©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NAVNEET PUBLICATION

GRAVITATION

Solved

1. What are the effects of a force acting on an object?

2. What types of forces are you familiar with?

D Watch Video Solution

3. What do you know about the gravitational force?

D Watch Video Solution
4. What are Newton's laws of motion.

- Watch Video Solution

5. Take a small stone. Hold it in your hand.

What are the forces acting on the stone? Now release the stone . What do you observe?

What are the forces acting on the stone after you release it ?
6. Is there a gravitational force between two
objects kept on a table or between you and
your friend sitting next to you? If yes,why don't the two move towards each other ?

D Watch Video Solution

Exercise

1. Fill in the blanks with appropriate words and
write the completed sentences:

The ratio $g_{-}($earth $) / g_{-}(m o o n)$ is equal to....

D Watch Video Solution

2. Fill in the blanks with appropriate words and write the completed sentences:

The value of the acceleration due to gravity
........ as we move from the equator to a pole.

D Watch Video Solution

3. Fill in the blanks with appropriate words and write the completed sentences:

If the earth shrinks to half of its radius, its mass remaining the same, the weight of an object on the earth will become........ times.

D Watch Video Solution

4. Fill in the blanks with appropriate words and write the completed sentences:

The SI unit of weight is the
5. Fill in the blanks with appropriate words and write the completed sentences:

The CGS unit of weight is the.....

- Watch Video Solution

6. Fill in the blanks with appropriate words and write the completed sentences:

The weight of a body is..... at the poles.
7. Fill in the blanks with appropriate words and write the completed sentences:

Outside the earth, the weight of a body varies as.......

- Watch Video Solution

8. Fill in the blanks with appropriate words and write the completed sentences:

Due to the force, the earth attracts all objects towards it.

D Watch Video Solution

9. Fill in the blanks with appropriate words and write the completed sentences:

The acceleration due to gravity does not depend on the....... of the body.

D Watch Video Solution

10. Fill in the blanks with appropriate words and write the completed sentences:

According to Kepler's first law, the orbit of a planet is...... with the Sun at one of the.

- Watch Video Solution

11. Fill in the blanks with appropriate words and write the completed sentences:

According to Kepler's second law,the line
joining the planet and the Sun....... in equal intervals of time.

D Watch Video Solution

12. Fill in the blanks with appropriate words and write the completed sentences:

According to Kepler's third law $T^{2} \propto r^{n}$, where $\mathrm{n}=$.
13. Fill in the blanks with appropriate words and write the completed sentences:

For a freely falling object we can write
Newton's second equation of motion as

- Watch Video Solution

14. Write the proper answer in the blank.

If this $F=x$, then $F=$
15. Write the proper answer in the blank.

If this $\mathrm{F}=\frac{G m_{1} m_{2}}{d^{2}}$, then $\mathrm{F}=. . . .$.

D Watch Video Solution

16. Choose the correct alternative and write it along with its allotted alphabet :

The gravitational force between two particles separated by a distance r varies as.
A. $1 / r$
B. r
C. $r^{\wedge} 2$
D. $1 / r^{\wedge} 2$

Answer:

D Watch Video Solution

17. Choose the correct alternative and write it along with its allotted alphabet :

In the usual notation, the acceleration due to
gravity at a height h from the surface of the earth is.....
A. $g=f r a c\{G M\}\{R+h\}$
B. $g=f r a c\{G M\} s q r t\{R+h\}$
C. $g=f r a c\{G M\}\left\{(R+h)^{\wedge} 2\right\}$
D. $g=G M(R+h)^{\wedge} 2$

Answer:
(Watch Video Solution
18. Choose the correct alternative and write it along with its allotted alphabet :

The SI unit of the universal constant of gravitation is.

- Watch Video Solution

19. Choose the correct alternative and write it along with its allotted alphabet :

THe escape velocity of a body from the earth's
surface, v_(esc)=
20. Choose the correct alternative and write it along with its allotted alphabet :

How much will a person with 72 N weight on the earth, weigh on the moon ?
A. 12 N
B. 36 N
C. 21 N
D. 63 N

Answer:

D Watch Video Solution

21. Choose the correct alternative and write it along with its allotted alphabet :

What will be the weight of a person on the earth, who weighs 9 N on the moon?
A. 3 N
B. 15 N
C. 45 N

D. 54 N

Answer:

D Watch Video Solution

22. State whether the following statements
are True or False: (If a statement is false, correct it and rewrite it).

If the seperation between two particles is doubled, the gravitational force between the particles becomes half the initial force.

