đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CENGAGE PHYSICS

HEAT AND TEMPERATURE

Examples

1. Our normal body temperature is $37^{\circ} \mathrm{C}$. Express this value in Fahrenheit.

D Watch Video Solution
2. Body A is at $30^{\circ} \mathrm{C}$ and a similar body B is at $70^{\circ} \mathrm{C}$.

Find the equilibrium temperature.

- Watch Video Solution

3. A plastic bucket contains 5 litres of water at $20^{\circ} \mathrm{C}$.

One litre of hot water at $80^{\circ} \mathrm{C}$. is poured into it. Find the final temperature of water, given that the density of water is $1 \mathrm{~kg} / \mathrm{litre}$. Neglect the absorption of heat by the bucket and loss to the surrounding
4. Find the rise in the temperature of 1.5 kg of water if 9000 J of heat is given to it. Given $C_{\text {Water }}=4200 j k g^{-1} K^{-1}$.

- Watch Video Solution

5. A hot iron ball of mass 0.2 kg is dropped into 2 kg of water at $20^{\circ} \mathrm{C}$. The final temperature of water becomes $25^{\circ} \mathrm{C}$ Calculate the initial temperature of iron.

$$
C_{\text {iron }} 480 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}, C_{\text {water }}=4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}
$$

6. A 1.5 kW water heater is used to heat 25 kg of water from $20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. Find the time taken assuming there are no losses. $C_{(\text {water })}=4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$

D Watch Video Solution

7. Find the heat needed to convert 10 g of ice at $0^{\circ} \mathrm{C}$ to water at $20^{\circ} \mathrm{C}$.

Given
$L_{(\text {ice })}=336 \times 10^{3} \mathrm{Jkg}^{-1}, C_{(\text {water })}=4200 \mathrm{JkgK}^{-1}$
8. How much energy is needed to change 1 kg of ice at
$-10^{\circ} \mathrm{C}$ to stean at $100^{\circ} \mathrm{C}$?
$C_{i c e}=2130 \mathrm{Jkg}^{-1}, L_{\text {ice }}=336 \times 10^{3} \mathrm{Jkg}^{-1}$
$C_{\text {water }}=4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}, L_{\text {water }}=2260 \times 10^{3} \mathrm{Jkg}^{-1}$

D View Text Solution

9. A copper wire of length 1 m is heated from $20^{\circ} \mathrm{C}$ to
$120^{\circ} \mathrm{C}$. If the length increases by 1.7 mm , calculate it's
α
10. A ball of diameter 5.01 cm is placed on an iron ring of diameter 5 cm . What should be the increase in temperature of the ring so that the ball just passes through the ring?
$a_{(\text {iron })}=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$

- Watch Video Solution

11. Consider a cube of side L_{1} at temperature $T_{1}{ }^{\circ} C$.

Let it be heated to a temperature $T_{2}{ }^{\circ} C$ when the length becomes L_{2} show that $g \approx 3 a$.
12. The density of mercury at $0^{\circ} \mathrm{C}$ is $13.6 \times 10^{3} \mathrm{kgm}^{3}$.

Find its density at $100^{\circ} \mathrm{C}$ given $y=1.8 \times 1^{4} /{ }^{\circ} \mathrm{C}$

- View Text Solution

Mandatory Exercise Exercise Set I

1. Heat always flows from a body having more thermal energy to another having less thermal energy. Is it true or false? Give reason.
2. A body at higher temperature contains more thermal energy. Comment.

- View Text Solution

3. Why the base of a cooking pan is made thick and heavy?

- View Text Solution

4. In a solid kept at rest, the magnitude of average molecular displacement is about
A. $10^{-8} \mathrm{~cm}$
B. $10^{-6} \mathrm{~cm}$
C. 1 cm
D. 1 mm

Answer: A

- View Text Solution

5. SI unit of heat is

A. calorie
B. joule

C. watt

D. kelvin

Answer: B

- Watch Video Solution

6. The temperature of $1^{\circ} C$ is same as
A. 1 K
B. $1^{\circ} F$
C. 274 K
D. 272 K

Answer: C

- Watch Video Solution

7. The temperature difference of $1^{\circ} C$ is same as a difference of
A. 1 K
B. $1^{\circ} F$
C. 274 K
D. 272 K

Answer: A

8. 1 Calorie equals

A. $4.186 J$
B. $273.15 J$
C. 1.8 J
D. $5 / 9 J$

Answer: A

9. Temperature of A is $100^{\circ} \mathrm{C}$ and that of B is 250 K .

When they are kept in contact, heat
A. flows from B to A
B. flows from A to B
C. flows from B to A only if B is bigger in size
D. flows from B to A only if A is bigger in size

Answer: B

(D) Watch Video Solution
10. Convert $95^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$
11. Convert 10 J to calorie.

