© 'doubtnut

MATHS

BOOKS - CENGAGE

RELATIONS AND FUNCTIONS

Test Yourself Level 1

1. Write the set in the roster form
$\{(x, y) \mid x \in N, y \in N, x+2 y=7\}$.

D View Text Solution

$$
\begin{aligned}
& \text { 2. } \quad \text { If } A=\{-2,-1,0\}, B=\{-1,1,2\} \\
& C=\left\{x \mid x^{2}-3 x+2=0\right\}, \\
& A \times(B \cup C)=(A \times B) \cup(A \times C) .
\end{aligned}
$$

3. Write the Cartesian product $X \times Y$ for the following diagram.

4. Write the Cartesian product $X \times Y$ for the following diagram .

D View Text Solution

5. Let $R=\{(x, y) \mid 2 x+3 y<10, x \in N, y \in N\}$ be a relation on N.

Write the relation in the roster form.

- View Text Solution

6. Let $A=\{-2,-1,0,1\}, B=\{1,2,3,4\}$, and f be a subset of $A \times B$ given by $f=\{(x, y) \mid x+y=1\}$. Is f a function from A to B ? If
not, remove minimum number of element from the set a so that f may be a function from the new set to B.

- View Text Solution

7. Let $A=\{1,3,5\}$ and $B=\{2,6,10,12\}$. A function f from A to B defined by the value - table form :

Write the function in the roster form.

- View Text Solution

8. Let $A=\{1,3,5\}$ and $B=\{2,6,10,12\}$. A function f from A to B defined by the value - table form :

Write its range and image of 5.

- View Text Solution

9. Let $A=\{1,3,5\}$ and $B=\{2,6,10,12\}$. A function f from A to B defined by the value - table form :

What type of function is f ?

- View Text Solution

10. If $f(x)=\frac{x}{x^{2}-1} x \neq 1-1$, find $\mathrm{f}(2)$

- View Text Solution

11. If $f(x)=\frac{x}{x^{2}-1} x \neq 1-1$, find $f\left(-\frac{1}{2}\right)$

- View Text Solution

12. A function $f: A \rightarrow B$ is defined by following diagram. Classify the funtion.

- View Text Solution

13. A function $f: A \rightarrow B$ is defined by the following diagram. Classify the function

- View Text Solution

14. A function $f: A \rightarrow B$ is defined by following diagram. Classify the funtion.

- View Text Solution

15. The Cartesian product $A \times B$ of two sets has six element of which five are given below: $(2, a)(3, b),(2, b),(3, a)$, and (3,c). Find the sixth ordered pair, and the sets A and B.

- View Text Solution

1. Let $R=\{(x, y) \mid x>y, x \in P, y \in Q\}$, where $P=\{1,3,5\}$ and $Q=\{2,4\}$. List the elements of the relation R from the set P to set Q and also write the domain and range of the relation.

- View Text Solution

2. A function f is given by $f(x)=25-4 x^{2}$. Find $\mathrm{f}(3)$

- View Text Solution

3. A function f is given by $f(x)=25-4 x^{2}$. Find x scuh that $\mathrm{f}(\mathrm{x})=0$

- View Text Solution

4. If $A=\{-2,-1,0,1,2\}$ and $B=\{-3,-1,1,5\}$, list all the elements of the following set $S=\left\{(x, y) \mid y=2 x^{2}-3, x \in A, y \in B\right\}$. Is S a function from A to B ? If so, find its range and classify it.

View Text Solution

5. The Cartesian product $A \times B$ has nine members of which three are (2,7),(4,8) and (5,9). Find the sets (a) A, (b) B and (c) $A \times B$

- View Text Solution

6. Let ' $<$ ' be the relation of 'less than' in the set R of real numbers. Is the relation (a) reflexive, (b) symmetric, or (c) transitive ? Juntify your answer.

- View Text Solution

7. Given : $A=\{a, b, c, d\}$ and $B=\{1,2,3,4\}$.

Form ordered pairs showing a one - one function from A to B.
8. Given : $A=\{a, b, c, d\}$ and $B=\{1,2,3,4\}$.

Form order pairs showing a many - one function from A to B.

- View Text Solution

9. The diagrams given below represent relations from X to Y . Classify them as relation or function. If the relation is a function, classify it as

Test Yourself Level 3

1. On the set L of all lines on a plane, arelation, R is given by ' $x R$ ' ${ }^{\prime}$ if and only if ' $x \perp y$ ' Is R (a) reflexive,
(b) symmetric, or (c) transitive ?

