©゙’ doubtnut

MATHS

BOOKS - CENGAGE

REMAINDER THEOREM

Worked Examples

1. Determine the quotient and the remainder if $f(x)=x^{4}+3 x^{2}-2 x^{2}-4 x-3$ is divided by $x-3$.
2. Determine the quotient and the remainder if $f(x)=3 x^{2}+6 x-12+x^{3}$ is divided by $x+3$.

- View Text Solution

3. Determine the quotient and the remainder if $x^{5}+7$ is divided by $x+1$.

- View Text Solution

Test Yourself Level 1

1. Use synthetic division to find the quotient and remainder and verify by actual division.
$x^{3}+6 x^{2}+3 x+1+x-2$

- View Text Solution

2. Use synthetic division to find the quotient and remainder and verify by actual division.
$2 x^{3}-5 x+1+x+1$

- View Text Solution

3. Use synthetic division to find the quotient and remainder and verify by actual division.
$x^{3}-11 x+10 \div x+3$

- View Text Solution

4. Use synthetic division to find the quotient and remainder and verify by actual division.
$x^{3}-4 x^{2}+3 x-11 \div x-4$

- View Text Solution

5. Use synthetic division to find the quotient and remainder and verify by actual division.
$x^{6}-y^{6} \div x-y$
6. Use synthetic division to find the quotient and remainder and verify by actual division.
$x^{5}+y^{5} \div x+y$

- View Text Solution

7. Use synthetic division to find the quotient and remainder and verify by actual division.
$x^{5}-32 \div x-2$

- View Text Solution

8. Use synthetic division to find the quotient and remainder and verify by actual division.

$$
2 x^{3}-13 x+11+x-1
$$

- View Text Solution

9. Use synthetic division to find the quotient and remainder and verify by actual division.

$$
2 x^{3}-4 x^{2}+3 x-6 \div x-2
$$

D View Text Solution

10. Use synthetic division to find the quotient and remainder and verify by actual division.
$1+x^{2}+x^{3}+x^{4}+x^{5} \div x+1$

- View Text Solution

Test Yourself Level 2

1. Factorise $2 x^{2}+11 x+14$ and deduce the prime factors of $21,114$.

- View Text Solution

2. Determine the value of k for which $x^{3}-6 x+k$ may be divisible by $x-2$, by the synthetic division method.
3. $f(x) \div x^{2}-3 x+2$ leaves the remainder $a x+b$. If $f(1)=4$ and $f(2)=2$, determine a and b.

- View Text Solution

4. If $x-2$ is a factor of $x^{3}-6 x^{2}+11 x+k$, determine k.

- View Text Solution

5. If $x+1$ divides $5 x^{3}+11 x^{2}+4 x-p$, determine p.
6. If $4 x-1$ divides $4 x^{3}-5 x^{2}-k x+3$, determine k.

- View Text Solution

7. Find the remainder when $f(x)=3 x^{3}+6 x^{2}-4 x-5$ is divided by $x+3$.

- View Text Solution

8. Find the value of l and m if $8 x^{2}+l x^{2}-27 x+m$ is an integral multiple of $2 x^{2}-x-6$.
9. Find the remainder and the quotient in the following: $3 x^{2}-7 x^{2}+6 x-2$ is divided by $x-3$.

- View Text Solution

10. Find the remainder and the quotient in the following:
$3 x^{4}-20 x^{2}-5 x-18$ is divided by $x+3$.

- View Text Solution

Test Yourself Level 3

1. Find p and q if $2 x^{3}+6 p x^{2}-2 q x-q-2 p+1$ may contain the factors $2 x-1$ and $x+3$.

- View Text Solution

2. Find l and m if $2 x^{3}-(2 l+1) x^{2}+(l+m) x+m$ may be exactly divisible by $2 x^{2}-x+3$.

- View Text Solution

3. Without substituting, find the remainder if
$2 x^{9}-6 x^{8}+5 x^{7}-15 x^{6}+26 x^{5}-78 x^{4}+2 l x^{3}-63 x^{2}+7$
is divided by $x-3$.

