©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CENGAGE PHYSICS

REFRACTION OF LIGHT

Worked Examples

1. The refractive index of glass is 1.5 . The speed of light in vacuum is $3 \times 10^{8} \mathrm{~ms}^{-1}$.

Calculate the speed of light in glass.
2. A ray of light travels from water to glass.

The angle of incidence is 40°. Calculate the angle of refraction and the deviation produced.

Given: $n_{g}=1.5$ and $n_{w}=1.3$

- Watch Video Solution

3. The sparkling of diamond is due to its very small critical angle. If the refractive index of diamond is 2.4, calculate its critical angle.

- Watch Video Solution

4. A ray of light is incident at an angle of 60°
on one face of a rectangular glass slab of thickness $0.1 m$, and refractive index 1.5
.Calculate the lateral shift produced.
5. A glass cube of side 0.6 m contains a small air bubble. It appears to be at a distacne of 0.1 m when observed from the opposite face. Find the actual distance of the bubble from the first face and also the refractive index of glass.

D View Text Solution

6. A prism of angle 59° produces a minimum deviation of 42°. Calculate the refractive index of the prism.
7. What distance should an object be placed in
front of a convex lens of focal length 0.4 m so
that the image is thrice the size of the object ?

- View Text Solution

8. A converging lens has a focal length of 40 cm . Calculate the size of the real image of an object, 4.0 cm in height, for the object
distance:

50 cm

Given $\quad f=40 \mathrm{~cm}, h_{0}=4 \mathrm{~cm}$, and u in different cases. Find: h_{1} in each case corresponding to the given value of u.

D Watch Video Solution

9. A converging lens has a focal length of 40
cm . Calculate the size of the real image of an
object, 4.0 cm in height, for the object distance:

50 cm

Given $\quad f=40 \mathrm{~cm}, h_{0}=4 \mathrm{~cm}$, and $u \quad$ in different cases. Find: h_{1} in each case corresponding to the given value of u.

- Watch Video Solution

10. A convering lens has a focal length of 40
cm . Calculate the size of the real image of an
object, 4.0 cm in height, for the object distahce:

80 cm

Given $\quad f=40 \mathrm{~cm}, h_{0}=4 \mathrm{~cm}$, and $u \quad$ in different cases. Find: h_{1} in each case correspoinding to the given value of u.

D View Text Solution

11. A convering lens has a focal length of 40 cm
. Calculate the size of the real image of an
object, 4.0 cm in height, for the object distance:

100 cm

Given $\quad f=40 \mathrm{~cm}, h_{0}=4 \mathrm{~cm}$, and u
different cases. Find: h_{1} in each case correspoinding to the given value of u.

D Watch Video Solution

12. A convering lens has a focal length of 40
cm . Calculate the size of the real image of an
object, 4.0 cm in height, for the object distance:

200 cm

Given $\quad f=40 \mathrm{~cm}, h_{0}=4 \mathrm{~cm}$, and $u \quad$ in
different cases. Find: h_{1} in each case correspoinding to the given value of u.

D Watch Video Solution

13. A convering lens has a focal length of 40
cm . Calculate the size of the real image of an
object, 4.0 cm in height, for the object distance:

Given $\quad f=40 \mathrm{~cm}, h_{0}=4 \mathrm{~cm}$, and $u \quad$ in different cases. Find: h_{1} in each case correspoinding to the given value of u.
14. An object is located 20 cm to the left of a diverging lens, having a focal length
$f=-32 \mathrm{~cm}$. Determine
the position of the image.
Given: $u=20 \mathrm{~cm}$ and $f=-32 \mathrm{~cm}$

- Watch Video Solution

15. An object is located 20 cm to the left of a diverging lens, having a focal length
$f=-32 \mathrm{~cm}$. Determine
the magnification of the image.

Given: $u=20 \mathrm{~cm}$ and $f=-32 \mathrm{~cm}$

D Watch Video Solution

16. An object is located 20 cm to the left of a
diverging lens, having a focal length
$f=-32 \mathrm{~cm}$. Determine
theconstruct a ray diagram for this
arrangment.

Given: $u=20 \mathrm{~cm}$ and $f=-32 \mathrm{~cm}$

Watch Video Solution

Mandatory Exercise Exercise Set I

1. A fish under water sees obliquely a fisherman standing on the bank of a lake. How does he appear?

D View Text Solution

2. A parallel-sided glass plate is introduced in
the path of a converging beam. What happens
to the point of convergence of the beam?

