©゙’ doubtnut

 India's Number 1 Education App
CHEMISTRY

BOOKS - CENGAGE CHEMISTRY

REACTION KINETICS AND CHEMICAL

EQUILIBRIUM

Work Example

1. Rate law for a recations is $r=k[A]^{2}[B]^{2}$. If the concentration of A is halved and that of B is doubled
, calculate the rate of the reactions.
2. Calculate the active mass of 10 g hydrogen in a 10 L vessel.

D View Text Solution

3. An equilibrium system for the reaction between
H_{2} and I_{2} to give HI , in a 5 L flask, contains 0.4 mol of $H_{2} 0.4 \mathrm{~mol}$ of I_{2} and 2.4 mol of HI . Calculate the equilibrium constant.
4. Consider $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$

At equilibrium , it was found there were $0.25 \mathrm{~mol} / \mathrm{L}$ of
H_{2} and $0.06 \mathrm{~mol} / \mathrm{L}$ of NH_{3}. Calculate the equilibrium concentration of N_{2} if $k=6.0 \times 10^{-2}$.

- View Text Solution

Mandatory Exercise Set I

1. How would you distinguish between reactants and products.
2. (a) What do you mean by rate of reaction? How is it expressed mathematically?
(b) Write the rate expression for the following reaction in terms of reactants and products, applying law of mass action.
$2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$

D View Text Solution

3. Discuss the effect of concentration and temperature on the rate of reaction.
4. Which of the following influence the rate of reaction?
A. Nature of a reactant
B. Concentration of reactant
C. Temperature
D. All of these

Answer: D

D View Text Solution
5. For the reaction $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$, rate $=k[N O]^{2}\left[O_{2}\right]$. When the volume of the reaction vessel is doubled then the rate will be
A. eight times the initial rate
B. 1/8th of its initial rate
C. four times the initial rate
D. 1/4th of its initial rate

Answer: B

View Text Solution

6. For the reaction $2 A+B \rightarrow C+D$ which is of second order with respect to A, the active mass of B is kept constant and that of A is tripled. The rate of reaction
A. decreases by 3 times
B. decreases by 9 times
C. increases by 9 times
D. increases by 6 times

Answer: C

7. A catalyst affects the equilibrium state by

A. increasing the concentration of products at equilibrium
B. decreasing the value of equilibrium constant
C. increasing the concentration of reactants at
equilibrium
D. decreasing the time required for the
attainment of equilibrium

Answer: D

8. Molar concentration of 96 g of O_{2} (in $\mathrm{mol} L^{-1}$) contained in 2-L vessel is
A. 16
B. 1.5
C. 4
D. 24

Answer: B

D View Text Solution
9. Which of the following is true statement?
A. Concentration of reactant increases with time.
B. Concentration of reactant decreases with time.
C. Concentration of reactant may increase or decreases.

D. All of these

Answer: B

D View Text Solution

10. In which case burning of coal take place at faster rate.
A. In powder form
B. In solid state
C. In solid state containing moisture.
D. All take place at equal rate

Answer: A

D View Text Solution

11. If reaction $x \rightarrow y$ starts with x only then which of the curve represent y (product)
A.

B.

C.

D.

Answer: D

D View Text Solution

12. If reaction $x+y \Leftrightarrow z+w$ starts with $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and w but net reaction proceeds in backward direction then which of the curve represent variation of concentration of z.

A. I
B. II
C. III

D. none

Answer: C

D View Text Solution

13. For the reaction $A_{2}(g)+B_{2}(g) \rightarrow 2 A B(g)$

If reacting molecule have sufficient energy to cross
energy barrier. ie. reactant can converted into product. Then which collision yield maximum rate of reaction.
A.

B.