- View Text Solution

2. $A=\{1,2,3,4,5,6\}$. Which of the following relations on A are (a) reflexive, (b) symmetric, or (c) transitive ?
$\{(x, y): x-y>0\}$

- View Text Solution

3. $A=\{1,2,3,4,5,6\}$. Which of the following relations on A are (a) reflexive, (b) symmetric, or (c) transitive ?
$\{(x, y): x \leq y\}$

- View Text Solution

4. $A=\{1,2,3,4,5,6\}$. Which of the following relations on A are (a) reflexive, (b) symmetric, or (c) transitive ?
$\{(x, y): x-y<2\}$

- View Text Solution

5. $A=\{1,2,3,4,5,6\}$. Which of the following relations on A are (a) reflexive, (b) symmetric, or (c) transitive ?
$\{(x, y): x>y\}$

- View Text Solution

6. Which of the following are equivalence relations on $A=\{4,6,8\}$?
(A) $\{(4,4),(6,6),(8,8),(4,6),(6,4)\}$
(B) $\{(4,4),(6,6),(8,8),(5,6)\}$
(C) $\{(4,4),(6,6),(8,8),(4,8),(8,6)\}$
(D) $\{(4,4),(6,6),(8,8),(4,8),(8,4)\}$

D View Text Solution

7. A set of cones have a fixed height of 12 cm and varying radii, the maximum radius being 36 cm . Define the relation between the radius and the volume of cones. What are the comain and the range of the relation ? Is it a function?

- View Text Solution

8. Which of the following are functions ? If so, what type of function is it ?

P = set of people in Bangalore, $\mathrm{Q}=$ set of all surnames, and $f_{1}=\{(x, y): y$ is the surname of $x, x \in P, y \in Q\}$.
9. Which of the following are functions ? If so, what type of function is it ?
$\mathrm{G}=$ set of measurements of length in cm,
$\mathrm{H}=$ set of measurements of area in cm^{2}, and $f_{2}=\{(x, y): y$ is the area of a square of side $\mathrm{x}, \quad x \in G, y \in H\}$.

- View Text Solution

10. Which of the following are functions ? If so, what type of function is it ?
$P=$ set of parents, $C=$ set of children, and
$f_{3}=\{(x, y): \quad \mathrm{x}$ is a parent of $y, x \in P, y \in C\}$.

- View Text Solution

11. Which of the following are functions ? If so, what type of function is it

If $f: R \rightarrow R$ is given by $f(x)=x^{3}-1$, find x where $f(x)=215$.

- View Text Solution

12. If $f: R \rightarrow R$ is given by $f(x)=x^{2}-1$, find x where $f(x)=215$.

- View Text Solution

Test Yourself Level 3 Multiple Choice Questions

1. If $\left(a^{2}+a b+b^{2}, b\right)=(8,2)$ then (a, b) is given by
A. $(-1, \sqrt{5},-1-\sqrt{5})$
B. $(-1 \pm \sqrt{5}, 2)$
C. $(2,3)$
D. none of these
2. If $A \times B=\phi$ then which of the following is necessarily true?
A. $A=\phi$ or $B=\phi$
B. $A=\phi$ and $B=\phi$
C. Both (A) and (B)
D. None of these

Answer: A

- View Text Solution

3. If $A=\{1,2\}$ and $B=\{3,4\}$ then $A \times B=$
A. $A \times B=\{(1,1),(2,2),(3,3),(4,4)\}$
B. $A \times B=\{(1,1),(2,4),(3,1),(3,4)\}$
C. $A \times B=\{(3,1),(3,2),(4,1),(4,2)\}$
D. $A \times B=\{(1,3),(1,4),(2,3),(2,4)\}$

Answer: D

- View Text Solution

4. A and B are two sets given in such a way that $(A \times B)$ contains elements. If three elements of $(A \times B)$ are $(1,3),(2,5)$ and $(3,3)$ then its remaining elements are
A. $(1,1),(1,5)$ and $(2,3)$
B. $(1,5),(2,3)$ and $(3,5)$
C. $(1,5)(1,2)$ and $(3,5)$
D. $(2,1),(2,3)$ and $(3,5)$