- View Text Solution

12. At what temperature do the Fahrenheit and Celsius scales give the same reading?

D Watch Video Solution

13. A body has 600 J of thermal energy. 100 calorie of heat energy is added to it. What is its total thermal

- Watch Video Solution

14. When two stones are rubbed together, they become hot. What is the source of energy for this increase in thermal energy?

- View Text Solution

15. What is thermal energy of a substance?

- View Text Solution

16. Two bodies with thermal energies 500 calories and 800 calories are brought in contact, then
A. Heat flown from lower energy to higher energ
B. Heat flown from higher energy to lower energy
C. No heat flow
D. Can't be predicted with given information

Answer: D

- Watch Video Solution

17. Is the following statement accurate? 'This iron block has 2000 calories heat.
18. What is the significance of the relation ' 1 calorie $=$ 4.186 I?

- View Text Solution

19. What is temperature?

- View Text Solution

20. When are the two bodies in thermal equilibrium?
21. Which of the following is not a unit of heat?

A. BTU

B. Joule
C. Watt
D. Calorie

Answer: C

D Watch Video Solution
22. Can our skin be used as an accurate measure of temperature? Why?

- View Text Solution

23. Give example, where human skin cannot be used as a thermometer.

- View Text Solution

24. Explain the working of a Mercury thermometer.
25. What are the fixed points used by Kelvin. Celsius and Fahrenheit scale?

- View Text Solution

26. If the temperature is increased by $1^{\circ} C$, then the increase in Fahrenheit scale will be
A. $\frac{5}{9}{ }^{\circ} F$
B. $\frac{9}{5}{ }^{\circ} F$
C. $\frac{1}{5}{ }^{\circ} F$
D. $\frac{1}{9}{ }^{\circ} F$

- Watch Video Solution

27. The temperature difference of $1^{\circ} F$ is same
A. 1 k
B. 273 k
C. $\frac{5}{3} k$
D. $\frac{9}{5} k$

Answer: C

28. What are the melting and boiling points of water according to the three types of scales?

- View Text Solution

29. Body A has the temperature $100^{\circ} \mathrm{F}$ and body B has temperature 100 K . If they are brought in contact, then
A. heat flows from A to B
B. heat flows from B to A
C. no heat flows
D. depends on their thermal energies

- Watch Video Solution

30. Melting point of iron is $1540^{\circ} \mathrm{C}$. What is the melting point in Fahrenheit scale?
A. 2830
B. 284
C. 2766
D. 2724

Answer: B
31. The temperature of a body is dependent on
A. density of the body
B. potential energy of molecules
C. mass of the body
D. kinetic energy of molecules

Answer: D

32. At what temperature is the reading in Kelvin scale double the reading in Celcius scale.

- Watch Video Solution

33. At what temperature is the reading in Kelvin scale half the reading in Celsius scale.

D Watch Video Solution

Mandatory Exercise Exercise Set Ii

1. Why is ice at $0^{\circ} C$ more effective on cooling than water at $0^{\circ} \mathrm{C}$ Justify.

- Watch Video Solution

2. Which causes more severe burns, boiling water or steam? Explain.

D Watch Video Solution

3. When 1 kg of water and mercury are given the same amount of heat, which one will have a greater rise in temperature? Justify.
4. Specific heat capacity of an object depends on
A. its mass only
B. its material only
C. its mass and its material
D. the heat given to it

Answer: B
5. Boiling point of water
A. is always $100^{\circ} \mathrm{C}$
B. can only be $\leq 100^{\circ} \mathrm{C}$
C. can only be $\geq 100^{\circ} \mathrm{C}$
D. can be $<100^{\circ} \mathrm{C},=100^{\circ} \mathrm{C}$ or $>100^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution
6. Boiling point of water in a pressure cooker is
A. $100^{\circ} \mathrm{C}$
B. $120^{\circ} \mathrm{C}$
C. $0^{\circ} \mathrm{C}$
D. $86^{\circ} \mathrm{C}$