Watch Video Solution

23. State whether the following statements are True or False: (If a statement is false, correct it and rewrite it).

The CGS unit of the universal constant of gravitation is the dyne. $\mathrm{cm}^{\wedge} 2 /$ gram $^{\wedge} 2$.

D Watch Video Solution

24. State whether the following statements are True or False: (If a statement is false,
correct it and rewrite it).

At the centre of the earth, the value of the acceleration due to gravity becomes zero.

D Watch Video Solution

25. State whether the following statements
are True or False: (If a statement is false, correct it and rewrite it).

The weight of a body is minimum at the poles.

- Watch Video Solution

26. State whether the following statements are True or False: (If a statement is false, correct it and rewrite it).

Mass is a vector quantity.

- Watch Video Solution

27. State whether the following statements are

True or False: (If a statement is false, correct it and rewrite it).

Weight is a vector quantity.
28. State whether the following statements are True or False: (If a statement is false, correct it and rewrite it).
g has maximum value at the equator.

D Watch Video Solution

29. State whether the following statements
are True or False: (If a statement is false,
correct it and rewrite it).

Outside the earth, g varies as $1 /(R+h)^{\wedge} 2$.

D Watch Video Solution

30. State whether the following statements are True or False: (If a statement is false, correct it and rewrite it).

The value of G changes from place to place.

D Watch Video Solution

31. State whether the following statements are

True or False: (If a statement is false, correct it and rewrite it).

The value of g decreases with depth below the earth's surface.

- Watch Video Solution

32. State whether the following statements are True or False: (If a statement is false, correct it and rewrite it).

The escape velocity of a body does not depend on the mass of the body.

D Watch Video Solution

33. State whether the following statements are True or False: (If a statement is false, correct it and rewrite it).

The mass of a body is the amount of matter present in it.

- Watch Video Solution

34. State whether the following statements are True or False: (If a statement is false, correct it and rewrite it).

The value of g increases with altitude.

- Watch Video Solution

35. Study the entries in the following table and rewrite them putting the connected items in a

I		II		III
Mass	$\mathrm{m} / \mathrm{s}^{2}$	Zero at the centre of the earth		
Weight	kg	Measure of inertia		
Acceleration due to gravity	$\mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}$	Same in the entire universe		
Gravitational constant	N	Depends on height		

D Watch Video Solution

36. What is centripetal force ?

37. Define : Centripetal force

D Watch Video Solution

38. Answer the following questions:

Give one example of centripetal force.

D Watch Video Solution

39. Answer the following questions:

Name the force responsible for the motion of
a planet around the sun.

D Watch Video Solution

40. Answer the following questions:

Write the three laws given by Kepler. How did
they help Newton to arrive at the inverse square law of gravity?

- Watch Video Solution

41. Answer the following questions:

Explain with a diagram : Kepler's three laws.

D Watch Video Solution

42. Answer the following questions:

In ithe following figure, an orbit of a planet around the sun (s) has been shown. $A B$ and $C D$
are the distances covered by the planet in equal time. Lines AS and CS sweep equal areas
in equal intervals of time. Hence, areas ASB
and CSD are equal.

Fig. 1.7 (Schematic diagram)

Write the law regarding area swept.

- Watch Video Solution

43. Answer the following questions:

Write the law ${ }^{\top} T^{\wedge} 2$ prop $r^{\wedge} 3$ in your words.

- Watch Video Solution

44. Answer the following questions :

Observe the given figure and state which three
laws we understand from it.

Fig. 1.7 (Schematic diagram)
45. Answer the following questions :

Observe the given figure showing the orbit of
a planet moving around the sun and write the three laws related to it.

Fig. 1.7 (Schematic diagram)
46. Answer the following questions :

Explain the term gravitational force. What is gravitation?

