

CHEMISTRY

BOOKS - TARGET PUBLICATION

CARBON COMPOUNDS

Choose The Correct Alternative 1 Mark Each

1. The	number	of	covalent	bonds	that	one	carbon	atom	can
form i	S		•						

A. 2

B. 4

C. 3

Answer: B

Watch Video Solution

- 2. The saturated hydrocarbon from the following carbon compounds is _____.
 - A. ethene
 - B. ethyne
 - C. ethane
 - D. benzene

Answer: C

3. Tincture of iodine contains
A. ethanol
B. methanol
C. ethanal
D. acetic acid
Answer: A
Watch Video Solution
4. The function group in butanone is
A. ether

B. ester
C. ketone
D. aldehyde
Answer: C
Watch Video Solution
5. Which of the following contains $-OH$ functional group ?
A. Butanone
B. Butanol
C. Butanoic acid
D. Butanal

Answer: B

Watch Video Solution

6. Which of the following compounds will burn with a sooty flame?

- A. Benzene
- B. Propanol
- C. Ethanoic acid
- D. Butane

Answer: A

A. combination					
B. displacement					
C. decomposition					
D. double displacement					
Answer: A					
Watch Video Solution					
8. In laboratory, a student added 3 mL ethanol and 5 mL sodium carbonate in a test tube and warmed the mixture for					
few minutes. He then slowly added few drops of potassium					
permanganate to this warm solution with constant stirring.					

7. Combustion of coal in air is a _____ reaction.

He	observed	that	the	pink	colour	of	potassium
perr	manganate l	had dis	appea	red. Th	is is beca	use ₋	
,	A. ethanol is	reduce	ed to e	thane			
I	3. ethanol is	oxidize	ed to e	thane			
(C. ethanol is	oxidize	ed to e	thanoi	c acid		
[D. ethanol is	oxidize	ed to e	thanoi	c acid		
	_						
Ans	wer: D						

9. When ethanol reacts with sodium, the products are

- A. sodium ethanoate and hydrogen
- B. sodium ethanoate and oxygen
- C. sodium ethoxide and hydrogen
- D. sodium ethoxide and oxygen

Answer: C

- **10.** In an experiment to study the properties of ethanoic acid, a student dipped red and blue litmus papers to the solution of ethanoic acid. What would he observe?
 - A. Red litmus remains red and blue litmus turns red.
 - B. Red litmus turns blue and blue litmus remains blue.

- C. Red litmus turns blue and blue litmus turns red.
- D. Red litmus becomes colourless and blue litmus remains blue.

Answer: A

Watch Video Solution

11. A student takes about 2 mL ethanoic acid in a dry test tube and adds a pinch of sodium carbonate to it. What will he observe?

A. A colourless and odourless gas evolves which burns with pop sound.

- B. A colourless and odourless gas evolves with a brisk effervescence.
- C. A brown coloured gas with foul smell evolves with a brisk effervescence.
- D. A brown coloured gas with foul smell evolves which burns with pop sound.

Answer: B

12. When you add a few drops of acetic acid to a test tube containing sodium bicarbonate powder, a gas is evolved which _____.

A. burns with explosion

B. has a foul smell of rotten eggs

C. turns lime water milky

D. has a fruity smell

Answer: C

Watch Video Solution

13. Which of the following represents esterification reaction?

A.
$$CH_3COOH + NaOH
ightarrow CH_3COONa + H_2O$$

В.

$$CH_3COOH + C_2H_5OH \xrightarrow[{
m catalyst}]{
m Acid} CH_3COOC_2H_5 + H_2O$$

C. $2CH_3COOH + 2Na
ightarrow 2CH_3COONa + H_2 \uparrow$

D.

 $CH_3COOC_2H_5 + NaOH
ightarrow CH_3COONa + C_2H_5OH$

Answer: B

Watch Video Solution

14. When ethanoic acid reacts with ethanol, the product formed ______.

A. is odourless

B. has pungent odour

C. has a foul smell of rotten eggs

D. has a fruity smell

Answer: D

15. Which of the following are main constituents of cooking gas ?

A. Propane + Butane

B. Butane + Benzene

C. Propane + Benzene

D. Methane + Acetylene

Answer: A

16. The number of covalent bonds that one carbon atom can
form is
A. 2
B. 4
C. 3
D. 5
Answer: B
Watch Video Solution
17. The saturated hydrocarbon from the following carbon compounds is

A. ethene B. ethyne C. ethane D. benzene **Answer: C Watch Video Solution** 18. Tincture of iodine contains A. ethanol B. methanol C. ethanal D. acetic acid

Answer: A

Watch Video Solution

19. The function group in butanone is ______.

A. ether

B. ester

C. ketone

D. aldehyde

Answer: C

20. Which of the following contains $-OH$ functional group ?
A. Butanone
B. Butanol
C. Butanoic acid
D. Butanal
Answer: B
Watch Video Solution
21. Which of the following compounds will burn with a sooty flame?
name:
A. Benzene

