© 'doubtnut

MATHS

BOOKS - CENGAGE

MATRICES

Test Yourself Level 1

1. From newspapers or magazines write some examples of information in form
2. State the order of the following matrices
$\left(\begin{array}{ccc}1 & 2 & 3 \\ -4 & 6 & 7\end{array}\right)$

D View Text Solution

3. State the order of the following matrices
$\binom{7}{8}$

- View Text Solution

4. State the order of the following matrices
$\left(\begin{array}{llll}3 & 7 & 8 & 9\end{array}\right)$

- View Text Solution

5. State the order of the following matrices
$\left(\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6 \\ 7 & 9\end{array}\right)$

D View Text Solution

6. State the order of the following matrices
$\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$

- View Text Solution

7. State the order of the following matrices
$\left(\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$
8. Which of the matrices in Q. 2 may be called row vectors or column vectors?

- View Text Solution

9. Show o a diagram, vectors which may be represented by the following matrices :
$\left(\begin{array}{ll}0 & 0\end{array}\right)$

- View Text Solution

10. Show o a diagram, vectors which may be represented by the following matrices :

- View Text Solution

11. Show o a diagram, vectors which may be represented by the following matrices :
$\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$

- View Text Solution

12. Show o a diagram, vectors which may be represented by the following matrices :
$\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)$

- View Text Solution

13. Show o a diagram, vectors which may be represented by the following matrices:
$\left(\begin{array}{c}2 \\ -2 \\ -2\end{array}\right)$

- View Text Solution

14. The basic addition facts in the tens number system are given below:

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18

What is the order of the matrix by addition results?

- View Text Solution

15. The basic addition facts in the tens number system are given below :

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18

State entries in the leading diagonal

- View Text Solution

16. The basic addition facts in the tens number system are given below :

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18

Is the matrix symmetric ?

- View Text Solution

17. The basic addition facts in the tens number system are given below :

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18

If the typical element is denoted by $a_{i j}$, what are the following
$a_{1,6}, a_{3,7}, a_{5,5}, a_{6,1}, a_{10,8}$

- View Text Solution

18. Write the following in matrix form :
$2 x+3 y=5$
$4 x+8 y=9$

D View Text Solution

19. Write the following in matrix form :
$3 x-4 y+3 z=25$
$7 x+2 y-6 z=11$
$2 x-7 y+8 z=25$

View Text Solution
20. Write the following in matrix form :
$x+y+z=7$
$-y+z=3$
$-x+0 y+z=5$

- View Text Solution

1. If $\mathrm{A}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$, and $B=\left(\begin{array}{ll}5 & 6 \\ 4 & 3\end{array}\right)$, find the following $A+B$

Are the answer to (b) and (c) the same

- View Text Solution

2. If $A=\left(\begin{array}{cc}1 & 0 \\ -3 & 4\end{array}\right)$, find the following
A^{2}

D View Text Solution
3. If $A=\left(\begin{array}{cc}1 & 0 \\ -3 & 4\end{array}\right)$, find the following

- View Text Solution

4. If $A=\left(\begin{array}{cc}1 & 0 \\ -3 & 4\end{array}\right)$, find the following $A+A^{2}$

- View Text Solution

5. If $A=\left(\begin{array}{cc}1 & 0 \\ -3 & 4\end{array}\right)$, find the following $A+A^{2}+A^{3}$

- View Text Solution

Test Yourself Level 3

1. If $A=\left[\begin{array}{ll}4 & 5 \\ 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 6 \\ 1 & 3\end{array}\right]$, find the $3 A-2 B$

- View Text Solution

2. If $\mathrm{A}+\mathrm{B}=\left[\begin{array}{cc}12 & 8 \\ 8 & 4\end{array}\right]$ and $A-B=\left[\begin{array}{ll}4 & 6 \\ 6 & 2\end{array}\right]$ find the matrices A and B

- View Text Solution

3. A warehouse deals with five items A, B, C, D, and E each of which being delivered in cartons of different sizes. The following matrix shows the number of cartons delivered by three vans in a day

	A	B	C	D	E
Van I	4	6	2	8	8
Van II	10	12	0	2	4
Van III	3	4	5	10	1

If the weight of one carton of each type is $A \rightarrow 2 k g, B \rightarrow 3.5 k g, C \rightarrow 1 k g, D \rightarrow 1.5 \mathrm{~kg}$ and $E \rightarrow 0.75 \mathrm{~kg}$ find the weight of cartons in each van. Also If the volume in cc
of one carton of each type
$A \rightarrow 20, B \rightarrow 30, C \rightarrow 15, D \rightarrow 20$, and $E \rightarrow 45$, find the total volume of goods delivered by all the vans put together .