- Watch Video Solution

47. Answer the following questions:

Let the period of revolution of a planet at a distance R from a star be T. Prove that if it was at a distance of $2 R$ from the star, its period of revolution will be $\sqrt{8} T$.
48. Answer the following questions :

State Newton's universal law of gravitation.
Express it in mathematical form.

- Watch Video Solution

49. Answer the following questions :

Why is the constant of gravitation called a universal constant ?

Watch Video Solution

50. Answer the following questions:

Newton's law of gravitation is called the universal law of gravitation. Why?

D Watch Video Solution

51. Answer the following questions:

State any one characteristics of gravitational force.
52. Answer the following questions:

If the distance between two bodies is increased by a factor of 5, By what factor will the gravitational force change if the masses are kept constant?

D Watch Video Solution

53. Answer the following questions:
f the distance between two bodies is increased
by a factor of 5 ,

By what factor will the mass of one of them
have to be altered, keeping the other mass the same, to maintain the same gravitational force between the two bodies ?

D Watch Video Solution

54. Answer the following questions:

Determine the SI unit of the universal constant of gravitation from the formula for the gravitational force between two particles.

Hence, state the CGS unit of the constant of gravitation .

D Watch Video Solution

55. Answer the following questions:

Define G (universal gravitational constant).

D Watch Video Solution

56. Answer the following questions:

State the importance of Newton's universal
law of gravitation.

- Watch Video Solution

57. Answer the following questions:

Compare the gravitational force on a body of mass 1 kg due to the earth with the force on
the same body due to another body of mass 1 kg at a distance of 1 m from the first body. (Mass of the earth $=6 \times x 10^{\wedge} 24 \mathrm{~kg}$, radius of the earth $=6400 \mathrm{~km}$)
58. Answer the following questions:

Explain the term the earth's gravitational force.

D Watch Video Solution

59. Answer the following questions :

Write a short note on the earth's gravitational force.
60. Answer the following questions:

Take two balls of different masses, go to the top of a building, drop them simultaneously and observe what happens to the balls.

- Watch Video Solution

61. Answer the following questions:

Take two similar pages from your notebook.
Crumple one paper and allow this and the
other paper to fall on the ground simultaneously. What do you observe ?

D Watch Video Solution

62. Answer the following questions:

Take a feather and a paper. Allow them to fall
to the ground simultaneously. Which will reach the ground earlier? why?

- Watch Video Solution

63. Answer the following questions:

What is the acceleration due to gravity?

D Watch Video Solution
64. Answer the following questions :

Define acceleration due to gravity ?

D Watch Video Solution

65. Answer the following questions :

From Newton's law of gravitation, derive the
formula for the acceleration due to gravity.

D Watch Video Solution

66. Answer the following questions:

What is the acceleration due to gravity at a
height h (=radius of the earth) from the surface of the earth ? $\left(g=9.8 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)$

67. Answer the following questions :

Explain the factors affecting the value of g.

D Watch Video Solution

68. Answer the following questions :

If $\mathrm{g}=\mathrm{GM} / \mathrm{r}^{\wedge} 2$, then where will the value of g be
high, at Goa Beach or on the top of the Mount

Everest?

69. Answer the following questions :

Explain why the value of g is zero at the centre of the earth.

- Watch Video Solution

70. Answer the following questions:

Does the value of g change while going deep inside the earth ? why ?
71. Answer the following questions:

Explain why the value of g changes if we go inside the earth?

D Watch Video Solution

72. Answer the following questions :

Why does an object released from the hand,
fall on the earth ?

- Watch Video Solution

73. Answer the following questions :

Does the value of g depend on the mass of the falling body? why?

D Watch Video Solution
74. Answer the following questions:

Define mass. State its SI and CGS units.
(D) Watch Video Solution
75. Answer the following questions:

Define weight. State its SI and CGS units.

D Watch Video Solution

76. Answer the following questions:

As per the request of one of his friends from the equator, Rahul buys 100 grams of silver at the north pole. He hands it over to his friend at the equator. Will the friend agree with the weight of the silver bought ? If not, why ?
77. Answer the following questions:

If the value of g suddenly becomes twice its
value, it will become two times more difficult to pull a heavy object along the floor. why ?