Answer: B

5. If $A \times A$ has 9 elements two of which are $(-1,0)$ and $(0,1)$ then the set A is
A. $\{-1,0\}$
B. $\{-1,1\}$
C. $\{-1,0,1\}$
D. $\{0,1\}$

Answer: C

- View Text Solution

6. If $A \times A$ has 9 elements two of which are $(-1,0)$ and $(0,1)$ the what are the other elements ?
A. $(-1,-1),(-1,1),(0,-1),(0,0),(1,-1),(1,2),(2,1)$
B. $(-1,-2),(-1,1),(0,-1),(0,0),(0,2),(0,3),(0,4)$

$$
\begin{aligned}
& \text { C. }(-1,-1),(0,-1),(1,1),(0,0),(1,9),(9,1),(9,0) \\
& \text { D. }(-1,-1),(-1,0),(0,-1),(0,0),(1,-1),(1,0),(1,1)
\end{aligned}
$$

Answer: D

7. R^{\prime} is a relation from a to B and the mapping is

then which of the following is correct ?
A. Domain of $R=\{1,2,3,4,5\}$
B. Range of $R=\{1,4,5\}$
C. Domain of $R=\{1,2,3,4\}$
D. Range of $R=\{1,4\}$

D View Text Solution

8. Let $A=\{1,3\}$ and $B=\{1,2,3,4\}$. Then how many relations from A to B are possible ?
A. 2^{8}
B. 2^{7}
C. 2^{6}
D. 2^{5}

Answer: A

- View Text Solution

9. Let N be the set of all natural numbers and let $R=\{(a, b): a, b \in N$ and $2 a+b=10\}$, The domain and range of R
A. domain $(R)=\{1,2,3,4\}$ and range $=\{2,4,6,8\}$
B. domain $(R)=\{1,2,3\}$ and range $=$ all natural numbers
C. domain (R) $=\{1,2,34\}$ and range $=\{2,4,6,8\}$
D. none of these

Answer: A

- View Text Solution

10. Let $R=\left\{\left(x, x^{3}\right):\right.$ x prime, $\left.x<8\right\}$. Which of the following is correct representation of R in roster form ?
A. $R=\left\{\left(3,3^{3}\right),\left(5,5^{3}\right),\left(7,7^{3}\right)\right\}$
B. $R=\left\{\left(2,2^{3}\right),\left(3,3^{3}\right),\left(5,5^{3}\right),\left(7,7^{3}\right)\right\}$
C. $R=\left\{\left(5,5^{3}\right),\left(7,7^{3}\right)\right\}$
D. $R=\left\{\left(1,1^{3}\right),\left(2,2^{3}\right),\left(3,3^{3}\right),\left(5,5^{3}\right),\left(7,7^{3}\right)\right\}$

D View Text Solution

11. Let R be a relation on Z, defined as $R=\{(1, b): a, b \in Z$ and $a-b \in Z\}$. Then which of the following is correct about R ?
A. Symmetric, reflexive but not transitive
B. only reflexive
C. transitive but not symmetric
D. equivalence relation

Answer: D

(D) View Text Solution

12. If S is the set of all straight lines and relation R is defined on S as $T=\left\{\left(S_{1}, S_{2}\right): S_{1}\right.$ is perpendicular to $\left.S_{2}\right\}$ then R is
A. symmetric only
B. reflexive and symmetric only
C. transitive only
D. none of these

Answer: A

- View Text Solution

13. If S is the set of all triangles lying in plane and relation R is defined on S as :
$R=\left\{\left(S_{1}, S_{2}\right): S_{1}\right.$ is congruent to S_{2}, where S_{1} and S_{2} belong to $\left.S\right\}$
A. transitive
B. symmetric
C. reflexive
D. all of these

Answer: D

- View Text Solution

14. If a function $f: R \rightarrow R$ is defined $s f(x)=2 x+3 a$ and
$f(1)=2 f(2)$ then what is the value of a ?
A. -1
B. -2
C. 1
D. 2

Answer: B

15. Let $f=\{(-1,-3),(0,-1),(1,1),(2,3)\}$ be a linear function from Z to Z. Then $f(x)$ can be defined as
A. $f(x)=2 x+1$
B. $f(x)=2 x+2$
C. $f(x)=2 x-1$
D. $f(x)=2 x-2$