D View Text Solution

3. In which case will the angle of incidence be equal to the angle of refraction?

D Watch Video Solution

4. The moon and the planets do not twinkle.

Why? Can you see the stars twinkling when observed from the moon? Why?
5. Why does a convex lens converge the light rays?

D Watch Video Solution

6. During hot days, at noon, trees and houses across open ground appear to be quivering. Why?

D View Text Solution
7. Why does an air bubble in a jar of water shine brightly?

D View Text Solution

8. A virtual image, we always say, cannot be caught on a screen. Yet, when we see a virtual image, we are obviously bringing it on to the screen (i.e., the retina) of our eye. Is there a contradiction?
9. Why does the sun or the moon appear elliptical near the horizon?

D View Text Solution

10. H.G. Wells created the invisible man in his widely known story by the following trick: he made the refractive index of the invisible man exactly the same as that of air. So, light rays
simply passed through him without reflection or refraction. Is the invisible man blind?

D View Text Solution

11. If you are in a boat and aiming a spear at a fish you see in the water, is the spear pointed above, below, or directly at the fish to make a direct hit? (Assume the fish is stationary in the water). If you instead used light from a laser as
your spear, would you aim above, below, or directly at the observed fish?

View Text Solution

12. How can we determine of a lens which can be called 'thin lens?
(D) View Text Solution
13. Will a ray go undeviating if the medium on both sides of a slab are different?
14. If two materials have different critical angles with air, which material will have higher chances of total internal reflection?

D View Text Solution

15. A stick appears bend when placed in water.

Can the bend be 90° ?

- View Text Solution

16. How will you define principal axis of plane

convex lens?

D View Text Solution
17. What is the difference between a slab and a prism?

D View Text Solution
18. How can we determine refractive index of unknown materials?

D Watch Video Solution
19. What can we say about the water of image
if object and image are on opposite sides of
lens.

D View Text Solution
20. What can we say about the nature of image if object and image are on same side of lens.

D View Text Solution

21. What can we say about the nature of image
if image distance is more than object distance?

Mandatory Exercise Exercise Set li

1. What can we say about the nature of image
if image distance is less than object distance.

- View Text Solution

2. In vacuum the speed of light depends upon
A. wavelength
B. frequency
C. speed of the source

D. it is independent of everything stated

 above.
Answer: D

D Watch Video Solution

3. If the refractive index of glycerine $=1.48$, water $=1.33$, flint glass $=1.6$, and diamond $=2.1$, then, the speed of light is maximum in
A. glycerine
B. water
C. flint glass
D. diamond

Answer: B

D Watch Video Solution

4. The velocity of light in a glass of refractive index 1.5 is $2 x \times 10^{8} \mathrm{~ms}^{-1}$. Its velocity in a certain liquid is found to be $2.5 x \times 10^{8} \mathrm{~ms}^{-1}$.

The refractive index of the liquid with respect to air is
A. 1.44
B. 1.64
C. 1.2
D. 0.8

Answer: C
(Watch Video Solution
5. A glass slab is placed in the path of convergent light. The point of convergence
A. shifts towards the slab
B. shifts away from the slab
C. does not shift
D. shifts laterally

Answer: A

D View Text Solution

6. The critical angle for total internal reflection

is ____ when a ray of light travels from
glass to water than when it travels from glass
to air.
A. equal
B. lesser
C. greater
D. none of these

Answer: C
7. For a ray of light to pass symmetrically through a prism of refracting angle 60° and $n=1.6$, the angle of incidence is
A. 36°
B. 38°
C. 35.5°
D. 54°

Answer: D

8. A ray of light is incident normally on one of
the equal faces of a right isosceles prism of refractive index 1.5 . The angle between incident and emergent rays is
A. 45°
B. 90°
C. 180°
D. 0°
9. Rays of light pass through an equilateral prism such that the angle of incidence is equal to the angle of emergence and the latter is equal three-fourths the angle of the prism.