- View Text Solution

Test Yourself Level 3 Multiple Choice Questions

1. Which of the following matrices can be represented by the notation $B=\left[b_{i j}\right]_{3 \times 3}$?
A. $\left[\begin{array}{lll}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33}\end{array}\right]$
B. $\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32}\end{array}\right]$
C. $\left[\begin{array}{lll}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23}\end{array}\right]$
D. None of these

Answer: C

- View Text Solution

2. The short notation of the matrix $B=\left[\begin{array}{lll}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33}\end{array}\right]$ is
A. $B=\left[b_{i j}\right]_{3 \times 2}$
B. $B=\left[b_{i j}\right]_{2 \times 2}$
C. $B=\left[b_{i j}\right]_{3 \times 3}$
D. None of these

Answer: A

- View Text Solution

3. Which of the following is an upper triangular matrix ?
A. $\left[\begin{array}{lll}2 & 3 & 4 \\ 0 & 4 & 6 \\ 0 & 0 & 7\end{array}\right]$
B. $\left[\begin{array}{lll}2 & 0 & 0 \\ 3 & 5 & 0 \\ 5 & 6 & 7\end{array}\right]$
C. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 3 & 4\end{array}\right]$
D. None of these

Answer: A
4. Which of the following is a diagonal matrix ?
A. $\left[\begin{array}{lll}2 & 3 & 4 \\ 5 & 0 & 0 \\ 0 & 6 & 7\end{array}\right]$
B. $\left[\begin{array}{lll}0 & 2 & 3 \\ 4 & 0 & 3 \\ 6 & 7 & 0\end{array}\right]$
C. $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 8\end{array}\right]$
D. None of these

Answer: C

- View Text Solution

5. What is the value of trace of the following matrix ?

$$
A=\left[\begin{array}{ccc}
2 & 3 & 4 \\
7 & 8 & 10 \\
0 & 0 & 3
\end{array}\right]
$$

A. 10
B. 8
C. 3
D. 13

Answer: D

- View Text Solution

6. $A 2 \times 3$ matrix $A=\left[a_{i j}\right]$, whose elements are given by
$a_{i j}=\frac{(1+2 j)^{2}}{2}$ is
A. $\left[\begin{array}{lll}2 & 4 & 5 \\ 7 & 8 & 9\end{array}\right]$
B. $\left[\begin{array}{ccc}\frac{9}{2} & \frac{25}{2} & \frac{49}{2} \\ 8 & 18 & 32\end{array}\right]$
C. $\left[\begin{array}{cc}\frac{9}{2} & 8 \\ \frac{25}{2} & 18 \\ \frac{49}{2} & 32\end{array}\right]$
D. None of these

Answer: B

- View Text Solution

7. Which of the following is represented by $\mathrm{c}=\operatorname{diag}(3,5,7)$?
A. $c=\left[\begin{array}{lll}3 & 5 & 7\end{array}\right]$
B. $c=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7\end{array}\right]$
C. $c=\left[\begin{array}{l}3 \\ 5 \\ 7\end{array}\right]$
D. None of these

Answer: B

- View Text Solution

8. Transpose of the matrix $A=\left[\begin{array}{lll}2 & 3 & 4 \\ 5 & 6 & 7\end{array}\right]_{2 \times 3}$ is
A. $\left[\begin{array}{ll}2 & 3 \\ 4 & 5 \\ 6 & 7\end{array}\right]_{3 \times 2}$
B. $\left[\begin{array}{ll}2 & 5 \\ 3 & 6 \\ 4 & 7\end{array}\right]_{3 \times 2}$
C. $\left[\begin{array}{ll}2 & 3 \\ 5 & 6\end{array}\right]_{2 \times 2}$
D. $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]_{2 \times 2}$

- View Text Solution

9. if $\left[\begin{array}{cc}2 \alpha+1 & 3 \beta \\ 0 & \beta^{2}-5 \beta\end{array}\right]=\left[\begin{array}{cc}\alpha+3 & \beta^{2}+2 \\ 0 & -6\end{array}\right]$ then the values of α and β are
A. $\alpha=2, \beta=3$
B. $\alpha=2, \beta=2$
C. $\alpha=3, \beta=3$
D. None of these

Answer: C

- View Text Solution

10.

