©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CENGAGE PHYSICS

OPTICAL INSTRUMENTS

Examples

1. A camera has a lens of focal length 50 mm .

By how much outward the lens has to be
moved while changing the focus from an object at infinity to an object at 1 m ?

D View Text Solution

2. The eye lens has a focal length of 2.5 cm .

Find the range of accommodation while changing the focus from infinity to $D=25 \mathrm{~cm}$.

D View Text Solution
3. Find the power of the lens required to correct a myopic eye having the far point at 1 m .

D View Text Solution

4. Find the power of the lens required to correct farsightedness with a near point at 50 cm .
5. A compound microscope has an objective of focal length 0.5 cm , a tube length 15 cm and eyepiece of focal length 3 cm . Find the magnification produced .

D View Text Solution

Mandatory Exercis Exercise Set I

1. Can the length of a simple astronomical
telescope be $>\left(f_{0}+f_{e}\right)$? Explain.
2. What kind of lens is used to correct myopia ?

D View Text Solution

3. Out of the objective and the eyepiece , which has smaller focal length in a
(i) telescope
(ii) mocroscope?

D View Text Solution
4. To read small letters in a newspaper, an aged person keeps it farther than 25 cm . Explain the reason.

- View Text Solution

5. What are the functions of shutter and diaphragm in a camera?

D View Text Solution
6. Write the expression for the magnification produced by a compound microscope .Explain the symbols .

- View Text Solution

7. Among cornea ,aqueous humour and lens
,where does maximum refraction take place?
Why ?

- View Text Solution

8. Why is inner coating of a camera black in colour ?

D View Text Solution
9. If f number 8 means the diameter for f aperture is 16 mm , what will be the diameter for f number 12 ?

D View Text Solution
10. Do human and animals see the same colour corresponding to the same wevelegth ?

D View Text Solution

11. Least distance of distant vision is 25 cm .

This means we cannot see anything clearly at distances less than 25 cm . True or false?

D View Text Solution

1. controls the amount of light entering the camera .

A. Film

B. Shutter
C. Diaphragm
D. Lid

Answer: C

2. The part of the eye, similar to film in a camera is
A. cornea
B. iris
C. Diaphragm
D. retina

Answer: D

D View Text Solution
3. When the brightness of light increases, the size of the pupil
A. decreases
B. increases
C. remains the same
D. first decreases and then increases

Answer: A

D View Text Solution
4. Myopia is same as
A. nearsighterdness
B. far -sightedness
C. astightedness
D. cataract

Answer: A
found in aged people .
A. Myopia
B. Far sightedness
C. astigmatism

D. night blindness

Answer: B

- View Text Solution

6. ___ lens is used to correct myopia .
A. concave
B. convex
C. bifocal

D. coloured

Answer: A

- View Text Solution

7. The near point of a normal eye is at
A. 50 cm
B. 25 cm
C. 1 m
D. infinity

Answer: B

- View Text Solution

8. The far point of a normal eye is at
A. 50 cm
B. 25 cm
C. 1 m
D. infinity

Answer: D

D View Text Solution

9. The visual activity of a normal eye is

A. 1 minute of an arc
B. 1°

C. 1 radian

D. $\frac{1}{400}$ degree

Answer: A

D View Text Solution

10. For an astromomical telescope at normal adjustment , with f_{0} and f_{e} as the focal lengths of objective and eyepiece respectively, the magnification is
A. $f_{0} \times f_{e}$
B. $\frac{f_{0}}{f_{e}}$
C. $f_{0}+f_{3}$
D. $\frac{f_{e}}{f_{0}}$

Answer: B

D View Text Solution

11. For an astronomical telescope at normal adjustment , with f_{0} and f_{e} as the focal
length of objective and eyepiece, respectively,
the length of the telescope is
A. $f_{0} \times f_{e}$
B. $\frac{f_{0}}{f_{e}}$
C. $f_{0}+f_{3}$
D. $\frac{f_{e}}{f_{0}}$