The angle of deviation is
A. 45°
B. 39°
C. 20°

D. 30°

Answer: D

- Watch Video Solution

10. Rays of light fall perpendicularly on a glass
slab $(n>1)$ as shown in figure. If n at A is
maximum and n at B is minimum, then the
rays will

A. tilt towards A
B. tilt towards B
C. not deviate
D. undergo total internal reflection

Answer: C

D View Text Solution

11. Light enters a medium (refractive index >
1) from vacuum. Which property will remain unchanged?
A. Wavelength
B. Frequency
C. Speed
D. All of them

Answer: B

D Watch Video Solution
12. Which is true for total internal reflection?
A. Light travels from rarer to denser medium
B. Light travels from denser to rarer medium
C. Independent of the optical densities of
two medium

D. Takes place in the same medium

Answer: B
13. Light travels from medium 1 (refractive index $=n_{1}$) to medium 2 (refractive index $=n_{2}$
). If it is found that deviation $d=r-i$. We can say
that

$$
\begin{aligned}
& \text { A. } n_{1}=n_{2} \\
& \text { В. } n_{1}<n_{2} \\
& \text { C. } n_{1}>n_{2}
\end{aligned}
$$

D. none of these

Answer: C
14. In which process, reflection is not accompanied by refraction.
A. Refraction from a plane mirror
B. Reflection from sphere
C. Reflection on surface of water
D. Total internal reflection

Answer: D

D View Text Solution
15. For a material with lower critical angle, the chances of total internal reflection will be
A. higher
B. lower
C. cannot be determined
D. independent of critical angle

Answer: A

D View Text Solution
16. A bird flying in sky and a fish in water look at each other. For which of them, the distance between them seem to be less?
A. Bird
B. Fish
C. Same for both
D. Cannot be determined

Answer: A
17. Which of the following heavenly bodies appear to twinkle when seen from earth?
A. Sirius
B. Polaris
C. Venus
D. All of them

Answer: C

- View Text Solution

18. Which is true for optical fibers?
A. Core has higher refractive index than cladding
B. Core has less refractive index than
cladding
C. Both have same refractive index
D. None of these

Answer: A

- Watch Video Solution

19. The splitting of light into different components while passing through a prism is called
A. total refraction
B. scattering
C. deviation
D. dispersion

Answer: D

D View Text Solution
20. For a ray to go undeviating where should it pass through?
A. Principal focus
B. Optical centre
C. Not possible
D. Both (A) and (B)

Answer: B
(D) View Text Solution
21. Where should the object be kept in front of a concave lens to obtain enlarged image?
A. Between infinity and $2 F$
B. Between 2 F and F
C. Between Fand optical centre
D. None of the these

Answer: D

- View Text Solution

22. A stick partially submerged in water appears bend due to
A. reflection
B. refraction
C. total internal reflection
D. dispersion

Answer: B

- View Text Solution

23. The ray passing through optical centre behave like a ray through
A. mirror
B. slab
C. prism
D. none of these

Answer: B

D View Text Solution
24. Erect image by convex lens is always
A. same size
B. magnified
C. diminished

D. none of these

Answer: B
25. For a real object, concave lens can never form a
A. real image
B. virtual image
C. erect image
D. diminished image

Answer: A

- View Text Solution

26. A convex lens can be considered as a group of two
A. mirrors
B. slabs
C. prisms
D. none of these

Answer: C

D View Text Solution
27. On increasing angle of incidence for a prism the angle of deviation
A. first increases then decreases
B. first decreases then increases
C. remains constant
D. none of these

Answer: B

D Watch Video Solution

Mandatory Exercise Exercise Set lit

1. The given figure shows the object O_{1} that is
placed in front of two thin symmetrical coaxial
lenses 1 and2, with focal lengths
$f_{1}=+24 c m$ and $f_{2}=+9 c, \quad$ respectively
and with lens separation $\mathrm{L}=10 \mathrm{~cm}$. The seed is
6 cm from lens 1 . Where does the system of
two lenses produce an image of the speed?
View Text Solution

Mandatory Exercise Exercise Set Iv

1. Important expressions

| (1) Critical angle (a) $\mu=\frac{\sin i}{\sin r}$
 (2) Lens formula (b),$n_{1}=\frac{v_{1}}{v_{1}}=\frac{n_{2}}{n_{1}}$
 (3) Snells law (c) $S_{1}=\frac{t}{\cos r} \sin (i-r)$
 (4) Lateral shift (d) $S_{u}=t\left(1-\frac{1}{n_{i}}\right)$
 (5) Refractive index of (e) $\left.C=\sin -\frac{1}{n}\right)$
 (6) Relative refractive index (f) $n=\frac{\sin \left(\frac{A+D}{2}\right)}{\sin \left(\frac{A}{2}\right)}$
 (7) Magnification of a lens (g) $f=\frac{1}{u}+\frac{1}{v}$
 (8) Normal shift (h) $m=\frac{h}{h_{0}}=\frac{-v}{u}$ |
| :--- | :--- |

