6 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| (d) | If the sum of the coefficients of the first, second and third terms in the expansion of $\left(x^2 + \frac{1}{x}\right)^m$ is 46, then the index of the term that does not contain x is greater than | (6) | 7 |

View Text Solution

### **10.** Match the given columns:

| Column I |                                                                                                                                                 | Column II |    |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----|
| (a)      | If the coefficients of two consecutive terms in the expansion of $(1 + x)^n$ are equal, then <i>n</i> can be                                    | (p)       | 9  |
| (b)      | If 15" + 23" is divisible by 19, then n can be                                                                                                  | (q)       | 10 |
| (c)      | If ${}^{10}C_0 {}^{20}C_{10} - {}^{10}C_1 {}^{10}C_{10} + {}^{10}C_2 {}^{10}C_{10}$<br>is divisible by 2 <sup>n</sup> , then n can be           | (r)       | 11 |
| (b)      | If the coefficients of $T_r$ , $T_{r+1}$ and $T_{r+2}$ terms of $(1 + x)^{14}$ are in A.P., then the sum of possible values of $r$ is more than | (8)       | 12 |