- Watch Video Solution

78. Answer the following questions:

What is the difference between mass and weight of an object ? Will the mass and weight
of an object on the earth be the same as their values on Mars ? why?

D Watch Video Solution
79. What is free fall?

- Watch Video Solution

80. Define free fall

D Watch Video Solution
81. Answer the following questions:

Explain the term free fall and state the corresponding kinematical equations of motion in the usual notation.

- Watch Video Solution

82. Answer the following questions:

During a free fall, will a heavier object accelerate more than a lighter one?
83. Answer the following questions:

What are the factors on which the maximum
height attained by a body throws upward depends?

- Watch Video Solution

84. Answer the following questions:

If you had to calculate the mass of the earth, how would you do it?
85. Answer the following questions:

What is gravitational potential energy ?

D Watch Video Solution

86. Define: Gravitational Potential energy

D Watch Video Solution

87. Answer the following questions:

What is escape velocity?

- Watch Video Solution

88. Define: Escape velocity

D Watch Video Solution

89. Explain the terms: escape velocity
90. Answer the following questions:

Write a short note on escape velocity.

D Watch Video Solution

91. Answer the following questions:

Using the law of conservation of energy, obtain the expression for the escape velocity.
92. Answer the following questions:

Express escape velocity in terms of g and R.

- Watch Video Solution

93. Answer the following questions:

Express escape velocity in terms of G,R and rho
(the earth's density).

D Watch Video Solution

94. Fill in the blanks and complete the
following paragraph . (words given: upward,
friction,negligible,downward , gravitational , buoyance, very large, electric)

When a body falls in air, there are three forces
acting on the body : (1) the gravitational force due to the earth, acting........(2) the force of due to air, acting(3) the force due to...... with
air, acting in the direction oppositeto that of
the velocity of the body. Under certain
conditions, the force of buoyancy due to air
and friction with air can be....... compared to
the.......force of the earth. In that case (near the earth's surface) the body falls with almost uniform acceleration (g). Whenever a body moves under the influence of the force of gravity alone, it is said to be falling freely. Strictly speaking, this is true only if the body falls in vaccum.

- Watch Video Solution

95. Give scientific reasons:

If a feather and a stone are released from the
top of a building simultaneously, the stone reaches the ground earlier than the feather.

D Watch Video Solution

96. Give scientific reasons:

The weight of an object changes from place to
place though its mass is constant.

D Watch Video Solution

97. Give scientific reasons:

The weight of a body is different on different planets.

- Watch Video Solution

98. Give scientific reasons:

With a specific initial velocity, we can jump
higher on the moon than on the earth.

D Watch Video Solution

99. Distinguish between

Mass and weight.

(Watch Video Solution

100. Distinguish between
universal gravitational constant and
gravitational acceleration of the earth.

- Watch Video Solution

101. Solve the following examples / numerical problems:

The time taken by the earth to complete on revolution around the Sun is $3.156 \mathrm{xx} \mathrm{10} \mathrm{\wedge 7} \mathrm{~s}$.

The distance between the earth and the sun is
$1.5 \mathrm{xx} 10^{\wedge} 11 \mathrm{~m}$. Find the speed of revolution of the earth.

D Watch Video Solution

102. Solve the following examples / numerical problems:

Assuming that the earth performs uniform circular motion around the Sun, find the centripetal acceleration of the earth. [Speed of the earth $=3 \mathrm{xx} 10^{\wedge} 4 \mathrm{~m} / \mathrm{s}$, distance between the earth and the Sun $=1.5 \times x 10^{\wedge} 11 \mathrm{~m}$]

D Watch Video Solution

103. Solve the following examples / numerical problems:

What will be the gravitational force on 60 kg man on the Moon,Mars and jupiter ? Are they
the same? why?
$M($ Moon $)=7.36 x x 10^{\wedge} 22 \mathrm{~kg}, R($ Moon $)=1.74 \mathrm{xx}$ $10^{\wedge} 6 \mathrm{~m}$.
M (Mars) $=6.4 x x 10^{\wedge} 23 \mathrm{~kg}, \mathrm{R}$ (Mars) $=3.395$
xx10^6 m,

M (Jupiter)=1.9xx10^27 kg. R (Jupiter) = $7.15 \times x 10^{\wedge} 7 \mathrm{~m}$.
$\mathrm{G}=6.67 \mathrm{xx10} 0^{\wedge}-11 \mathrm{~N}-\mathrm{m}^{\wedge} 2 / \mathrm{kg}^{\wedge} 2$.