Answer: B

D Watch Video Solution

7.10 g of water at $20^{\circ} \mathrm{C}$ is mixed with 20 g of water at
$10^{\circ} C$ The resulting temperature is
A. $15^{\circ} \mathrm{C}$
B. $<15^{\circ} \mathrm{C}$

C. $>15^{\circ} \mathrm{C}$

D. $30^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

8. The value of a is numerically equal to the percentage change in length when the temperature of the rod is increased by
A. $1^{\circ} C$
B. 1 K
C. 273 C

Answer: D

D View Text Solution

9. How much heat is required to rise the temperature of 20 g of mercury from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$?
$C_{\text {mercury }}=140 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$

D Watch Video Solution
10. Calculate the amount of ice that can be melted when 1 kg of steam at $100^{\circ} \mathrm{C}$ condenses to water at

$100^{\circ} \mathrm{C}$.

$$
L_{i c e}=336 \times 10^{3} \mathrm{Jkg}^{-1} \text { and } L_{\text {water }}=2260 \times 10^{3} \mathrm{Jkg}^{-1}
$$

D View Text Solution

11. The length of a rod increases from 50 cm to 50.12 cm , when its temperature is increased from $12^{\circ} \mathrm{C}$ to
$212^{\circ} \mathrm{C}$. Calculate its coefficient of liner expansion.

- View Text Solution

12. A hot iron ball of mass 200 g is cooled from 373 K to 303 K . If the heat lost is 3220 J , then what will be
the specific heat of iron?

- Watch Video Solution

13. Two bodies A and B having same initial tempera
ture are supplied with same current of heat. The final
temperature of A is more than that of B, then
A. specific heat capacity of A is higher than B
B. specific heat capacity of B is higher than A
C. thermal capacity of A is higher than B
D. thermal capacity of B is higher than A

D View Text Solution

14. The specific heat capacities of Aluminium and Iron are $900 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ and $480 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$. If a block of aluminium and a block of Iron are supplied the same amount of heat, then
A. temperature rise is more in aluminium block
B. temperature rise is more in iron block
C. temperature rise is same in both blocks
D. information insufficient
15. Water can be used as an efficient coolant. Explain.

- View Text Solution

16. Sea breeze maintains a moderate climate near sea
shors. Explain.

- View Text Solution

17. Why is the bulb of a thermometer made small?

18. In a building with two floors, the ground floor is

 cooler than the first floor. Explain.
- View Text Solution

19. The principle of calorimetry is basically
A. conservation of mass
B. conservation of energy
C. conservation of momentum
D. conservation of charge

Answer: B

- View Text Solution

20. Under what condition, is the principle of calorimetry not valid?

- View Text Solution

21. What is melting point or freezing point of any material?

- View Text Solution

22. What is boiling point of any material?

- View Text Solution

23. What is sublimation? Give example.

- View Text Solution

24. Phase change is a constant temperature process.

Explain.

- View Text Solution

25. For a fixed mass of water, at what temperature will the volume become least?
A. $0^{\circ} C$
B. $4^{\circ} \mathrm{C}$
C. $54^{\circ} \mathrm{C}$
D. $100^{\circ} \mathrm{C}$

Answer: B

D Watch Video Solution
26. A block of ice at $0^{\circ} C$ is converted to steam at
$100^{\circ} \mathrm{C}$. Which process will require the most amount of heat?
A. Melting the block
B. Increasing temperature from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
C. Boiling the water
D. Data insufficient

Answer: C

- View Text Solution

27. What would happen to glacial rivers if the latent

 heat for fusion of water is decreased suddenly?
- View Text Solution

28. What will be the boiling point of water at the top of a mountain?
A. $100^{\circ} \mathrm{C}$
B. $>100^{\circ} C$
C. $<100^{\circ} C$
D. Can't be determined

Answer: C

- Watch Video Solution

29. What will be the melting point of water at the top of a mountain?
A. $0^{\circ} C$
B. $>0^{\circ} C$
C. $<0^{\circ} C$
D. Can't be determined

Answer: B
30. Atoms are in constant
A. translation motion
B. rotation motion
C. vibration motion
D. all of these

Answer: D

31. If melting point and boiling point overlap, then the process is called
A. evaporation
B. evaporation
C. condensation
D. sublimation

Answer: C

- View Text Solution

32. The rise in temperature of a body depends on
A. heat supplied
B. nature of material
C. mass of the body
D. all of these

Answer: D

- Watch Video Solution

33. For any material in genera
A. $L_{f}>L_{v}$
B. $L_{f}<L_{v}$
C. $L_{f}=L_{v}$
D. none of these

Answer: B

- Watch Video Solution

34. How much heat is required to convert 1 kg ice at
$0^{\circ} C$ to steam at $100^{\circ} \mathrm{C}$?

- View Text Solution
35.20 g of a substance is melted when 500 J of heat is added. What is the specific latent heat of fusion of the substance?