C. both
D. Independent of

Answer: B

D View Text Solution

14. For differential rate law
$\frac{+2 d A}{d t}=\frac{-1}{3} \frac{d B}{d t}=\frac{+1}{4} \frac{d C}{d t}=\frac{-1}{2} \frac{d D}{d t}$
Chemical reaction would be

$$
\begin{aligned}
& \text { A. } \frac{A}{2}+3 B \rightarrow 4 C+2 D \\
& \text { B. } 3 B+2 D \rightarrow \frac{A}{2}+4 C \\
& \text { C. } 2 D+3 D \rightarrow 2 A+4 C \\
& \text { D. } 2 D+3 D \rightarrow 2 A+4 C
\end{aligned}
$$

Answer: B

15. For the energy profile diagram

Threshold energy will be
A. $20 \mathrm{~kJ} /$ mole
B. $60 \mathrm{~kJ} /$ mole
C. $70 \mathrm{~kJ} /$ mole
D. $30 \mathrm{~kJ} / \mathrm{mole}$

Answer: B

D View Text Solution

16. For the energy profile diagram

Heat of reaction will be
A. $100 \mathrm{~kJ} / \mathrm{mole}$
B. $-100 \mathrm{~kJ} / \mathrm{mole}$

C. $50 \mathrm{~kJ} / \mathrm{mole}$

D. $-50 \mathrm{~kJ} / \mathrm{mole}$

Answer: D

- View Text Solution

17. n the synthesis of ammonia by Haber process, if 60 moles of ammonia is obtained in one hour, then the rate of disappearance of nitrogen is
A. 30 mole/min
B. $6 \mathrm{~mole} / \mathrm{min}$

C. $0.5 \mathrm{~mole} / \mathrm{min}$

D. $60 \mathrm{~mole} / \mathrm{min}$

Answer: C

- View Text Solution

18. For the reaction $C l_{2}+2 I^{\Theta} \rightarrow I_{2}+2 C l^{\Theta}$ the initial concentration of I^{-}was 0.20 mole L^{-1} and the concentration after 20 min was 0.18 mole L^{-1}.

Then the rate of formation of I_{2} in mole $L^{-1} \mathrm{~min}^{-1}$ would be
A. 1×10^{4}
B. 5×10^{-4}
C. 1×10^{-3}
D. 5×10^{-3}

Answer: B

D View Text Solution

19. The reaction $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{SO}_{3}(g)$ is carried out in a $1 d m^{3}$ vessel and $2 d m^{3}$ vessel separately. The ratio of the reaction velocities will be
A. 1:8
B. 1: 4
C. $4: 1$
D. $8: 1$

Answer: A

D View Text Solution

20. For a reaction between gaseous compounds.
$2 A+B \rightarrow C+D$. The reaction rate $=\mathrm{K}[\mathrm{A}][\mathrm{B}]$. If the volume of the container is made $1 / 4$ of the initial,
then what will be the rate of reaction as compared to the initial rate?
A. 16 times
B. 4 times
C. 1/8 times
D. 1/16 times

Answer: A

D View Text Solution

21. For a reaction between A and B, the initial rate of reaction is measured for various initial concentrations of A and B. The data provided are

S. no	$[\mathrm{A}]$	$[\mathrm{B}]$	Initial reaction rate
1.	0.20 M	0.30 M	5×10^{-5}
2.	0.10 M	0.10 M	5×10^{-5}
3.	0.40 M	0.05 M	1×10^{-4}

The overall order of the reaction is
A. one
B. two
C. two and half
D. three

Answer: A

D View Text Solution
22. Given the hypothetical reaction mechanism
$A \xrightarrow{I} B \xrightarrow{I I} C \xrightarrow{I I I} D \xrightarrow{I V} E$ and the rate as

Rate determining step is
A. step I
B. step II
C. step III
D. step IV

Answer: A

- View Text Solution

23. A reaction involving A, B and C as reactants is found to obey the rate law,
rate $=K[A]^{x}[B]^{y}[C]^{z}$. When the concentrations of
A, B and C are doubled separately, the rate is also
found to increases two zero and four respectively.
The overall order of the reaction is
A. 1
B. 2
C. 3
D. 4

Answer: C

D View Text Solution

Mandatory Exercise Set Ii

1. How would you distinguish between
A. reversible and irreversible reactions
B. physical and chemical equilibria
C. static and dynamic equilibria

D. velocity constant and equilibrium constant

Answer:

- View Text Solution

2. For the reaction $N_{2} O_{4} \Leftrightarrow 2 N O_{2}$, the concentrations of an equilibrium mixture at 293 K are: $\quad\left[N_{2} O_{4}\right]=4.50 \times 10^{-2} \quad \mathrm{~mol} \quad L^{-1} \quad$ and $\left[N O_{2}\right]=1.61 \times 10^{-2} \mathrm{~mol} L^{-1}$. What is the value of equilibrium constant?
3. The equilibrium constant for the dissociation of HI
$\left(2 \mathrm{HI} \Leftrightarrow H_{2}+I_{2}\right)$ is 25 . What is the equilibrium constant for the formation of HI according to the reaction, $H_{2}+I_{2} \Leftrightarrow 2 H I$?