$=A\left[\begin{array}{ccc}1 & 3 & 5 \\ -2 & 0 & -2 \\ 0 & 4 & -3\end{array}\right] B=\left[\begin{array}{cc}0 & 3 \\ -2 & 0 \\ 0 & 4\end{array}\right] C=\left[\begin{array}{ccc}4 & 1 & -2 \\ 3 & 2 & 1 \\ 2 & -1 & 7\end{array}\right]$
Which of the following is defined ?
A. A + B
B. $B+C$
C. $A+C$
D. None of these

Answer: C

- View Text Solution

11. If $A=\left[\begin{array}{cc}0 & 2 \\ 3 & -4\end{array}\right]$ and $k A=\left[\begin{array}{cc}0 & 3 a \\ 2 b & 24\end{array}\right]$ then find the value of $b-a-k$
A. 2
B. 3
C. 1
D. 4

Answer: C

- View Text Solution

12. Given $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right]$ and $B-\left[\begin{array}{ccc}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{array}\right]$. The matrix C such that $A+2 C=B$ is
A. $\left[\begin{array}{ccc}1 & \frac{3}{2} & 1 \\ -\frac{1}{2} & \frac{7}{2} & \frac{3}{2} \\ \frac{1}{2} & \frac{8}{2} & 8\end{array}\right]$
B. $\left[\begin{array}{ccc}\frac{5}{2} & \frac{3}{2} & 1 \\ -\frac{1}{2} & \frac{7}{2} & \frac{9}{2} \\ \frac{11}{2} & \frac{9}{2} & 8\end{array}\right]$
C. $\left[\begin{array}{ccc}1 & 2 & 4 \\ \frac{3}{2} & \frac{11}{2} & \frac{13}{14} \\ 4 & \frac{9}{2} & \frac{7}{2}\end{array}\right]$
D. None of these

Answer: D

- View Text Solution

13. The value of x and y for the equation
$2 x-y=\left[\begin{array}{ccc}3 & -3 & 0 \\ 3 & 3 & 2\end{array}\right]$ and $2 y+x=\left[\begin{array}{ccc}4 & 1 & 5 \\ -1 & 4 & -4\end{array}\right]$ are
A. $x=\left[\begin{array}{ccc}2 & -1 & 1 \\ 1 & 2 & 0\end{array}\right], y=\left[\begin{array}{ccc}1 & 1 & 2 \\ -1 & 1 & -2\end{array}\right]$
B. $x=\left[\begin{array}{ccc}1 & 1 & 2 \\ -1 & 1 & -2\end{array}\right] y=\left[\begin{array}{ccc}2 & -1 & 1 \\ 1 & 2 & 0\end{array}\right]$
C. $\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 1 \\ -1 / 2 & 1 / 2 & -1\end{array}\right], y=\left[\begin{array}{ccc}1 & -1 / 2 & 1 / 2 \\ 1 / 2 & 1 & 0\end{array}\right]$
D. None of these

Answer: A

- View Text Solution

14. If $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -2 \\ -1 & 0 \\ 2 & -1\end{array}\right]$ then which of the following is defined ?
A. $A B$
B. BA
C. both (A) and (B)
D. None of these
15. If $\mathrm{A}=\left[\begin{array}{lll}0 & 1 & I 2 \\ 1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -2 \\ -1 & 0 \\ 2 & -1\end{array}\right]$, then AB is
A. $\left[\begin{array}{ll}3 & -2 \\ 5 & -5 \\ 7 & -8\end{array}\right]$
B. $\left[\begin{array}{ccc}3 & 5 & 7 \\ -2 & -5 & -8\end{array}\right]$
C. $\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$
D. None

Answer: A

- View Text Solution

16. If $A=\left[\begin{array}{cc}1 & 2 \\ -2 & 3\end{array}\right], B=\left[\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right] C=\left[\begin{array}{cc}-3 & 1 \\ 2 & 0\end{array}\right]$, then which of the following is true?
A. $A B=B C$
B. $(A B) C=A(B C)$
C. $B A=A B$
D. None of these

Answer: B

- View Text Solution

17. If $A=\left[\begin{array}{ll}\alpha & 2 \\ 2 & \alpha\end{array}\right]$ and $\operatorname{det}(\mathrm{A})=0$ then the value of α is
A. 2,-2
B. 0
C. $-2,-2$
D. 2,2

Answer: A

- View Text Solution

18.