- View Text Solution

4. Do the following for the given expressions:
(i) Find the remainder when $f(x)$ is divided by the respective factors of the divisor using the formula.
(ii) Divide $f(x)$ by the synthetic division method in succession by the factors of the divisor and find the complete remainder.
(iii) Compare the results in (a) and (b) and verify the answer using division algorithm.
$x^{3}-8 x^{2}+7 x+5 \div(x-2)(x-1)$

- View Text Solution

5. Do the following for the given expressions:
(i) Find the remainder when $f(x)$ is divided by the
respective factors of the divisor using the formula.
(ii) Divide $f(x)$ by the synthetic division method in succession by the factors of the divisor and find the complete remainder.
(iii) Compare the results in (a) and (b) and verify the answer using division algorithm.
$x^{3}-8 x^{2}+8 x+5 \div(x+2)(x+1)$

- View Text Solution

6. Do the following for the given expressions:
(i) Find the remainder when $f(x)$ is divided by the respective factors of the divisor using the formula.
(ii) Divide $f(x)$ by the synthetic division method in succession by the factors of the divisor and find the
complete remainder.
(iii) Compare the results in (a) and (b) and verify the answer using division algorithm.
$x^{3}+7 x^{2}-8 x-21 \div(x-2)(x-3)$

D View Text Solution

7. Do the following for the given expressions:
(i) Find the remainder when $f(x)$ is divided by the respective factors of the divisor using the formula.
(ii) Divide $f(x)$ by the synthetic division method in succession by the factors of the divisor and find the complete remainder.
(iii) Compare the results in (a) and (b) and verify the
answer using division algorithm.

$$
2 x^{3}-8 x^{2}+7 x+20 \div(x+2)(x+3)
$$

- View Text Solution

8. Do the following for the given expressions:
(i) Find the remainder when $f(x)$ is divided by the respective factors of the divisor using the formula.
(ii) Divide $f(x)$ by the synthetic division method in succession by the factors of the divisor and find the complete remainder.
(iii) Compare the results in (a) and (b) and verify the answer using division algorithm.
$3 x^{3}-4 x^{2}-35 \div(x-2)(x+3)$
9. If $(x+1)$ and $(x-1)$ are factors of $x^{4}+p x^{4}+2 x^{2}-3 x-q$, then
A. $p=-1, q=l$
B. $p=l, q=-2$
C. $p=3, q=-3$
D. $p=-3, q=3$

Answer: C

- View Text Solution

10. When $x^{100}+1$ is divisible by $x^{2}-1$, the remainder is
A. $x+2$
B. $2 x+1$
C. 2
D. 1

Answer: C

- View Text Solution

Test Yourself Multiple Choice Questions

1. The remainder when $x^{3}-4 x^{2}+3 x-11$ is divided by
$x-4$ is
A. 0
B. 1
C. 3
D. 3

Answer: B

- View Text Solution

2. Which of the following has $(x-1)$ as a factor?
A. $2 x^{3}-13 x+11$
B. $2 x^{3}-5 x+1$
C. $x^{2}+x+1$
D. $x^{5}+x^{4}+x^{3}+x^{2}+x+1$

Answer: A

- View Text Solution

3. What is the value of k for which the given polynomial $x^{3}-6 x+k$ is divisible by $x-2 ?$
A. 1
B. 2
C. 3
D. 4

- View Text Solution

4.

If
the
polynomial
$a x^{3}+4 x^{2}+3 x-4$ and $x^{3}-4 x+a$ have the same remainder when divided by $x-3$, then the value of a is
A. 0
B. 1
C. -1
D. 2

Answer: C

5.

$P(x)=x^{4}-2 x^{3}+3 x^{2}-a x+3 a-7$ when divided by $(x+1)$ leaves the remainder 19 , then what is the remainder when $P(x)$ is divided by $x+2$?
A. 60
B. 61
C. 62
D. 63

Answer: C
6. If both $(x-2)$ and $\left(x-\frac{1}{2}\right)$ are the factors of $p x^{2}+5 x+r$, then which of the following is correct?
A. $p=r$
B. $p=2 r$
C. $r=2 p$
D. None of these

Answer: A

- View Text Solution

7. When $x^{50}+1$ is divisible by $x^{2}-4$ then remainder will be '
A. $2 x+2^{50}+1$
B. $2^{50}+1$
C. $\left(2^{50}+1\right) x+5$
D. None of these