D Watch Video Solution

36. A bullet of mass 2 kg and speed $10 \mathrm{~m} / \mathrm{s}$ hits a large block of ice at $0^{\circ} C$ and stops. If all the KE of bullet converts to heat, find the amount of ice that melted.

- View Text Solution

1. Is it possible to boil water below $100^{\circ} C$? If so, how?

D View Text Solution

2. Give scientific reasons for the following.

Small gaps are left near the joints between the rails in a railway track.

- View Text Solution

3. Give scientific reasons for the following.

Ice floats on water, whereas solid wax sinks in molten

D Watch Video Solution

4. Give scientific reasons for the following.

Telephone wires sag more in summer.

(D) Watch Video Solution

5. Give scientific reasons for the following.

Loops are provided in metal pipelines used in factories.
6. Give scientific reasons for the following.

Food is cooked faster in a pressure cooker.

- Watch Video Solution

7. Give scientific reasons for the following.

Melting point of ice decreases on application of pressure.

D Watch Video Solution

8. Give scientific reasons for the following.

Pipes carrying water sometimes burst during frosty

- Watch Video Solution

9. Give scientific reasons for the following.

Aquatic plants and animals can live in water even during very cold season.

D Watch Video Solution
10. Give scientific reasons for the following.
ice is slippery.
11. Give scientific reasons for the following.

Water in an earthen pot becomes cool in summer.

- View Text Solution

12. The coefficient of linear expansion for brass is
$0.000018 /{ }^{\circ} C$. Explain the meaning of this statement.

- Watch Video Solution

13. The relation between β and γ of a solid is
A. $3 \beta=2 \gamma$
B. $\beta=2 \gamma$
C. $\gamma=2 \beta$
D. $\gamma=3 \beta$

Answer: A

D Watch Video Solution

14. When ice is converted to water \qquad changes.
A. volume
B. temperature
C. mass

D. latent heat

Answer: A

D Watch Video Solution

15. When water is heated from $0^{\circ} C$, its volume
A. increases
B. does not change
C. first increases and then decreases
D. first decreases and then increases

Watch Video Solution

16. The density of water is maximum at:
A. $4^{\circ} C$
B. $0^{\circ} \mathrm{C}$
C. $100^{\circ} \mathrm{C}$
D. $-10^{\circ} \mathrm{C}$

Answer: A
17. A plate with a hole is heated. The diameter of the hole
A. increases
B. does not change
C. first increases and then decreases
D. first decreases and then increases

Answer: B
18. The pendulum of a clock is made of a thin iron rod.

On a hot day the clock will
A. run fast
B. runs slow
C. give accurate time
D. not work

Answer: B
19. Stars A and B appear to be blue and red in colour, respectively. Then one can infer that
A. star A is hotter than B
B. $\operatorname{star} B$ is hotter than A
C. the colour has no relevance to temperature of
the star
D. they may have equal temperature

Answer: B
20. While making homemade ice cream, salt is added to the ice in the container. Why?

- View Text Solution

21. Matter expands on heating. Explain

- View Text Solution

22. What is the temperature at the bottom of deep lakes and seas?

- View Text Solution

23. Explain the importance of anomalous expansion of water to maintain the biodiversity of marine life.

- View Text Solution

24. How does a bimetallic strip function?

- View Text Solution

25. The length of a piece of wood is measured with a metallic scale on a hot day. The measured value will be
A. more than original value

B. less than original value

C. equal to original value
D. can't predict

Answer: B

D Watch Video Solution

26. The length of a piece of metal is measured with a wooden scale on a hot day. The measured value will be
A. more than original value
B. less than original value

C. equal to original value

D. can't predict

Answer: A

- View Text Solution

27. The coefficient of linear expansion for a material is
$2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$. What will be the percentage change of area if temperature is increased by $100^{\circ} \mathrm{C}$?
28. Show that density varies with temperature as $\rho_{2}=\rho_{1}(1-\gamma \Delta T)$ for small change in temperature.