Answer: C

D View Text Solution
12. ___ has shorter focal length convex lens
A. Objective of a telescope
B. Eyepiece of a microscope
C. Eyepiece of a telecope

D. Both the lenses in a telescope

Answer: C

13. The image formed on the film of a photographic camera is
A. virtual and erect
B. virtual and inverted
C. real and erect
D. real and inverted

Answer: D
(D) View Text Solution
14. Which part of a camera controls the exposure of the film?
A. Lens
B. Shutter
C. Diaphragm
D. Film

Answer: B

D View Text Solution
15. Which part of the human eye behave similar to diaphragm of a camera?
A. Iris
B. Retina
C. Cornea
D. Lens

Answer: A

- View Text Solution

16. Which of the following colours is not directly sensitive by cones cells ?

A. Red

B. Blue
C. Green
D. Yellow

Answer: D

D View Text Solution

17. Night blindness is due to defect in

A. lens
B. iris
C. rods
D. cones

Answer: C

18. Hypermetropia is also known as

A. far sightedness
B. near sightedness
C. presbyopia

D. astigmatism

Answer: A
19. Which type of lens is used to correct hypermetropia?

A. Convex lens

B. Concave lens
C. Bi focal

D. Lens with cylindrical curvature

Answer: A

- View Text Solution

20. Night blindness occurs due to deficiency of
A. Vitamin D
B. Vitamin K
C. Vitamin A
D. Vitamin C

Answer: C

D View Text Solution
21. Which defect is due to less of power of accommodation of human eye?
A. Myopia
B. Hyperopic
C. presbyopia
D. astigmatism

Answer: C

- View Text Solution

22. Which type of lens is used to correct astigmatism ?
A. Convex lens
B. Concave lens
C. Bi focal
D. Lens with cylindrical curvature

Answer: D

D View Text Solution
23. What is the persistence of vision on a human retina?
A. $\left(\frac{1}{8}\right) t h_{\text {a second }}$
B. $\left(\frac{1}{16}\right) t h_{\text {a second }}$
C. $\left(\frac{1}{32}\right) t h_{\text {a second }}$
D. $\left(\frac{1}{64}\right) t h_{\text {a second }}$

Answer: B

D View Text Solution

24. For a compound microscope

A. Diameter of objective lens = Diameter of

еуеріесе
B. Diameter of objective lens = Diameter of

еуеріесе
C. Diameter of objective lens = Diameter of
eyepiece

D. Independent of diameter of lens

Answer: C

25. For an astronomical telescope
A. Diameter of obejective lens =Diameter of

еуеріесе
B. Diameter of objective lens = Diameter of

еуеріесе
C. Diapemeter of objective lens =Diameter
of eyepiece
D. Independent of diameter of lens

D View Text Solution

26. Binocular is a type of
A. simple microscope
B. compound microscope
C. astronomical telescope
D. terrestrial telescope
27. Magnifying glass is an example of
A. simple microscope
B. compound microscope
C. astronomical telescope
D. terrestrial telescope

Answer: A
28. Which of the following animals have compound eyes?
A. Lion
B. Snake
C. Fly
D. Carb

Answer: C

D View Text Solution
29. the film speed is measured by the code set by
A. ASA
B. ISI
C. SI
D. IUPAC

Answer: A

- View Text Solution

30. Aperture setting is done by
A. p-number
B. f-number
C. d-number
D. α - number

Answer: B

- View Text Solution

31. If $h_{i}=$ height of image , $h_{0}=$ height of object and $m=$ magnification , then

Question No.	Choice
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
17	

$$
\begin{aligned}
& \text { A. } m=\frac{h_{0}}{h_{i}} \\
& \text { B. } m=\frac{h_{i}}{h_{0}} \\
& \text { C. } m=h_{0} h_{i}
\end{aligned}
$$