B. Propanol	
C. Ethanoic acid	
D. Butane	
Answer: A	
Watch Video Solution	
22. Combustion of coal in air is a reaction.	
A. combination	
B. displacement	
C. decomposition	
D. double displacement	

Answer: A

23. In laboratory, a student added 3 mL ethanol and 5 mL sodium carbonate in a test tube and warmed the mixture for few minutes. He then slowly added few drops of potassium permanganate to this warm solution with constant stirring. He observed that the pink colour of potassium permanganate had disappeared. This is because ______

A. ethanol is reduced to ethane

- B. ethanol is oxidized to ethane
- C. ethanol is oxidized to ethanoic acid

D. ethanol is oxidized to ethanoic acid

Answer: D

Watch Video Solution

24. When ethanol reacts with sodium, the products are

A. sodium ethanoate and hydrogen

B. sodium ethanoate and oxygen

C. sodium ethoxide and hydrogen

D. sodium ethoxide and oxygen

Answer: C

25. In an experiment to study the properties of ethanoic acid, a student dipped red and blue litmus papers to the solution of ethanoic acid. What would he observe?

- A. Red litmus remains red and blue litmus turns red.
- B. Red litmus turns blue and blue litmus remains blue.
- C. Red litmus turns blue and blue litmus turns red.
- D. Red litmus becomes colourless and blue litmus remains blue.

Answer: A

26. A student takes about 2 mL ethanoic acid in a dry test tube and adds a pinch of sodium carbonate to it. What will he observe?

A. A colourless and odourless gas evolves which burns with pop sound.

B. A colourless and odourless gas evolves with a brisk effervescence.

C. A brown coloured gas with foul smell evolves with a brisk effervescence.

D. A brown coloured gas with foul smell evolves which burns with pop sound.

Answer: B

27. When you add a few drops of acetic acid to a test tube containing sodium bicarbonate powder, a gas is evolved which _____.

- A. burns with explosion
- B. has a foul smell of rotten eggs
- C. turns lime water milky
- D. has a fruity smell

Answer: C

Watch Video Solution

28. Which of the following represents esterification reaction?

A. $CH_3COOH + NaOH
ightarrow CH_3COONa + H_2O$

В.

$$CH_3COOH + C_2H_5OH \xrightarrow[{
m catalyst}]{
m Acid} CH_3COOC_2H_5 + H_2O$$

C. $2CH_3COOH + 2Na \rightarrow 2CH_3COONa + H_2 \uparrow$

D.

$$CH_3COOC_2H_5 + NaOH
ightarrow CH_3COONa + C_2H_5OH$$

Answer: B

Watch Video Solution

29. When ethanoic acid reacts with ethanol, the product formed .

A. is odourless

- B. has pungent odour
- C. has a foul smell of rotten eggs
- D. has a fruity smell

Answer: D

Watch Video Solution

30. Which of the following are main constituents of cooking gas ?

- A. Propane + Butane
- B. Butane + Benzene
- C. Propane + Benzene
- D. Methane + Acetylene

Answer: A

Watch Video Solution

Complete The Paragraph

(polymer, starch, rubber, macromolcules, nucleic acids, proteins, polyethylene, cellulose)
 We know that some carbon compounds haave large molecular masses up to 10¹². Such molecules are called a ______. They contain large number of single compound or different compounds joined together by chemical bonds. If the macromolecule is formed by regular repetition of a small unit, then it is called, a ______. the proteins and nucleic acids play an important role in our life. Our clothes, papers,

etc. are made up of polysaccharide called _____ and the polysaccharide that provides energy is _____. constitute large part of our body and are responsible for various physiological functions and growth. The natural macromolecules called control the heredity.

2. (polymer, starch, rubber, macromolcules, nucleic acids, proteins, polyethylene, cellulose)

We know that some carbon compounds haave large molecular masses up to 10^{12} . Such molecules are called a _____. They contain large number of single compound or different compounds joined together by chemical bonds. If the macromolecule is formed by regular repetition of a small unit, then it is called, a _____. the proteins and nucleic

acids play an important role in our life. Our clothes, papers, etc. are made up of polysaccharide called _____ and the polysaccharide that provides energy is _____. constitute large part of our body and are responsible for various physiological functions and growth. The natural macromolecules called _____ control the heredity.