- View Text Solution

2. Image formation by a convex lens

A					
(Position of object)	(Position, sire, and nature of				
image)		$	$	(1) Infinity	(a) At 2F, same, real
:---	:---				
(2) Beyond 2F	(b) At infinity, highly magnified				
(3) At 2F	(c) Beyond 2F, magnified, real				
(4) Between 2F	(d) Between 2F and F,				
and F	(e) At F, highly diminished, real				
(5) At F	(f) On the same side of the				
(6) Between F and					
object, magnified, virtual					

- View Text Solution

Mandatory Exercise Exercise Set V

1. Find the velocity of light in water, if its velocity in glass of refractive index 1.5 is $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$. The refractive index of water is 1.33.

D Watch Video Solution

2. The refractive index of water and diamond are 1.33 and 2.42, respectively. Calculate the refractive index of diamond with respect to water.
3. What is the real depth of a swimming pool that appears to be 10 m for a swimmer? The refractive index of water is 1.33 .

D Watch Video Solution

4. The refractive index of a glass prism is 1.65 .

If the angle of the prism is 60°, find the angle of minimum deviation.
5. A small object is placed on the axis of a convex lens of focal length 0.2 m at a distance of 0.5 m from it. Find the position and linear magnification of the image.

D Watch Video Solution

6. A vessel is filled with two different liquids
which do not mix. One liquid is 40 cm deep
and has $n_{1}=1.6$ and the other is 30 cm deep
and has $n_{2}=1.5$. What is the apparent depth of the vessel when viewed along the normal?

D View Text Solution

7. Light travelling in air falls at a boundary between air and water at an angle 30 degrees with the normal. Find the deviation (R.I. of water is $=4 / 3$)

D Watch Video Solution

8. Refractive index of glass with respect to water is 1.125 . What is the refractive index of water of refractive index of glass is 1.5.

- Watch Video Solution

9. For a fish under water, what will be the height of a person whose actual height is 6 feet? Refractive index of water is 1.33 ?
10. Speed of light in a liquid is $1.8 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

What is the critical angle for the liquid air pair?

- Watch Video Solution

11. Which pair of medium has higher critical angle. Air-water or air-glass? Refractive indexes
for water and glass are 1.33 and 1.5 respectively?
12. In an experiment to find refractive index of
a prism it was found that the minimum deviation was 30°. What is the refractive index if angle of prism is also 30°.

- Watch Video Solution

13. A convex lens has focal length 20 cm . What is the power of the lens?

- Watch Video Solution

14. Power of a lens is -2.5 D . What is the focal length and nature of the lens.

D Watch Video Solution

15. The lateral shift for a ray of light incident at
60° on one face of a rectangular slab of thickness 1 m is 0.577 m . What is the refractive index of the slab.
16. Where should an object be kept if a real image is obtained at a distance 60 cm from a concave lens of focal length 20 cm . Is the object real or virtual?

- Watch Video Solution

17. Where should an object be kept before a convex lens such that the image is real and twice the size. Given focal length of lens is 10 cm.

General Exercise

1. What is refraction?

- Watch Video Solution

2. Define relative refractive index in terms of velocity of light.

3. Define critical angle.

D Watch Video Solution
4. What is a prism ?
(Watch Video Solution
5. What is a lens?
(Watch Video Solution
6. Obtain the relation between critical angle and refractive index for a pair of media.

- Watch Video Solution

7. Write the lens formula. Explain the terms.

- Watch Video Solution

8. Why does light bond on changing medium?
9. Can the value of refractive index of a material be less than 1 ?

D Watch Video Solution

10. What are the factors that the angle of refraction depends on?
11. Explain how Snell's law fails to give the value of refractive index for normal incidence.

D View Text Solution
12. What is lateral shift?

D View Text Solution

13. Why do stars twinkle?
14. Draw ray diagrams for incident rays at angle of incidence less than critical angle and more than critical angle?

D Watch Video Solution

15. Explain the process of looming.

D View Text Solution
16. Explain different parts of optical fibers with
a neat labeled diagram.