D View Text Solution

4. The rate constants of forward and backward reactions in a reversible reaction are 3.6×10^{-4} and 6.2×10^{-6}, respectively. Calculate the equilibrium constant of reaction.
5. One mol each of nitrogen and oxygen are heated in a $2 d m^{3}$ vessel. At equilibrium, one mol of nitric oxide is formed. Calculate the equilibrium constant for the reaction $N_{2}+O_{2} \Leftrightarrow 2 N O$.

- View Text Solution

6. How much PCl_{3} must be added to a one litre vessel at $250^{\circ} \mathrm{C}$ in order to obtain a concentration of
$0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ of chlorine after re establishment of equilibrium?
$K_{c} \quad$ for the reaction
$P C l_{3} \Leftrightarrow P C l_{3}+C l_{2}$ is 0.044 .
7. How is the dynamic nature of equilibrium explained?

- View Text Solution

8. Mention the conditions necessary to attain a state of equilibrium.

D View Text Solution

9. (a) State the law of chemical equilibrium.
(b) Write the expressions for equilibrium constants
for the following pairs of reactions and establish the relation between them.
I. $H_{2}+I_{2} \Leftrightarrow 2 H I$
$H I \Leftrightarrow \frac{1}{2} H_{2}+\frac{1}{2} I_{2}$
II. $2 \mathrm{NH}_{3} \Leftrightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$
$\frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2} \Leftrightarrow \mathrm{NH}_{3}$

D View Text Solution
10. At $448^{\circ} \mathrm{C}$, the equilibrium constant for the reaction, $H_{2}+I_{2} \Leftrightarrow 2 H I$ is 50.5. Predict the direction in which the reaction will proceed to reach equilibrium at $448^{\circ} \mathrm{C}$, if we start with $2.0 \times 10^{2} \mathrm{~mol}$
of $\mathrm{HI}, 1.0 \times 10^{2} \mathrm{~mol}$ of H_{2} and $3.0 \times 10^{-2} \mathrm{~mol}$ of I_{2} in a 2-L container.

D View Text Solution

11. An equilibrium mixture contains 6.4 g of sulphur dioxide, 9.6 g of oxygen and 24 g of sulphur trioxide in 1 L flask. Calculate the equilibrium constant for the reaction.
$2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$

D View Text Solution

12. The rate constant of backward reaction is
2×10^{-6}. If the equilibrium constant is 4 , calculate the rate constant of the forward reaction.

D View Text Solution

13. $\mathrm{AgNO}_{3}+\mathrm{NaCl} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3} \quad$ is an irreversible reaction because
A. NaCl is soluble in water
B. AgNO_{3} and NaCl are completely ionized
C. AgCl is insoluble
D. None of these

Answer: C

D View Text Solution

14. The unit of equilibrium constant for the reaction

$H_{2}+I_{2} \Leftrightarrow 2 H I$ is

A. $m o l=1$
B. $\mathrm{mol}^{-2} L$
C. $\mathrm{mol} L^{-1}$
D. None of these

Answer: D
15. The equilibrium constant of a system is
A. temperature dependent
B. temperature independent
C. dependent on concentration of reactants
D. dependent on concentration of catalyst

Answer: A

16. The equilibrium constant of the reaction
$A+B \Leftrightarrow C+D$ is 10 . If the rate constant of forward reaction is 203, the rate constant for backward reaction is

A. 20.3

B. 10.3
C. 2.03
D. 203

Answer: A
17.4 moles of A are mixed with 4 moles of B initially.