- Watch Video Solution

29. Thermal capacity of an object depends on
A. mass only
B. material only
C. both mass and material
D. heat given to it

Answer: C

Consolidated Exercise

1. The oceans are the reservoir from which water (1) into the atmosphere to later (2) \qquad as rain and
snow. Oceans play a major role in moderating the earth's temperature and climate. Because of (3) \qquad of water, water is slow to heat up or cool down. When water cools down, a large amount of heat is (4) \qquad
the surroundings. On the other hand, water (5) \qquad great deal of heat before its temperature increases.

The large heat capacity is the reason that land bordering the oceans experiences
(6)
temperatures. The moderating influence of the oceans
can be seen when we look at seasonal temperature variations for two cities at the same latitude, with one in the coastal region and the other in the continental region. The city in the continental part experiences strong seasonal fluctuations (7) ____ winters and
summers. The oceans do a great job of both
making summers (9) _____ and winter (10) ____ for a city
in the coastal region.
(a) large heat capacity
(b) cooler
(c) cold (d) evaporates
(e) moderate (f) absorbs
(g) warmer (h) hot
(i) precipitate (j) transferred to

View Text Solution

2. Match the following:

Column A	Column B
$\begin{array}{ll}\text { (1) Thermal energy } & \text { (a) } \alpha=\frac{\Delta Q}{m}\end{array}$	
$\begin{array}{ll}\text { (2) Heat } & \text { (b) Two bodies in contact } \\ \text { attain the same } \\ \text { temperature }\end{array}$	
(3) Temperature	(c) Expansion in the volume
of water below $4^{\circ} \mathrm{C}$	

(5) Thermometer \& (e) KE + PE

(6) Specific heat capacity \& (f) Heat lost by the body

= heat gained by the cold

body\end{array}\right\} \begin{array}{ll}(7) Principle of calorimetry \& (g) Thermal energy that is

transferred\end{array}\right\}\)| (8) Specific latent heat | (h) C= ΔQ |
| :--- | :--- |
| (9) Anomalous expansion | |
| of water | (i) Device that measures |
| temperature | |

3. Rankine scale is a temperature scale which takes the absolute zero of temperature as $0^{\circ} R$ and the magnitude of one part in Rankine scale is same as that in Fahrenheit scale.

Answer the following questions linked with the above statement

How much is $0^{\circ} R$ (absolute zero) equal to in Fahrenheit scale.

D View Text Solution

4. Rankine scale is a temperature scale which takes
the absolute zero of temperature as $0^{\circ} R$ and the
magnitude of one part in Rankine scale is same as that in Fahrenheit scale.

Answer the following questions linked with the above statement

What is the relation between temperature in Fahrenheit scale and temperature in Rankine scale?

- View Text Solution

5. Rankine scale is a temperature scale which takes the absolute zero of temperature as $0^{\circ} R$ and the magnitude of one part in Rankine scale is same as that in Fahrenheit scale.

Answer the following questions linked with the above
statement
What is the melting point of water in Rankine scale?

- View Text Solution

6. Rankine scale is a temperature scale which takes the
absolute zero of temperature as $0^{\circ} R$ and the magnitude of one part in Rankine scale is same as that in Fahrenheit scale.

Answer the following questions linked with the above statement

What is the boiling point of water in Rankine scale?
7. Rankine scale is a temperature scale which takes the absolute zero of temperature as $0^{\circ} R$ and the magnitude of one part in Rankine scale is same as that in Fahrenheit scale.

Answer the following questions linked with the above
statement
How many parts can the interval between boiling point and freezing point of water be divided into in Rankine scale?

- View Text Solution

8. Two solid blocks having same mass but different material are supplied heat at a constant rate. They have same initial temperature. The graph between temperature and time is shown.

Answer the following questions on the basis of information given in the above statement.

Which material has higher specific heat capacity in solid state?
9. Two solid blocks having same mass but different material are supplied heat at a constant rate. They
have same initial temperature. The graph between temperature and time is shown.

Answer the following questions on the basis of information given in the above statement.

Which material has higher specific heat capacity in liquid state?

D View Text Solution

10. Two solid blocks having same mass but different
material are supplied heat at a constant rate. They
have same initial temperature. The graph between temperature and time is shown.

Answer the following questions on the basis of information given in the above statement.

Which material has higher specific heat capacity in gaseous state?

- View Text Solution

11. Two solid blocks having same mass but different material are supplied heat at a constant rate. They
have same initial temperature. The graph between temperature and time is shown.