Answer: B

- View Text Solution

8. If $x^{100}-1$ is divided by $x^{2}-1$, then remainder will be
A. 0
B. -1
C. 1
D. 2

Answer: A

- View Text Solution

9. If $\left(x^{2}-3 x+2\right)$ is factor of $\left(x^{4}+a x^{3}+2 x^{2}+5 x+b\right)$, then the values of a and b are
A. $a=-\frac{26}{7}, b=-\frac{30}{7}$
B. $a=\frac{26}{7}, b=\frac{30}{7}$
C. $a=-\frac{26}{7}, b=\frac{30}{7}$
D. None of these

Answer: A

- View Text Solution

10. Polynomial $f(x)$ when divided by $x^{2}-3 x+2$ leaves the remainder $3 a x+2 b$. If $f(2)=8$ and $f(1)=9$, then what are the values of a and b, respectively?
A. $\frac{1}{3}, 5$
B. $-\frac{1}{3}, 5$
C. $5, \frac{1}{3}$
D. $-5, \frac{1}{3}$

Answer: B
11. If $(x-2)$ is a factor of $x^{4}+a x^{3}-b x^{2}+18$, then which of the following is correct?
A. $2 a+b+17=0$
B. $4 a-2 b+17=0$.
C. $2 a+b+\frac{17}{2}=0$
D. $2 a-b-\frac{17}{2}=0$

Answer: B

- View Text Solution

12. $(x+1)$ is a factor of the polynomial
A. $x^{3}+x^{2}-x+1$
B. $x^{3}+x^{2}+x+1$
C. $x^{4}+x^{3}+x^{2}+1$
D. $4 x^{4}+3 x^{3}+3 x^{2}+x+1$

Answer: B

- View Text Solution

13. One of the factors of $\left(25 x^{2}-1\right)+(1+5 x)^{2}$ is
A. $5+x$
B. $5-x$
C. $5 x-1$
D. $10 x$

Answer: D

- View Text Solution

14. Find p and q if $2 x^{3}+6 p x^{2}-2 q x-q-2 p+1$ has $(x-2)$ and $(x-1)$ as its factors.
A. $p=-\frac{18}{23}, q=-\frac{1}{23}$
B. $q=-(2)(23), p=-\frac{75}{92}$
C. $p=-\frac{1}{23}, q=-\frac{18}{23}$
D. $p=-\frac{75}{32}, q=-\frac{1}{23}$

Answer: A

- View Text Solution

15. When $(x+1)$ divides $5 x^{4}-4 x^{3}+a x^{2}+b$, it leaves remainder 10 . Which of the following may be correct ?
A. $a=10, b=-9$
B. $a=-10, b=-9$
C. $a=10, b=9$
D. None of these
16. What is k, if $(4 x-1)$ is an integral multiple of $4 x^{3}-5 x^{2}-k x+32$?
A. 27
B. 127
C. -127
D. -27

Answer: B

- View Text Solution

17.

$P(x)=a x^{3}+8 x^{2}+7$ and $Q(x)=9 x^{2}+7 x+b$ are divided by $(x-1)$, both leave the same remainder. which of the following may be correct?
A. $a=4, b=3$
B. $a=3, b=3$
C. $a=3, b=4$
D. $a=4, b=4$

Answer: A

18. If $a x^{3}+b x^{2}+x-6$ has $(x+2)$ as a factor and
leaves a remainder 4 when divided by $(x-2)$, then what are the values of a and b ?
A. $a=0, b=2$
B. $a=2, b=0$
C. $a=1, b=1$
D. $a=2, b=2$

Answer: A

- View Text Solution

19. R_{1} and R_{2} are the remainders when the polynomials $x^{3}-2 x^{2}-5 a x-7$ and $x^{3}+a x^{2}-12 x+6$ are
divided by $(x+1)$ and $(x-2)$, respectively. If $2 R_{1}+R_{2}=6$, then what is the value of a ?
A. 1
B. 0
C. 2
D. 4

Answer: C

20.