At equilibrium, 2 moles of C are formed according to the reaction $A+B \Leftrightarrow C+D$. The equilibrium constant is
A. 4
B. 1
C. $\sqrt{2}$
D. $\sqrt{4}$

Answer: B
18. In the given graph the activation energy, E_{a} for
the reverse reaction will be

Activation energy for the reverse reaction will be
A. $100 \mathrm{~kJ} / \mathrm{mole}$
B. $140 \mathrm{~kJ} / \mathrm{mole}$
C. $60 \mathrm{~kJ} /$ mole
D. $40 \mathrm{~kJ} / \mathrm{mole}$

Answer: C

D View Text Solution

19. For a reversible reaction $A \Leftrightarrow B$ which one of the
statements is wrong from the given energy profile

A. Activation energy of forward reaction is greater than backward reaction.
B. Forward reaction is endothermic.
C. The threshold energy is less than that of activation energy
D. The energy of activation of forward reaction is
equal to the sum of heat of reaction and the
energy of activation of backward reaction.

Answer: C

D View Text Solution

20. A chemical reaction proceeds following formula rate $=p . z \cdot e^{-E_{a} / R T}$. Which of the following process will increase the rate of reaction?
A. Lowering of E_{a}
B. Lowering of P
C. Lowering of z
D. Independent of all the above factor

Answer: A

D View Text Solution

21. Consider an endothermic reaction $A \rightarrow B$ with the activation energies E_{a} and E_{b} for the forward and backward reactions respectively. In general
A. $E_{a}=E_{b}$
B. $E_{a}>E_{b}$
C. $E_{a}<E_{b}$
D. none

Answer: B

D View Text Solution

22. Which of the following is reversible process
I. Dissociation of HCl in water
II. Dissociation of Ethyl alcohol in water
III. Dissociation of $\mathrm{CaCO}_{3}(s)$ in open container IV. Dissociation of $\mathrm{CaCO}_{3}(s)$ in close container A. I, II
B. II, IV
C. I, III
D. II, III

Answer: B

D View Text Solution

23. Which of the following represent chemical
A. $A u(s) \Leftrightarrow A u(l)$

$$
\text { B. } \mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(g)
$$

C. $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
D. $B r_{2}(g) \Leftrightarrow B r_{2}(l)$

Answer: C

D View Text Solution

24. Which of the following represent physical equilibrium?
A. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HCl}(\mathrm{g})$

B. $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$

C. $\operatorname{Ice}(s) \Leftrightarrow$ liquid water.

$$
\text { D. } N_{2} O_{4}(g) \Leftrightarrow 2 N O_{2}(g)
$$

Answer: C

D View Text Solution

25. For the homogenous reaction
$4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \Leftrightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$ the equilibrium constant Kc has the units
A. $(\text { concentration })^{10}$
B. $(\text { concentration })^{+1}$
C. $(\text { concentration })^{-1}$
D. Dimension less

Answer: B

- View Text Solution

26. A reaction chemical reaction is having two species in equilibrium. If the concentration of the both species are doubled then the equilibrium constant will

A. be doubled

B. becomes one fourth
C. be halved
D. Remain the same

Answer: D

D View Text Solution

27. Which of the following is a wrong statement about equilibrium state?
A. Rate of forward reaction = rate of backward reaction
B. Equilibrium is dynamic
C. Catalysts increase value of equilibrium constant

D. Catalysts decreases time to acquire equilibrium

state

Answer: C

D View Text Solution

28. Which of the following is not a physical equilibrium?
A. Ice \Leftrightarrow water

$$
\begin{aligned}
& \text { B. } I_{2}(s) \Leftrightarrow I_{2}(g) \\
& \text { C. } S(e) \Leftrightarrow S(g) \\
& \text { D. } 3 O_{2} \Leftrightarrow 2 O_{3}
\end{aligned}
$$

Answer: D

D View Text Solution

29. For an equilibrium reaction if the value of
$K_{c} \gg 1$, then the reaction favoured more towards
A. backward
B. forward
C. equilibrium will be obtained
D. reaction will stop

Answer: B

D View Text Solution

30. For $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$. Initial
concentration of each reactant and product is 1 M . If
$K_{e a}=0.41$, then
A. more PCl_{3} will form
B. more $C l_{2}$ will form
C. more PCl_{5} will form

D. no change

Answer: C

D View Text Solution

31.