Answer the following questions on the basis of information given in the above statement.

Which material has higher latent heat of fusion?

- View Text Solution

12. Two solid blocks having same mass but different material are supplied heat at a constant rate. They have same initial temperature. The graph between
temperature and time is shown.

Answer the following questions on the basis of information given in the above statement.

Which material has higher latent heat of
vaporisation?

- View Text Solution

Consolidated Exercise Multiple Choice Questions With
One Or More Than One Correct Answer

1. If heat a supplied to a solid, its temperature
A. must increase
B. may increase
C. may remain constant
D. may decrease

Answer: A::B::C::D

D Watch Video Solution
2. The heat capacity of a body depends on
A. the heat supplied
B. the temperature raised
C. the mass of the body
D. the material of the body

Answer: A:C::D

D Watch Video Solution

3. The temperature of a solid object is observed to be constant during a period .In this period
A. heat may have been supplied to the body
B. heat may have been extracted from the body
C. no heat is supplied to the body
D. no heat is extracted from the body

Answer: A::B::D

D Watch Video Solution

4. The temperature of an object is observed to rise in a period. In this period,
A. heat is certainly supplied to it
B. heat is certainly not supplied to it
C. heat may have been supplied to it
D. work may have been done on it

Answer: A::C::D

D Watch Video Solution

Challenging Exercise

1. A brass piece of 0.1 kg at $100^{\circ} \mathrm{C}$ is dropped into 0.25
kg of water at $20^{\circ} \mathrm{C}$. The final temperature is $23^{\circ} \mathrm{C}$
Calculate $C_{\text {brass }}$ given $C_{\text {water }}=4180 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$.
2. A 15 g ice cube at $0^{\circ} C$ is dropped into 100 g of water at $30^{\circ} \mathrm{C}$. Calculate the final temperature of water after the full ice has melted, given $L_{i c e}=336 \times 10^{3} \mathrm{Jkg}^{-1}, C_{\text {water }}=4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$

- View Text Solution

3. A 1 kg hammer with a velocity of $50 \mathrm{~ms}^{1}$ strikes a 100
g iron nail driving it into a block of wood. If half of the energy of the hammer goes into heating the nail, find the rise in its temperature, given $C_{\text {iron }}=480 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
4. An iron rod of length 50 cm is joined at an end to an aluminium rod of length 100 cm . All measurements refer to $20^{\circ} \mathrm{C}$. Find the length of the composite system at $100^{\circ} \mathrm{C}$ and its average coefficient of linear expansion. The coefficient of linear expansion of iron and aluminium are $12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and $24 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ respectively.

- Watch Video Solution

5. An iron ring measuring 15.00 cm in diameter is to be shrunk on a pulley which is 15.05 cm in diameter. All measurements refer to the room temperature $20^{\circ} \mathrm{C}$.

To what minimum temperature should the ring be heated to make the job possible? Calculate the strain developed in the ring when it comes to the room temperature. Coefficient of linear expansion of iron $=12 \times 10^{-6} /{ }^{\circ} C$

- View Text Solution

Olympiad And Ntse Level Exercises

1. A pendulum clock keeps correct time at $0^{\circ} C$. Its mean coefficient of linear expansions is $\alpha / .^{\circ} C$, then the loss in seconds per day by the clock if the temperature rises by $t^{\circ} C$ is
A. $\frac{\frac{1}{2} \alpha t \times 864000}{1-\frac{a t}{2}}$
B. $\frac{1}{2} \alpha t \times 86400$
C. $\frac{\frac{1}{2} \alpha t \times 86400}{\left(1-\frac{a t}{2}\right)^{2}}$
D. $\frac{\frac{1}{2} \alpha t \times 86400}{1+\frac{\alpha t}{2}}$

Answer: B

D Watch Video Solution

2. A vertical column 50 cm long at $50^{\circ} \mathrm{C}$ balances another column of same liquid 60 cm long at $100^{\circ} \mathrm{C}$.