$P(x)=a x^{2}-3 x+5$ and $Q(x)=3 x^{2}+2 a+5$ are divided by $(x-1)$ and $(x-3)$, respectively, both leave the same remainder. What is the value of a ?
A. 30
B. -28
C. 28
D. -30

Answer: D

Test Yourself Multiple Choice Questions Olympiad And Ntse Level Exercises

1. What is the remainder when x^{37} is divided by $x^{2}-4 x+3$?
A. $\left(\frac{3^{37}-1}{3}\right) x+\left(\frac{3-3^{37}}{2}\right)$
B. $\left(\frac{3^{37}-1}{2}\right) x+\left(\frac{3-3^{37}}{2}\right)$
C. $\left(\frac{3^{37}-1}{2}\right) x+\left(\frac{3^{37}-3}{2}\right)$
D. $\left(\frac{3^{37}-1}{2}\right) x-\left(\frac{3-3^{37}}{2}\right)$

Answer: B

- View Text Solution

2. $5 x \&(2)-2 x+1$ is a factor of the expression $a x^{3}-19 x^{2}+b x-3$. If a and b are integers, then the value of b is
A. 10
B. -8
C. 8
D. 0

Answer: C

- View Text Solution

3. $P(x)$ is a polynomial of degree 2. When $P(x)$ is divided by $(x-1)(x+2)$ and $(x-3)$, it leaves

2,5 and 1 as remainders, respectively. $P(x)$ is

$$
\begin{aligned}
& \text { A. } \frac{1}{10}\left(x^{2}-9 x-28\right) \\
& \text { B. } \frac{1}{5}\left(x^{2}-9 x+14\right) \\
& \text { C. } \frac{1}{20}\left(x^{2}-9 x+28\right) \\
& \text { D. } \frac{1}{10}\left(x^{2}-9 x+28\right)
\end{aligned}
$$

Answer: D

4. The polynomials $x^{2}-x+a$ and $2 x^{2} \div 5 x+b$ have a common factor. Which of the following is correct?
A. $4 a^{2}+b^{2}-4 a b+35 a+7 b=0$
B. $4 a^{2}+b^{2} \div 4 a b+35 a+7 b=0$
C. $4 a^{2}+b^{2}-4 a b-35 a+7 b=0$
D. $4 a^{2}+b^{2}-2 a b+35 a+7 b=0$

Answer: A

(D) View Text Solution

5. If a third degree polynomial $f(y)$ is divided by $(y+2)$,
the quotient and the remainder obtained are
$P(y)$ and 0 . Also, if $f(y)$ is divided by $[P(y)+y-1]$, the quotient and the remainder obtained are $(y-3)$ and $Q(y)$. Then $Q(y)$ is
A. $5 P(y)-y^{2}+4 y$
B. $5 P(y)-y^{2}-4 y-3$
C. $5 P(y)-y^{2}+4 y-3$
D. $P(y)-y^{2} \div 4 y-3$.

Answer: C

- View Text Solution

6. When the expression $x^{2}-3 x-3$ is divided by $(x-a)$, the remainder is 1 . The value of a is
A. 1
B. -1
C. -2
D. -3

Answer: B

- View Text Solution

7. The expression $a x^{3}+3 x^{2}-5 x+b$ is divisible by the expression $x^{2}+3 x+2$. The values of a and b are
A. $a=2, b=-6$
B. $a=-2, b=-6$
C. $a=2 / 3, b=-22 / 3$
D. $a=-6, b=2$

Answer: A

- View Text Solution

8. What should be added to the expression
$2 x^{3}-5 x^{2}-x+5$ so that the sum is completely divisible by $2 x-3$?
A. -1
B. 1
C. -2
D. 2

Answer: B

- View Text Solution

9. If the expression $12 x^{2}-25 x+12$ is divisible by
$4 x-3$ then the other factor of the expression is
A. $3 x+4$
B. $4 x+3$
C. $x-2$
D. $3 x-4$
10. The expression $p x^{2}+q x+r$ leaves the remainders
1,0 and -1 when divided by
$(x+1),(x-2)$ and $(x-3)$, respectively. The value of
$p+q+r$ is
A. $\frac{2}{3}$
B. $\frac{1}{2}$
C. $\frac{5}{6}$
D. 0

Answer: A
\square