- Watch Video Solution

104. Solve the following examples / numerical
problems:
The masses of the earth and the moon are 6 xx
$10^{\wedge} 24 \mathrm{~kg}$ and $7.4 \mathrm{xx} 10^{\wedge} 22 \mathrm{~kg}$, respectively. The distance between them is $3.84 \mathrm{xx} 10^{\wedge} 5 \mathrm{~km}$.

Calculate the gravitational force of attraction between the two use $G=6.7 \mathrm{xx} 10^{\wedge}-11 \mathrm{~N}-\mathrm{m}^{\wedge} 2$ $\mathrm{kg}^{\wedge}-2$.
105. Solve the following examples / numerical problems:

Mahendra and virat are sitting at a distance of 1 meter from each other. Their masses are 75
kg and 80 kg respectively. What is the gravitational force between them ? G = 6.67 xx $10^{\wedge}-11 \mathrm{~N}-\mathrm{m}^{\wedge} 2 / \mathrm{kg}^{\wedge} 2$.
106. Solve the following examples / numerical problems:

Two spheres of uniform density have masses

10 kg and 40 kg . The distance between the centres of the spheres is 200 m . Find the gravitational force between them.

D Watch Video Solution

107. Solve the following examples / numerical problems:

Find the gravitational force between a man of mass 50 kg and a car of mass 1500 kg separated by 10 m .

D Watch Video Solution

108. Solve the following examples / numerical problems:

Find the magnitude of the gravitational force between the Sun and the earth.(Mass of the

Sun $=2 \times x 10^{\wedge} 30 \mathrm{~kg}$, mass of the earth $=$ $6 x \times 10^{\wedge} 24 \mathrm{~kg}$ and the distance between the
centres of the Sun and the earth $=1.5 \mathrm{xx} 10^{\wedge} 11$ $\left.\mathrm{m}, \mathrm{G}=6.67 \mathrm{xx} 10^{\wedge}-11 \mathrm{~N}-\mathrm{m}^{\wedge} 2 / \mathrm{kg}^{\wedge} 2\right)$.

D Watch Video Solution

109. Solve the following examples / numerical problems:

The mass of the earth is $6 x x 10^{\wedge} 24 \mathrm{~kg}$. The distance between the earth and the sun is $1.5 \times x 10^{\wedge} 11 \mathrm{~m}$. If the gravitational force between
the two is $3.5 \mathrm{xx} 10^{\wedge} 22 \mathrm{~N}$, what is the mass of the Sun ? (use G =6.7xx $10^{\wedge}-11 \mathrm{Nm}^{\wedge}-2 \mathrm{~kg}^{\wedge}-2$)

Watch Video Solution

110. Solve the following examples / numerical problems:

Find the magnitude of the acceleration due to gravity at the surface of the earth. ($M=6 x x$ $\left.10^{\wedge} 24 \mathrm{~kg}, \mathrm{R}=6400 \mathrm{~km}\right)$

- Watch Video Solution

111. The radius of the planet A is half the radius
of planet B.If the mass of A is M_{a}, what must
be the mass of B so that the vlaue of g on B is half that of its value of A ?

D Watch Video Solution

112. Solve the following examples / numerical problems:

An object takes 5 s to reach the ground from a height of 5 m on a planet. What is the value of g on the planet?
113. Solve the following examples / numerical
problems:
The mass of a planet is 3 times the mass of the earth. Its diameter is 25600 km and the earth's
diameter is 12800 km . Find the acceleration due to gravity at the surface of the planet. [g (earth) $=9.8 \mathrm{~m} / \mathrm{s}^{\wedge} 2$]

- Watch Video Solution

114. Solve the following examples / numerical problems:

If the acceleration due to gravity on the surface of the earth is $9.8 \mathrm{~m} / \mathrm{s}^{\wedge} 2$, what will be the acceleration due to gravity on the surface of a planet whose mass and radius both are two times the corresponding quantities for the earth ?