The coefficient of absolute expansion of the liquid is
A. $0.005 /{ }^{\circ} C$
B. $0.0005 /{ }^{\circ} C$
C. $0.002 /{ }^{\circ} C$
D. $0.0002 /{ }^{\circ} C$

Answer: A

D Watch Video Solution

3. Two liquid A and B are at $32^{\circ} \mathrm{C}$ and $24^{\circ} \mathrm{C}$. When mixed in equal masses the temperature of the mixture is found to be $28^{\circ} \mathrm{C}$. Their specific heats are in the ratio of
A. $3: 2$
B. 2:3
C. 1:1
D. 4:3

Answer: C

D Watch Video Solution

4. 0.93 watt - hour of energy is supplied to a block of ice weighing 10 gm . It is found that
A. Half of the block melts
B. The entire block melts and the water attains a temperature of $4^{\circ} C$
C. The entire block just melts
D. The block remains unchanged

Answer: C

D Watch Video Solution

5. 300 grams of water at $25^{\circ} \mathrm{C}$ is added to 100 grams of ice at $0^{\circ} C$. The final temperature of the mixture is \ldots ^ $\circ C$
A. $-\frac{5}{3}{ }^{\circ} C$
B. $-\frac{5}{2}{ }^{\circ} C$
C. $-5^{\circ} \mathrm{C}$
D. $-0^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution

6. An iron tyre is to be fitted onto a wooden wheel 1.0
m in diameter. The diameter of the tyre is 6 mm smaller than that of wheel the tyre should be heated
so that its temperature increases by a minimum of
(coefficient of volume expansion of iron is
$\left.3.6 \times 10^{-5} /{ }^{\circ} C\right)$
A. $167^{\circ} \mathrm{C}$
B. $334^{\circ} \mathrm{C}$
C. $500^{\circ} \mathrm{C}$
D. $1000^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution

7. Two rods having length l_{1} and l_{2} made of materials with the linear expansion coefficient α_{1} and α_{2} were soldered together. The equivalent coefficients of
linear expansion for the obtained rod

$$
\begin{aligned}
& \text { A. } \frac{l_{1} \alpha_{2}+l_{2} \alpha_{1}}{l_{1}+l_{2}} \\
& \text { B. } \frac{l_{1} \alpha_{1}+l_{2} \alpha_{2}}{\alpha_{1}+\alpha_{2}} \\
& \text { C. } \frac{l_{1} \alpha_{1}+l_{2} \alpha_{2}}{l_{1}+l_{2}} \\
& \text { D. } \frac{l_{2} \alpha_{1}+l_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}}
\end{aligned}
$$

Answer: C

- View Text Solution

8. In a container of negligible heat capacity, 200 g ice at $0^{\circ} C$ and 100 g steam at $0^{\circ} C$ are added to 200 g of water that has temperature $55^{\circ} \mathrm{C}$ Assume no heat is lost to the surroundings and the pressure in the
container is constant 1.0 atm.
What is the final temperature of the system?
A. $48^{\circ} \mathrm{C}$
B. $72^{\circ} \mathrm{C}$
C. 94°
D. $100^{\circ} \mathrm{C}$

Answer: D

- View Text Solution

9. In a container of negligible heat capacity, 200 g ice at $0^{\circ} \mathrm{C}$ and 100 g steam at $0^{\circ} \mathrm{C}$ are added to 200 g of
water that has temperature $55^{\circ} \mathrm{C}$ Assume no heat is
lost to the surroundings and the pressure in the container is constant 1.0 atm.

At the final temperature, mass of the total water present in the system, is
A. $472.6 g$
B. $483.3 g$
C. $493.6 g$
D. 500 g

Answer: B
10. In a container of negligible heat capacity, 200 g ice at $0^{\circ} \mathrm{C}$ and 100 g steam at $0^{\circ} \mathrm{C}$ are added to 200 g of water that has temperature $55^{\circ} \mathrm{C}$ Assume no heat is lost to the surroundings and the pressure in the container is constant 1.0 atm.

Three liquids A, B and C having same specific heat and mass $m, 2 m$ and $3 m$ have temperature $20^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ respectively. Temperature of the mixture when

Column I

Column II
(i) A and B are mixed
(p) $35^{\circ} \mathrm{C}$
(ii) A and C are mixed
(q) $52^{\circ} \mathrm{C}$
(iii) B and C are mixed
(r) $50^{\circ} \mathrm{C}$
(iv) A, B and C all three
(s) $45^{\circ} \mathrm{C}$ are mixed
(t) None

Now match the given columns and select the correct
option the codes given below.

	i.	ii.	iii.	iv.
(A)	t	s	q	r
(B)	t	r	q	t
(C)	q	r	s	t
(D)	p	q	r	s

A. A
B. B
C. C
D. D

Answer: B

- View Text Solution