The
reaction
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{SO}_{3}(g)+$ heat.
The
equilibrium reaction proceeds in forward direction
by
A. addition of O_{2}
B. removal of O_{2}
C. Increase in temperature
D. decrease in pressure

Answer: A

- View Text Solution

32. When pressure is applied to the equilibrium system Ice \Leftrightarrow water. Which of the following phenomenon will happen?
A. more Ice will be formed
B. water will evaporate
C. more water will be formed
D. equilibrium will not be disturbed

Answer: C

D View Text Solution

33. For the gaseous reaction
$C_{2} H_{4}(g)+H_{2}(g) \Leftrightarrow C_{2} H_{6}(g), \Delta H=-130 \mathrm{kJmol}^{-1}$
carried in a closed vessel, the equilibrium
concentration of the $C_{2} H_{6}$ can definitely be increased by
A. Increasing temperature and decreasing

pressure

B. Decreasing temperature and increasing
pressure
C. Increasing temperature and pressure both
D. Decreasing temperature and pressure both

Answer: B

- View Text Solution

1. State Le Chatelier's principle.

- View Text Solution

2. The following reaction represents a gaseous
system at equilibrium:
$2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}+$ heat
Indicate the direction in which the equilibrium will
shift when the following change are made:
(a) Temperature of the system is decreased
(b) Total pressure is decreased
(c) Volume of the container is increased

D View Text Solution

3. What will be the effect of increased pressure on the following equilibria?
(a) $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{g}$
(b) $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$
(c) $2 \mathrm{SO}_{2(g)}+O_{2(g)} \Leftrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}$
(d) $2 O_{3(g)} \Leftrightarrow 3 O_{2(g)}$
(e) $\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$

4. Match the following:

Column A

Column B
(1) Rate of a reaction
(a) Rate $=k[A]^{2}[B]^{3}$
(2) Molar concentration
(b) $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{2}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$
(3) Law of mass action for $2 \mathrm{~A}+3 \mathrm{~B} \rightarrow$ products
(c) $\frac{\text { Mass }}{\text { Gram molecular mass }} \times \frac{1}{\text { Volume }\left(\mathrm{dm}^{2}\right)}$
(4) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
(d) $\frac{\text { Mass }}{\text { Equilibrium mass }} \times \frac{1}{\text { Volume }\left(\mathrm{dm}^{3}\right)}$
(e) Rate $=\frac{\text { Change in concentration of reactants or products }}{}$

- View Text Solution

Multiple Choice Questions With One Or More Than One Correct Answer

1. For the reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+O_{2}$, the rate of the reaction can be given by

$$
\text { A. } \frac{d\left[N_{2} O_{5}\right]}{d t}
$$

B. $-\frac{1}{2} \frac{d\left[N_{2} O_{5}\right]}{d t}$
C. $+\frac{1}{4} \frac{d\left[N O_{2}\right]}{d t}$
D. $-\frac{4 d\left[\mathrm{NO}_{2}\right]}{d t}$

Answer: A::B::C::D

D View Text Solution

2. Chemical equilibrium is characterised by
A. the concentration of each of the reactants and products being constant after the attainment of equilibrium
B. the rate of forward reaction being double the rate of backward reaction
C. chemical equilibrium being established when the gaseous products are allowed to escape D. attainment of chemical equilibrium in either direction

Answer: A::D

- View Text Solution

3. Which of the following statements is/are true for
A. Equilibrium constant has constant value at a given temperature.
B. If $K>1$, forward reaction is favoured at equilibrium.
C. Value of K depends upon the initial concentration of the reactants.
D. If $K<1$, backward reaction is favoured at equilibrium.

Answer: A::B::D

D View Text Solution
4. For a chemical reaction, a plot of energy versus the progress of reaction can be represented as shown in the figure.

The following are true:
A. $P=E_{R}, \mathrm{Q}=$ threshold energy
B. $P=E_{R}, \mathrm{Q}=$ activation energy
C. $R=E_{p}, \mathrm{~S}=$ activation energy
D. $R=E_{p}, \mathrm{~S}=$ threshold energy

Answer: A::B::D

D View Text Solution

5. A catalyst

A. participates in the chemical reaction as oneof the reactants and so gets consumed.
B. may undergo a permanent chemical change during the reaction.
C. may undergo a physical change during the reaction.
D. in a small amount is sufficient to catalyse areaction.