D View Text Solution
17. Explain the working of optical fibers.

D View Text Solution

18. Mention three advantages of optical fibers
over metal fibers.

- View Text Solution

19. Explain the relation between angle of incidence and deviation for a prism

D View Text Solution

20. Mention three ways in which total reflecting prisms are better than mirrors.
21. What are the different types of lenses based on the nature of their surfaces?

D View Text Solution

22. Why are convex and concave lens known as
converging and diverging lens respectively?

D View Text Solution

23. Why does a lens have two principal focus?
24. A convex lens has a real focus and a concave lens has a virtual focus. Explain.

- View Text Solution

25. Draw the ray diagram for an object located at 2 F for a convex lens and write the nature of image.
26. Draw ray diagram for object located at infinity for a concave lens and write the nature of image.

D View Text Solution
27. Define centre of curvature of a lens.

D View Text Solution

28. Define radius of curvature of a lens.

- View Text Solution

29. Define principal axis of a lens.

- View Text Solution

30. Define principal focus of a lens.

D View Text Solution

31. Define focal length of a lens.

D View Text Solution

32. Write down the sign convention used for their lenses.

- View Text Solution

Challenging Exercise

1. A ray of light is incident at an angle of 60° on a parallel side of a glass slab of thickness
0.1 m and refractive index 1.5. Calculate the lateral shift produced.

D View Text Solution

2. A small air bubble is situated in a glass cube of edge 0.24 m . When viewed from one face it appears to be 0.1 m from the face and when
viewed from the opposite face it appears to be 0.06 m from the face. Calculate the refractive index of glass.
3. A ray of light is incident on a 60° glass prism at an angle of 60°. Find the the angle of emergence
the angle of deviation, given the refractive index of glass $=1.5$.

- View Text Solution

4. A ray of light incident normally on the first
face of a glass prism of refractive index 1.6 just
emerges from the other face. Find the angle of the prism.

D View Text Solution

5. The real image formed by a convex lens is
three times the object in size, when the object
is 0.12 m from the lens. What is the focal
length of the lens? Where must the object be placed to obtain a real image magnified four times?
6. A ray of light falls on a transparent glass slab of refractive index 1.52 . If the reflected ray and refracted ray are mutually perpendicular, what is the angle of incidence?

- Watch Video Solution

7. A ray of light is incident at an angle of 60° on one face of a 30°) prism. The emergent ray from the prism makes an angle of 30° with the incident ray. Show that the emergent ray is normal to the surface from which it emerges.

Calculate the refractive index of the material of the prism.

8. A bird is at a height 60 m from the surface of water and a fish is at a depth 40 m from surface. Both are at the same vertical line. What is the distance between them as seen by Bird

- Watch Video Solution

9. A bird is at a height 60 m from the surface of water and a fish is at a depth 40 m from
surface. Both are at the same vertical line.

What is the distance between them as seen by

Fish

D Watch Video Solution

10. The minimum deviation on a prism of refractive index $\sqrt{3}$ is equal to the angle of prism. Find the angle of the prism.

Olympiad And Nse Level Excercises

1. The graphs given apply to a convex lens of focal length f, producing a real image at a distance V from the optical center when selfluminous object is at distance u from the optical center. The magnitude of magnification is m . Match the graphs in Column II with the quantity names in Column I being plotted. Assume object distance greater than focal

length.

A. $\begin{array}{lll}p & q\end{array}$
$a b c$
B. ${ }^{p} \quad q \quad r$
c $a b$
c. p r
$b \quad a \quad c$
D. $\begin{array}{lll}p & q\end{array}$

$$
a \quad c \quad b
$$

Answer: C

- View Text Solution

2. A glass prism $(\mu=1.5)$ is dipped in water
($\mu=4 / 3$) as shown in figure. A light ray is incident normally on the surface $A B$. It reaches the surface $B C$ after totally reflected, if