D Watch Video Solution

115. A stone thrown vertically upwards with
initaial velocity u reaches a height ' h ' before
coming down.Show that the time takes to go up is same as time taken to come down

D Watch Video Solution

116. Solve the following examples / numerical problems:

An object thrown vertically upwards reaches a height of 500 m . What was its initial velocity ? How long will the object take to come back to the earth ? Assume $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{\wedge} 2$.
117. Solve the following examples / numerical
problems:
A ball falls off a table and reaches the ground in 1 s . Assuming $g=10 \mathrm{~m} / \mathrm{s}^{\wedge} 2$, calculate its speed on reaching the ground and the height of the table.

D Watch Video Solution

118. Solve the following examples / numerical problems:

A body is released from the top of a building of height 19.6 m . Find the velocity with which the body hits the ground.

D Watch Video Solution

119. Solve the following examples / numerical problems:

A stone on a bridge on a river falls into the river. If it takes 3 seconds to reach the surface of water, find (i) the velocity of the stone at the instant it touches the surface of water (ii)
the height of the bridge from the surface of water.

D Watch Video Solution

120. Solve the following examples / numerical problems:

A stone is dropped from rest from the top of a building 44.1 m high. It takes 3 s to reach the ground. Use this information to calculate g.

D Watch Video Solution

121. Solve the following examples / numerical

 problems:A metal ball of mass 5 kg falls from a height of 490 m . How much time will it take to reach the ground ?

- Watch Video Solution

122. Solve the following examples / numerical problems:

An iron ball of mass 3 kg is released from a height of 125 m and falls freely to the ground.

Assuming that the value of g is $10 \mathrm{~m} / \mathrm{s}^{\wedge} 2$,
calculate (a) the time taken by the ball to reach the ground (b) the velocity of the ball on reaching the ground.

- Watch Video Solution

123. Solve the following examples / numerical
problems:

If the weight of a body on the surface of the moon is 100 N , what is its mass ?
124. Solve the following examples / numerical
problems:
A 100 kg bag of wheat is placed on a plank of wood. What is the weight of the bag and what is the reaction force exerted by the plank?

D Watch Video Solution

125. Solve the following examples / numerical problems:

The mass and weight of an object on the earth
are 5 kg and 49 N respectively. What will be their values on the moon? Assume that the acceleration due to gravity on the moon is 1/6th of that on the earth.

D Watch Video Solution

126. Solve the following examples / numerical problems:

Find the gravitational potential energy of a body of mass 10 kg when it is on the earth's
surface. [M_(earth) $=6 \times x 10^{\wedge} 24 \mathrm{~kg}, \mathrm{R}_{-}($earth $)=$ $\left.6.4 \mathrm{xx10}{ }^{\wedge} 6 \mathrm{~m}, \mathrm{G}=6.67 \mathrm{xx} \mathrm{10}{ }^{\wedge}-11 \mathrm{~N}-\mathrm{m}^{\wedge} 2 / \mathrm{kg}^{\wedge} 2\right]$

D Watch Video Solution

127. Solve the following examples / numerical problems:

If the body performs uniform circular motion
around the earth at a height of 3600 km from
the earth's surface, what will be its gravitational potential energy?
128. Solve the following examples / numerical problems:

A body of mass 20 kg is at rest on the earth's
surface. (i) Find its gravitational potential energy. (ii) Find the kinetic energy to be provided to the body to make it free from the gravitational influence of the earth. ($g=9.8$ $\left.\mathrm{m} / \mathrm{s}^{\wedge} 2, \mathrm{R}=6400 \mathrm{~km}\right)$
129. Solve the following examples / numerical problems:

If the body is moving at $100 \mathrm{~m} / \mathrm{s}$ on the earth's surface, what will be its (i) Kinetic energy (ii) total energy?