Answer: A::C::D

D View Text Solution

Challenging Exercise

1. One mol each of A and B are heated in a $2-d m^{3}$
container. At equilibrium 0.5 mol of A was found to
remain in the equilibrium mixture. Calculate the equilibrium constant for the reaction
$A+B \rightarrow 2 C+3 D$

D View Text Solution

2. One mol of $P C l_{5}$ is heated in a $2-d m^{3}$ container.

At equilibrium, 40% of $P C l_{5}$ was dissociated.
Calculate the equilibrium constant.

- View Text Solution

3. $2 A+B+C \rightarrow A_{2} B+C$
rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]$ with $k=2.0 \times 10^{-6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$
(a) Calculate the initial rate of the reaction when
$[A]=0.1 \mathrm{M}[B]=0.2 \mathrm{M}[\mathrm{C}]=0.8 \mathrm{M}$
(b) Calculate the rate of reaction after [A] is reduced to 0.06 M .

D View Text Solution

4. 2 mol of hydrogen iodide are heated in a $2-d m^{3}$ container. At equilibrium 50% of hydrogen iodide is
dissociated. Calculate the equilibrium constant for
the reaction: $2 \mathrm{HI} \Leftrightarrow H_{2}+I_{2}$

View Text Solution

5. 0.087 mol of NO and 0.0437 mol of $B r_{2}$ are mixed in a closed container at constant temperature. 0.0518 mol of NOBr is obtained at equilibrium.

Calculate the equilibrium concentration of NO and $B r_{2}$ for the reaction: $2 \mathrm{NO}+B r_{2} \Leftrightarrow 2 N O B r$.

D View Text Solution

Olympiad And Ntse Level Exercises

- View Text Solution

2. $A \rightarrow$ Product, $[A]_{0}=2 M$. After 10 min reaction
is 10% completed. If $\frac{d[A]}{d t}=k[A]$, then $t_{1 / 2}$ is approximately
A. 0.693 min
B. 69.3 min
C. 66.0 min
D. 0.0693 min

Answer: C

D View Text Solution

3. The rate of a chemical reaction generally increases
rapidly even for small temperature increase because of a rapid increase in
A. Collision frequency
B. Fraction of molecules with energies in excess

of the activation energy

C. Activation energy
D. Average kinetic energy of molecules

Answer: B

- View Text Solution

4. Select the law that corresponds to data shown for the following reaction $A+B \rightarrow$ Products

Exp
A. Rate $=k[B]^{3}$
B. Rate $=k[B]^{4}$
C. Rate $=k[A][B]^{3}$
D. Rate $=k[A]^{2}[B]^{2}$

Answer: A
5. The accompanying figure depicts a change in concentration of species A and B for the reaction
$A \rightarrow B$, as a function of time. The point of inter section of the two curves represents

A. $t_{1 / 2}$
B. $t_{3 / 4}$
C. $t_{2 / 3}$

D. Data insufficient to predict

Answer: A

D View Text Solution

6. The rate equation for the reaction $2 A+B \rightarrow C$ is
found to be: rate $=k[A][B]$. The correct statement in relation of this reaction is that
A. The value of k is independent of the initial concentration of A and B .
B. $t_{1 / 2}$ is a constant.
C. The rate of formation of C is twice the rate of disappearance of A .
D. The unit of k must be s^{-1}.

Answer: A

D View Text Solution

7. The activation energy for a simple chemicalreaction $A \rightarrow B$ is E_{a} in the forward reaction. The activation energy of the reverse reaction
A. Is negative of E_{a}
B. Is always less than E_{a}
C. Can be less than or more than E_{a}
D. Is always double of E_{a}

Answer: C

D View Text Solution

8. Collision theory is applicable to
A. First order reactions
B. Zero order reactions
C. Bimolecular reactions

D. Intermolecular reactions

Answer: C

D View Text Solution

9. Given the following two mechanisms, one with catalyst and the other without catalyst.
(i) $A+B \rightarrow C$ (slow)
(ii) $C+B \rightarrow F+A$ (fast)
(iii) $B+B \rightarrow F$ (slow)

Which mechanism uses the catalyst and what is it?
A. Step (i), A
B. Step (ii), B
C. (c) Step (iii), F
D. Steps (i) and (ii), C

Answer: A

D View Text Solution
10. Burning of coal is represented as
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$. The rate of this reaction is increased by
A. Decrease in the concentration of oxygen
B. Powdering the lumps of coal
C. Decreasing the temperature of coal
D. Providing inert atmosphere

Answer: B