D. none of these

Answer: B

Mandatory Exercis Exercise Set lif

1. In which of the following is the final image erect ?
A. Simple microscope
B. compound microscope
C. astronomical telescope
D. Galilean telescope

Answer: A::B::D

D View Text Solution
2. The maximum focal length of the eye lens of
a person is greater than its distance from the retina. The eye is
A. always strained in looking at an object
B. strained for objects at larger distances only
C. strained for objects at short distances
only
D. unstrained for all distances

D Watch Video Solution

3. Mark the correct options :
A. If the far point goes ahead, the power of
the divergent lens should be reduced
B. If the near point goes ahead, the power
of the convergent lens should be
C. If the far point is 1 m away from the eye divergent lens should be used
D. If the near point is 1 m away from the eye divergent lens should be used

Answer: A::C::D

D View Text Solution

4. The focal length of the objective of a compound microscope is f_{0} and its distance from the dyepiefe is L. The object is placed at a
distance u from the objective. For proper working of the instrument.,
A. $L<u$
B. $L>u$
C. $f_{0}<L<2 f_{0}$
D. $L>2 f_{0}$

Answer: A::B::D
(Watch Video Solution
5. The final image produced by a compound mocroscope is
A. erect with respect to object
B. erect with respect to first image
C. virtual

D. magnified

Answer: A::B::C::D

D View Text Solution

6. A fly is sitting on the objective of a telescope pointed towards the moon When the photograph of moon is taken through the telescope, the fly does not affect
A. the field of view
B. the portion of image
C. size of the image
D. intensity of the image

Answer: A::B::D

- View Text Solution

7. Which of the following defects can be correced by using suitable lens ?
A. Myopia
B. Cataract
C. Night blindness
D. astigmatism

Answer: A:D

- View Text Solution

8. Where is light refracted?

A. cornea

B. Lens
C. Aqueous human
D. Retina

Answer: A::B::C
9. The visual angle subtended by which of
them will be visible ?
A. $\left(\frac{1}{120^{\circ}}\right)^{\circ}$
B. $\left(\frac{1}{80^{\circ}}\right)^{\circ}$
C. $\left(\frac{1}{40^{\circ}}\right)^{\circ}$
D. $\left(\frac{1}{\propto 0^{\circ}}\right)^{\circ}$

Answer: C::D

D View Text Solution

10. Which of the following contains more than one lens ?
A. Simple microscope
B. compound microscope
C. Reflecting Telescope
D. Binocular

Answer: B::D

D View Text Solution
11. For a human eye, which of the following is true?
A. Focal length is fixed
B. Distance between lens and retina is fixed
C. Image and retina are temporary

D. The size of pupil is fixed

Answer: B::C

D View Text Solution

Mandatory Exercis Exercise Set Iv

1. Optical Instruments

A	B
(1) Accommodation (a) Adjustment to variation of brightness	
(2) Contraction and expansion of iris (b) 25 cm	
(3) Angle subtended by an object at the eye (c) Instrument used to see far objects	
(4) Visual activity	(d) Variation of focal
length of the eye lens	
vision of human eye	(e) Microscope

(6) Instrument used to see (f) Visual angle tiny objects
(7) Telescope
(8) Magnification
(g) Height of image/height of object
(h) Limit to see tiny objects

2. Defects of Vision

A	
(1) Myopia (a) Deficiency of vitamin A (2) Hypermetropia (b) Uneven curvature of the cornea (3) Presbyopia (c) Eyeball is too short or f of the eye lens is large	
(4) Astigmatism (d) Loss of transparency of the eye (lens	
(6) Cataract (e) Loss of flexibility of eye lens due to ageing	
(6) Night blindness	(f) Eyeball is too long or fof the eye
lens is small	

D View Text Solution

Mandatory Exercis Exercise Set V

1. Match the parts of the human eye with its

function .