$A=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right], B=\left[\begin{array}{cc}a & 1 \\ b & -1\end{array}\right]$ and $(A+B)^{2}=A^{2}+B^{2}$,
then the value of $a+b$ is
A. 4
B. 5
C. 6
D. 2

Answer: B

- View Text Solution

19. If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ and $A^{2}+\lambda A-I_{2}=0$ then λ is equal to
A. -4
B. -2
C. 2
D. 4

Answer: A
20. If $A\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then $A^{2}=I$ is true for
A. $\theta=0$
B. $\theta=\frac{\pi}{4}$
C. $\theta=\frac{\pi}{2}$
D. $\theta=\frac{\pi}{2}$

Answer: A

- View Text Solution

21. If a, b, b, c and c, a are the roots of $x^{2}-4 x+3=0, x^{2}-8 x+15=0$ and $x^{2}-6 x+5=0$
respectively, then the value of $\left[\begin{array}{ll}a^{2}+c^{2} & a^{2}+b^{2} \\ b^{2}+c^{2} & a^{2}+c^{2}\end{array}\right]$ is
A. $\left[\begin{array}{ll}10 & 22 \\ 21 & 25\end{array}\right]$
B. $\left[\begin{array}{ll}0 & 7 \\ 8 & 9\end{array}\right]$
C. $\left[\begin{array}{ll}26 & 10 \\ 34 & 26\end{array}\right]$
D. $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

Answer: C

- View Text Solution

22. If $a=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$, what is the value of θ satisfying the equation $A^{T}+A=I_{2}$?
A. $\frac{\pi}{2}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{6}$
D. π

Answer: B

- View Text Solution

23. Which of the following matrices is non-singular ?
A. $\left[\begin{array}{ll}3 & 1 \\ 9 & 3\end{array}\right]$
B. $\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$
C. $\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$
D. $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

Answer: C

24. If $A=\left[\begin{array}{cc}4 & x+2 \\ 2 x-3 & x+1\end{array}\right]$ is symmetric, then x is equal to
A. 2
B. 3
C. 4
D. 5

Answer: D

- View Text Solution

25. The number of values of x for which the matrix
$A=\left[\begin{array}{ccc}3-x & 2 & 2 \\ 2 & 4-x & 1 \\ -2 & -4 & -1-x\end{array}\right]$ is singular, is
A. 0
B. 1
C. 2
D. 3

Answer: C

- View Text Solution

26. If matrix $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$ and matrix $B=\left[\begin{array}{ll}0 & 2 \\ 3 & 4\end{array}\right]$ then the value of $3 A-2 B$ `
A. $\left[\begin{array}{ll}6 & 6 \\ 6 & 6\end{array}\right]$
B. $\left[\begin{array}{ll}6 & 5 \\ 6 & 7\end{array}\right]$
C. $\left[\begin{array}{ll}6 & 6 \\ 5 & 7\end{array}\right]$
D. $\left[\begin{array}{ll}5 & 7 \\ 6 & 6\end{array}\right]$

- View Text Solution

27. If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$ and $B=\left[\begin{array}{lll}9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1\end{array}\right]$ then the value of $\frac{1}{2}(A+B)$ is
A. $\left[\begin{array}{lll}4 & 6 & 7 \\ 8 & 6 & 5 \\ 4 & 4 & 4\end{array}\right]$
B. $\left[\begin{array}{lll}5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5\end{array}\right]$
C. $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
D. None of these

Answer: B
28. Consider the system of following equations
$2 x+3 y=8$
$7 x+8 y=24$
This can be written in matrix form as
A. $\left[\begin{array}{ll}2 & 3 \\ 7 & 8\end{array}\right]\left[\begin{array}{l}y \\ x\end{array}\right]=\left[\frac{8}{24}\right]$
B. $\left[\begin{array}{ll}2 & 3 \\ 7 & 8\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}8 \\ 24\end{array}\right]$
C. $\left[\begin{array}{cc}2 & 8 \\ 7 & 24\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}3 \\ 8\end{array}\right]$
D. None of these

Answer: B
29. Consider the system of following equations
$2 x+3 y+4 z=0$
$5 x+7 y+8 z=5$
$10 x+11 y+12 z=12$
This can be written in matrix form as
A. $\left[\begin{array}{ccc}2 & 3 & 4 \\ 5 & 7 & 8 \\ 10 & 11 & 12\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}0 \\ 5 \\ 12\end{array}\right]$
B. $\left[\begin{array}{ccc}2 & 3 & 0 \\ 5 & 7 & 9 \\ 10 & 11 & 12\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}4 \\ 8 \\ 12\end{array}\right]$
C. $\left[\begin{array}{ccc}2 & 3 & 4 \\ 5 & 7 & 8 \\ 10 & 11 & 12\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ 5 \\ 12\end{array}\right]$
D. None of these

Answer: A
30. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 2 & 2\end{array}\right]$ then which of following is correct?
A. $(A+B)^{2}=A^{2}+B^{2}+2 A B$
B. $(A+B)^{\prime}=A^{\prime}+B^{\prime}$
C. $(A+B)(A-B)=A^{2}-B^{2}$
D. None of these