D Watch Video Solution

130. Solve the following examples / numerical
problems:

A satellite of mass 100 kg performs uniform
circular motion around the earth at a height of 6400 km from the earth's surface. Find its gravitational potential energy. $\left[g=9.8 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right.$, $\mathrm{R}=6400 \mathrm{~km}$]

- Watch Video Solution

131. Solve the following examples / numerical
problems:

Find the escape velocity of a body from the earth. $\quad\left[M_{-}(\right.$earth $)=\quad 6 x x 10^{\wedge} 24 \quad \mathrm{~kg}$,
$R_{-}($earth $)=6.4 \times x 10^{\wedge} 6 \mathrm{~m}, \mathrm{G}=6.67 \times x 10^{\wedge}-11$ $\left.\mathrm{m}^{\wedge} 2 / \mathrm{kg}^{\wedge} 2\right]$

D Watch Video Solution

132. Solve the following examples / numerical problems:

Find the escape velocity of a body from the earth. [R_(earth)= $6.4 \times x 10^{\wedge} 6 \mathrm{~m}$, rho_(earth)= $\left.5.52 \times x 10^{\wedge} 3 \mathrm{~kg} / \mathrm{m}^{\wedge} 3, \mathrm{G}=6.67 \times x 10^{\wedge}-11 \mathrm{~N}-\mathrm{m}^{\wedge} 2 / \mathrm{kg}^{\wedge} 2\right]$

- Watch Video Solution

133. Solve the following examples / numerical
problems:
Calculate the escape velocity of a body from the moon. $\left[\mathrm{g}(\mathrm{moon})=1.67 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right.$,
$\left.R(m o o n)=1.74 \times x 10^{\wedge} 6 \mathrm{~m}\right]$

- Watch Video Solution

134. Solve the following examples / numerical problems:

The mass of a planet is four times that of the earth and its radius is double the radius of the
earth. The escape velocity of a body from the earth is $11.2 \times x 10^{\wedge} 3 \mathrm{~m} / \mathrm{s}$. Find the escape velocity of a body from the planet.

D Watch Video Solution

135. A satellite of mass 1000 kg revolves around the earth in a circular path. If the distance between the satellite and the centre of the earth is 40000 km , find the gravitational force exerted on the satellite by the earth.
136. The masses of two spheres are 10 kg and

20 kg respectively. If the distance between
their centres is 100 m , find the magnitude of the gravitational force betweem them.

D Watch Video Solution

137. A satellite revolves around the earth along
circular path. If the mass of the satellite is

1000 kg and its distance from the centre of
the earth is 20000 km, find the magnitude of
the earth's gravitational force acting on the satellite.

- Watch Video Solution

138. Find the acceleration due to gravity at a distance of 20000 km from the centre of the earth.

D Watch Video Solution
139. What is the weight of a body of mass 100 kg at the south pole $?\left(\mathrm{~g}=9.832 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)$

- Watch Video Solution

140. What is the weight of a body of mass 20 kg at the equator $?\left(\mathrm{~g}=9.78 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)$

- Watch Video Solution

141. A body is released from the top of a tower of height 50 m . Find the velocity with which the body hits the ground. (g=9.8 m/s^2)

- Watch Video Solution

142. A body is thrown vertically upward with a
velocity of $9.8 \mathrm{~m} / \mathrm{s}$. Calculate the maximum
height attained by the body. $\left(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)$
143. A particle of mass $10^{\wedge}-6 \mathrm{~kg}$ performs uniform circular motion. Its period is 10 s and the radius of the circle is 2 m . Find (i) the speed of the particle (ii) the centripetal acceleration of the particle (iii) the centripetal force on the particle.

D Watch Video Solution

144. Find the gravitational potential energy of a body of mass 200 kg on the earth's surface.
[M (earth) $=6 x x 10^{\wedge} 24 \mathrm{~kg}, R($ earth $\left.)=6400 \mathrm{~km}\right]$
145. Find the gravitational potential energy of
a body of mass 10 kg when it is at a height of 6400 km from the earth's surface. [M (earth) $=$ $6 x x 10 \wedge 24 \mathrm{~kg}, \mathrm{R}$ (earth) $=6400 \mathrm{~km}]$

- Watch Video Solution

146. Solve the following examples / numerical problems:

Calculate the escape velocity of a body from
the moon. $\left[\mathrm{g}(\mathrm{moon})=1.67 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right.$,
$R($ moon $\left.)=1.74 \times x 10^{\wedge} 6 \mathrm{~m}\right]$

D Watch Video Solution