A	B
(1) Choroid (a) Control amount of light (2) Lens (b) Sensitive to bright and dim light (3) Iris (c) To cut off the incoming light (4) Retina (d) Converging rays (5) Rods (e) Avoid internal reflections (6) Cones (f) Record the image (7) Eye lids (g) Colour sensing	

D View Text Solution

2. Complete the ray diagram showing image
formation in Galilean telescope :

Figure shows a simple model of Galilean telescope. A convergent lens is used as the objective and a divergent lens as the eyepiece
.The objective L would form a real inverted image $P_{1} O_{1}$ of a distanct object in its focal
plane .The eyepiece intercepts the converging
raye in between $P_{1} Q_{1}$ then acts as a virtual
object for the eyepiece .The position of the
eyepiece is so adjusted that the final image is
formed at the final image is formed at infinity
image is formed at the least distance of clear vision, the angular magnification is maximum .

D View Text Solution

Mandatory Exercis Exercise Set Vi

1. Find the power of the lens required to correct far sightedness with a near point at 75
cm .
2. A lens used as a simple magnifier has focal length 5 cm .What is the magnification produced ?

D View Text Solution

3. A compound microscope has an objective of
focal length 4 mm , tube length 20 cm , and eyepiece of focal length 2.5 cm . Find the magnification produced .
4. An astronomical telescope under normal adjustment produces a magnification of 50 . If
the objective has the focal length of 1 m , find the focal length of the eyepiece and the length of the telescope .

D View Text Solution

5. A person cannot see clearly beyond 10 m

What type of corrective lenses should the person use ? Find the power of required lens.
6. If a person can see most clearly at a distance of 1000 cm .Find the power of the lens used to see object at 40 cm .

- View Text Solution

7. The power of a lens used by a short -sighted person is 4 D .find the distance of an object which he can see without spectacles .
8. A magnifying glass has magnification 10

What is the focal length of the magnifying glass?

- View Text Solution

9. A compound microscope has magnification
10. If the focal length of objective lens and eye piece are 1 cm and 8 cm respectively. Find the length of microscope.
11. The magnification by the objective lens in a compound microscope is 50 and the magnification by eyepiece is 15 . What is the magnification of the compound microscope ?

- View Text Solution

11. A compound microscope has magnification

400 . The focal length of the object lens is 2
cm and the magnification of eyepiece is 10

What is the tube length of the microscope?

D View Text Solution

12. The magnification of a compound microscope is 250 and the magnification of objective lens is 50 . Find the focal length of eyepiece.
13. The focal length of objective lens is 1.2 m and focal length of eye piece is 5 cm .For the telescope, find
(i) Length of telescope .
(ii) Magnification under normal adjustment

D View Text Solution

14. For a telescope, the magnification is 58 and the length of the telescope is 118 cm . Find the focal length of the two lenses.

General Exercise

1. What is blind spot ?

- Watch Video Solution

2. How can we see erect images even through
the images formed on our retina are inverted
?
3. Which muscle of the human body is used to change the focal length of lenses ?

D View Text Solution

4. Explain the role of iris human vision?

- View Text Solution

5. Explain the types of photosensitive cells
located on the human retina .

D View Text Solution
6. Presbyopia is common in aged people .Explain.

D View Text Solution

7. How is cataract treated ?

- View Text Solution

8. Explain why an object when kept nearer , appears bigger and clearer ?

D View Text Solution

9. Write down the differences between a simple microscope and a compound microscope .
10. What are the difference between reflecting
telescope and refracting telescope ? Explain
with ray diagram .

D View Text Solution
11. What is Galiean telescope ?

D View Text Solution
12. Write down the different methods by which
the final image by a telecope can be made erect .

D View Text Solution

Challenging Exercise

1. A camera has a lens of focal length 70 mm .It
is focused to infinity .By how much distance
should it be moved forwards /backwards to focus on an object at 70 cm ?

D View Text Solution

2. Find the power of the required to correct a myopic eye having the far point at 50 cm .

D View Text Solution

3. The separation L between the objective
$(f=0.5 \mathrm{~cm})$ and the eye piece ($\mathrm{f}=5 \mathrm{~cm}$) of a
compound microscope is 7 cm . where should a small object be placed so that eye is least strained to see the image ?