Answer: C

- View Text Solution

16. If $f(x)=\frac{x}{x^{2}-1} x \neq 1,-1$ then find $f(2) \times f\left(\frac{-1}{2}\right)$.
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $\frac{-3}{2}$

D. $\frac{4}{9}$

Answer: D

- View Text Solution

17. A function $f: A \rightarrow B$ is defined as:

Which of the following is true?
A. one - one function
B. one-one and onto function
C. many - one and into function
D. many-one and onto function

Answer: C

- View Text Solution

18. Which of the following are equivalence relations on $A=\{4,6,8\}$?
A. $\{(4,4),(6,6),(8,8),(4,6),(6,8)\}$
B. $\{(4,4),(6,6),(8,8),(4,6),(4,8)\}$
C. $\{(4,4),(6,6),(8,8),(4,8),(4,6)\}$
D. $\{(4,4),(6,6),(8,8),(4,8),(8,4)\}$

- View Text Solution

19. If $f(x)=x^{3}$ then what is the value of $\frac{f(5)-f(1)}{(5-1)}$?
A. 30
B. 31
C. 32
D. 33

Answer: B

D View Text Solution

20. If $f(x)=\frac{x}{x-1}$ the $\frac{f(a)}{f(a+1)}=$
A. $f(-a)$
B. $f\left(\frac{1}{a}\right)$
C. $f\left(a^{2}\right)$
D. $f\left(\frac{-a}{a-1}\right)$

Answer: C

- View Text Solution

21. If $y=f(x)=\frac{a x+b}{c x-a}$ then x is equal to
A. $1 / f(x)$
B. $1 / f(y)$
C. $y f(x)$
D. $x f(y)$

Answer: D
22. If the domain of function $f(x)=x^{2}-6 x+7$ is $(-\infty, \infty)$, then the range of function is
A. $(-\infty, \infty)$
B. $[-2, \infty)$
C. $(-2,3)$
D. $(-\infty,-2)$

Answer: B

- View Text Solution

23. The domain of the function $f(x)=\log _{3+x}\left(x^{2}-1\right)$ is
A. $(-3,-1) \cup(1, \infty)$
B. $[-3,-1) \cup[1, \infty)$
C. $(-3,-2) \cup(-2,-1) \cup(1, \infty)$
D. $[-3,-2) \cup(-2,-1) \cup[1, \infty)$

Answer: C

- View Text Solution

24. The domain of the function $f(x)=\sqrt{x-x^{2}}+\sqrt{4+x}+\sqrt{4-x}$ is
A. $[-4, \infty)$
B. $[-4,4]$
C. $[0,4]$
D. $[0,1]$

Answer: D

25. The largest possible set of real numbers which can be the domain $f(x)=\sqrt{1-\frac{1}{x}}$ is
A. $(0,1) \cup(0, \infty)$
B. $(-1,0) \cup(1, \infty)$
C. $(-\infty,-1) \cup(0, \infty)$
D. $(-\infty, 0) \cup(1, \infty)$

Answer: D

- View Text Solution

26. If $f(x)=\log _{a} x$ and $F(x)=a^{x}$, then $F[f(x)]$ is
A. $f[F(x)]$
B. $f[F(2 x)]$
C. $F|f(2 x)|$

D. $F[(x)]$

Answer: A

- View Text Solution

27. Let two function $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{i})$ are defined on $R \rightarrow T$ such that
$f(x)=\left\{\begin{array}{ll}x^{2}, & \mathrm{x} \text { is irrational } \\ 2-x^{2}, & \mathrm{x} \text { is rational }\end{array}\right.$ and
$g(x)=\left\{\begin{array}{ll}2-x^{2}, & \mathrm{x} \text { is irrational } \\ x^{2}, & \mathrm{x} \text { is rational }\end{array}\right.$. Then the function $f+g: R \rightarrow R$ is
A. injective as well as surjective
B. injective but not surjective.
C. surjective but not injective.
D. neither surjective nor injective

Answer: D

28. Range of the function $f(x)=\frac{x^{2}}{x^{2}+1}$ is
A. $(-1,0)$
B. $(-1,1)$
C. $[0,1)$
D. $(1,1)$

Answer: C

D View Text Solution

29. The domain of the function $f(x)=\log (\sqrt{x-4}+\sqrt{6-x})$ is
A. $[4, \infty)$
B. $(-\infty, 6]$
C. $[4,6]$
D. none of these

Answer: C

- View Text Solution