Answer: D

- View Text Solution

31. If $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ then $A^{n}=$
A. $\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]$
B. $\left[\begin{array}{ll}n & n \\ 0 & n\end{array}\right]$
C. $\left[\begin{array}{ll}n & 1 \\ 0 & n\end{array}\right]$
D. $\left[\begin{array}{ll}1 & 1 \\ 0 & n\end{array}\right]$

Answer: A

- View Text Solution

32. If $A=\left[\begin{array}{cc}a b & b^{2} \\ -a^{2} & -a b\end{array}\right]$ and $A^{n}=\mathrm{O}$ then the minimum value of n is
A. 2
B. 3
C. 4
D. 5

- View Text Solution

33. If $\mathrm{A}=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$ then $A^{5}=$
A. 5 A
B. 10A
C. 16A
D. 32 A

Answer: C

- View Text Solution

34. If $A=\left[\begin{array}{ll}0 & 5 \\ 0 & 0\end{array}\right]$ and $f(x)=1+x+x^{2}+\ldots+x^{16}$ then $f(a)$ is equal to
A. 0
B. $\left[\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right]$
C. $\left[\begin{array}{ll}1 & 5 \\ 0 & 0\end{array}\right]$
D. $\left[\begin{array}{ll}0 & 5 \\ 1 & 1\end{array}\right]$

Answer: B

- View Text Solution

35. Let $A=\left[\begin{array}{ccc}0 & 2 y & z \\ x & y & -z \\ x & -y & z\end{array}\right]$ and $A^{\prime} \cdot A=1$. Then the value of $x^{2}+y^{2}+z^{2}$ is
A. 1
B. 2
C. $\frac{1}{2}$
D. None of these

Answer: A

- View Text Solution

36. If $2 A+3 B=\left[\begin{array}{ccc}2 & -1 & 4 \\ 3 & 2 & 5\end{array}\right]$ and $A+2 B=\left[\begin{array}{lll}5 & 0 & 3 \\ 1 & 6 & 2\end{array}\right]$ then $\mathrm{B}=$
A. $\left[\begin{array}{ccc}8 & -1 & 2 \\ -1 & 10 & -1\end{array}\right]$
B. $\left[\begin{array}{ccc}8 & 1 & 2 \\ -1 & 10 & -1\end{array}\right]$
C. $\left[\begin{array}{ccc}8 & 1 & -2 \\ -1 & 10 & -1\end{array}\right]$
D. $\left[\begin{array}{ccc}8 & 1 & 2 \\ 1 & 10 & 1\end{array}\right]$

Answer: B

- View Text Solution

37. If $A_{\alpha}=\left[\begin{array}{cc}c a \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$ then $A_{\alpha} A_{\beta}$ is equal to
A. $A_{\alpha \beta}$
B. $A_{\alpha+\beta}$
C. $A_{\alpha-\beta}$
D. None of these

Answer: B

38. The equation, $\left[\begin{array}{lll}1 & x & y\end{array}\right]\left[\begin{array}{ccc}1 & 3 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}1 \\ x \\ y\end{array}\right]=[0]$ has for
(i) $y=0$
(p) rational roots
(ii) $y=-1$
(q) irrational roots
(r) integral roots
then which of these is a correct match ?
(i) (ii)
A.
(p) (r)
(i) (ii)
(q) (p)
(i) (ii)
(p) (q)
(i) (ii)
(r) (p)

Answer: C

39. Consider a matrix $A=\left[a_{i j}\right]$ of order 3×3 such that $a_{i j}=(k)^{1+j}$ where $k \in I$

Match Column I with Column II.

Column I		Column II	
(p)	All values of k if A is singular if	(1)	$k \in\{0\}$
(q)	A is null matrix if	(2)	$k \in \phi$
(r)	A is skew-symmetric which is not null matrix if	(3)	$k \in I$
(s)	$A^{2}=3 A$, if	(4)	$k \in\{-1,0,1\}$

Now, choose the correct option from amongst the given codes :
A.
(p) (q) (r) (s)
(3) (1) (4) (2)
B. (p) (q) (r) (s)
(4) (1) (2) (3)
C.
(p) (q) (r)
(s)
(3) (1) (2) (4)
D. $\begin{array}{llll}(\mathrm{p}) & (\mathrm{q}) & (\mathrm{r}) & (\mathrm{s}) \\ (2) & (1) & (3) & (4)\end{array}$

- View Text Solution

40. The minimum number of zeros in a upper triangular matrix of order n is
A. $\frac{n(n-1)}{2}$
B. $\frac{n(n+1)}{2}$
C. $\frac{2 n(n-1)}{2}$
D. None of these

Answer: A