- View Text Solution

4. A person suffering from deferctive vision
can see objects clearly only beyond 100 cm
from the eye. Calculate the power of the lens required so that he can see clearly the object placed at least distance of distinct vision ($D=$ 25 cm).

View Text Solution

5. A person has clear vision between 50 cm and 100 cm He used lens to cure myopia .The due to the lens used where will be the near point?

D View Text Solution

Olymplad And Ntse Level Exercises

1. A man can see only between 75 cm and 200 cm . The power of lens to correct the near point will be
A. $+8 / 3 D$
B. $+3 D$
C. $-3 D$
D. $-8 / 3 D$

Answer: A

D Watch Video Solution
2. A man suffering from myopia can read a book placed at 10 cm distance .for reading the book at a distance of the lens required will be
A. 45 cm
B. -20 cm
C. -12 cm
D. 30 cm

Answer: C

D View Text Solution
3. Two parallel pillars are 11 km away from an observer. The minimum distance between the pillars so that they can be seen separately will be
A. 3.2 m
B. 20.8 m
C. 91.5 m
D. 183 m

Answer: A
4. A person's near point is 50 cm and his far point 3 m . Power of the lenses he requires for
(i) reading and
(ii) for seeing distant stars are
A. -2 and $0.33 D$
B. $2 D$ and $-0.33 D$
C. $-2 D$ and $3 D$
D. 2 and $-3 D$

Answer: B

D Watch Video Solution

5. The exposure time of a camera lens at the $\frac{f}{2.8}$ setting is $\frac{1}{200}$ second. The correct time of exposure at $\frac{f}{5.6}$ is
A. 0.4 sec
B. 0.02 sec
C. 0.002 sec

D. 0.0 .4 sec

Answer: B

D Watch Video Solution

6. The length of the compound microscope is

14 cm . The magnifying power for relaxed eye is 25 . If the focal length of eye lens is 5 cm ,
then the object distance for objective lens will be
A. 1.8 cm

B. 1.5 cm

C. 2.1 cm

D. 2.4 cm

Answer: A

D Watch Video Solution

7. If the focal length of the objective lens is
A. Magnifying power of microscope will
increase but that of telescope will
decrease
B. Magnifying power of microscope and telescope both will increase
C. Magnifying power of microscope and telescope both will decrease
D. Magnifying power of microscope will
decrease but that of telescope will
increase

Answer: D

D Watch Video Solution

8. Assertion : By increasing the diameter of
the objective of telescope, we can increase its
range.

Reason : The range of a telescope tells us
how far away a star of some standard brightness can be spotted by telescope.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion .
B. If both assertion and reason are true but
reason is not the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If assertion and reason both are false .

Answer: B

D Watch Video Solution
9. The actual lens set - up of microscope is
depicted in figure. Light from the object (O)
first passes through the objective and an enlarged, inverted first image is formed. The eyepiece then magnifies this image. Usually the magnification of the eyepiece is fixed (either X10 or X15) and three rotating objective lenses are used: X10,X40 and X60.

What type of image would have to be produced by the objective magnification?
A. Either vertual of real
B. Virtual
C. Real
D. It depends on the focal length of the
lens

Answer: C

D View Text Solution
10. The actual lens set - up of microscope is
depicted in figure. Light from the object (O)
first passes through the objective and an enlarged, inverted first image is formed. The eyepiece then magnifies this image. Usually
the magnification of the eyepiece is fixed
(either X10 or X15) and three rotating objective lenses are used: X10,X40 and X60.

The magnification of the eyepiece of a compound microscope is X 15 . The image
height is 25 mm and the magnification of the objective is X 40 . What is the object height?
A. 1.67 mm
B. 0.60 mm
C. 0.38 mm
D. 0.04 mm

Answer: D

D View Text Solution