A. $\sin \theta \geq 8 / 9$
B. $2 / 3<\sin \theta<8 / 9$
C. $\sin \theta \leq 2 / 3$
D. It is not possible

Answer: A

- Watch Video Solution

3. An observer can see through a pin-hole the top end of a thin rod of height h, placed as shown in the figure. The beaker height is 3 h and its radius h. When the beaker is filled with
a liquid up to a height 2 h , he can see the lower end of the rod. Then the refractive index of the

liquid is

A. $5 / 2$
B. $\sqrt{(5 / 2)}$
C. $\sqrt{(3 / 2)}$
D. $3 / 2$

Answer: B

- Watch Video Solution

4. Pulfrich refractometer is used to measure
the refractive index of solids and liquid. It consist of right angled prism. A having its two faces perfectly plane. One of the face is horizontal and the other is vertical as shown is
figure. The solid B whose refractive index is to be determined is taken having two faces cut perpendicular to one another. Light is incident
in a direction parallel to the horizontal surface
so that the light entering the prism A is at critical angle C. Finally, it emerges from the prism at an angle i. Let the refractive index of
the solid be μ and that of the prism A be μ_{0} (which is known). Here $\mu_{0}>\mu$ and by measuring i, μ can be determinged.

Q. Refractive index of the solid (μ) in terms of μ_{0} and i is
A. $\sqrt{\mu_{0}^{2}+\sin ^{2} i}$
B. $\mu_{0}+\sin ^{2} i$
C. $\sqrt{\mu_{0}^{2}-2 \sin ^{2} i}$
D. $\sqrt{\mu_{0}^{2}-\sin ^{2} i}$

Answer: D

D Watch Video Solution
5. Pulfrich refractometer is used to measure
the refractive index of solids and liquid. It consist of right angled prism. A having its two faces perfectly plane. One of the face is horizontal and the other is vertical as shown is
figure. The solid B whose refractive index is to be determined is taken having two faces cut perpendicular to one another. Light is incident in a direction parallel to the horizontal surface so that the light entering the prism A is at critical angle C. Finally, it emerges from the prism at an angle i. Let the refractive index of
the solid be μ and that of the prism A be μ_{0} (which is known). Here $\mu_{0}>\mu$ and by measuring i, μ can be determinged.

Q. Refractive index of the solid (μ) in terms of μ_{0} and i is
A. 1.21
B. $\sqrt{2}$
C. 1
D. $\sqrt{3} / 2$

Answer: C

D Watch Video Solution

6. Assertion : If the angles of the base of the prism are equal, then in the position of minimum deviation, the refracted ray will pass parallel to the base of prism.

Reason : In the case of minimum deviation, the angle of incidence is equal to the angle of emergence.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.

D. If assertion and reason both are false.

Answer: A

- Watch Video Solution

7. A rectangular glass slab $A B C D$, of refractive index n_{1}, is immersed in water of refractive index $n_{2}\left(n_{1}>n_{2}\right)$. A ray of light in incident at the surface $A B$ of the slab as shown. The maximum value of the angle of incidence
$\alpha_{\text {max }}$, such that the ray comes out only from
the other surface $C D$ is given by

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left[\frac{n_{1}}{n_{2}} \cos \left(\sin ^{-(1)} \frac{n_{2}}{n_{1}}\right)\right] \\
& \text { B. } \sin ^{-1}\left[n_{1} \cos \left(\sin ^{-1} \frac{1}{n_{2}}\right)\right] \\
& \text { C. } \sin ^{-1}\left(\frac{n_{1}}{n_{2}}\right) \\
& \text { D. } \sin ^{-1}\left(\frac{n_{2}}{n_{1}}\right)
\end{aligned}
$$

Answer: A

D View Text Solution

8. A convex lens of focal length f is placed somewhere, in between an object and a screen. The distance between the object and the screen is x. If the numerical value of the magnification produced by the lens is m , then the focal length of the lens is

$$
\begin{aligned}
& \text { A. } \frac{m x}{(m+1)^{2}} \\
& \text { B. } \frac{m x}{(m-1)^{2}} \\
& \text { C. } \frac{(m+1)^{2}}{m} x \\
& \text { D. } \frac{(m-1)^{2}}{m} x
\end{aligned}
$$

Answer: A

D View Text Solution

9. A glass slab of thickness 3 cm and refractive index $3 / 2$ is placed on ink mark on a piece of paper. For a person looking at the mark at a distance 5.0 cm above it, the distance of the mark will appear to be
A. 3.0 cm
B. 4.0 cm

C. 4.5 cm

D. 5.0 cm

Answer: B

D Watch Video Solution

10. A lens (focal length 50 cm) forms the
image of a distant object which subtends an
angle of 2 milliradian at the lens. What is the size of the image ?
A. 5 mm

B. 1 mm

C. 0.5 mm
D. 0.1 mm

Answer: C

- Watch Video Solution