Name The Following

1. The property of carbon atom to form strong covalent bond with itself and results in formation of big molecules, is called

2. Molecular formula of major component present in natural gas

3. The phenomenon in which compounds having different structural formula have the same molecular formula

4. The first member of the homologous series of alkynes.

5. Name two commonly used oxidizing agent

Watch Video Solution

6. The process by which unsaturated fats are changed to saturated fats

7. Name two catalysts used in hydrogenation of vegetable oils

8. The reaction in which the place of one type of atom/group in a reactant is taken by another atom/group of atoms is called reaction

9. The gas which is liberated during the reaction of ethanol with sodium

10. The common name of CH_3COOH

11. The common name of CH_3COONa
Watch Video Solution
12. A small unit that repeats regularly to form a polymer.
Watch Video Solution
13. The monomer unit in PVC
Watch Video Solution
14. The polymer used for making injection syringe.
View Text Solution

15. The monomer which undergoes polymerization to form teflon

Watch Video Solution

16. An example for copolymer

17. The property of carbon atom to form strong covalent bond with itself and results in formation of big molecules, is called_____

18. Molecular formula of major component present in natural gas

Watch Video Solution

19. The phenomenon in which compounds having different structural formula have the same molecular formula

20. The first member of the homologous series of alkynes.

21. Name two commonly used oxidizing agent

22. The process by which unsaturated fats are changed to saturated fats

23. Name two catalysts used in hydrogenation of vegetable oils

24. The reaction in which the place of one type of atom/group in a reactant is taken by another atom/group of atoms is called_____reaction

25. The gas which is liberated during the reaction of ethanol with sodium

26. The common name of CH_3COOH

27. The common name of CH_3COONa

28. A small unit that repeats regularly to form a polymer.
Watch Video Solution
29. The monomer unit in PVC
Watch Video Solution
30. The polymer used for making injection syringe.
View Text Solution
31. The monomer which undergoes polymerization to form teflon
Watch Video Solution

Water video Solution
32. An example for copolymer
View Text Solution
View Text Solution
True Or False
1. Most of the carbon compounds are good conductors of
electricity.
View Text Solution
2. The valence shell of carbon contains six electrons.
View Text Solution

3. Isobutylene contains a carbon-carbon triple bond. **View Text Solution** 4. Combustion involves heating or burning of a substance strongly in presence of hydrogen. **View Text Solution** 5. Naphthalene burns with a clean blue flame. **View Text Solution**

6. Unsaturated fats containing double bonds are harmful to health.

7. Ethanol mixed with poisonous propanol is called denatured spirit.

8. Teflon is used to make winter clothing.

9. State whether the following statements are true or false. If false then rewrite the correct statements: Generally, most of the carbon compounds are found to be good conductors of electricity.

10. The valence shell of carbon contains six electrons.

11. Isobutylene contains a carbon-carbon triple bond.

12. Combustion involves heating or burning of a substance strongly in presence of hydrogen.

13. Give Scientific reasons: Naphthalene burns with a yellow flame.

14. Unsaturated fats containing double bonds are harmful to health.

15. Ethanol mixed with poisonous propanol is called denatured spirit.

16. Teflon is used to make winter clothing.

Odd One Out

1. Carbon dioxide, methanol, acetaldehyde, propane

2. Find the odd one out:

Ethane, ethene, ethyne, propene

Watch Video Solution

3. Find the odd one out:

Cyclohexene, cyclohexane, cyclopentane, isobutane

4. Find the odd one out:

Methane, ethene, ethyne, ethanoic acid

5. Find the odd one out: Methanoic acid, acetic acid, propanoic acid, butanoic acid **View Text Solution** 6. Polyethylene, polysaccharide, polystyrene, polypropylene **View Text Solution** 7. Carbon dioxide, methanol, acetaldehyde, propane **View Text Solution**

8. Find the odd one out: Ethane, ethene, ethyne, propene **Watch Video Solution** 9. Find the odd one out: Cyclohexene, cyclohexane, cyclopentane, isobutane **Watch Video Solution**

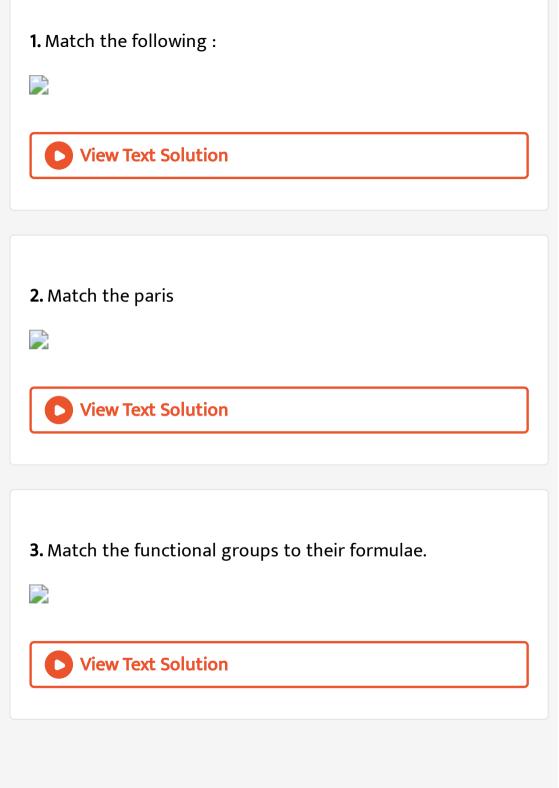
10. Find the odd one out:

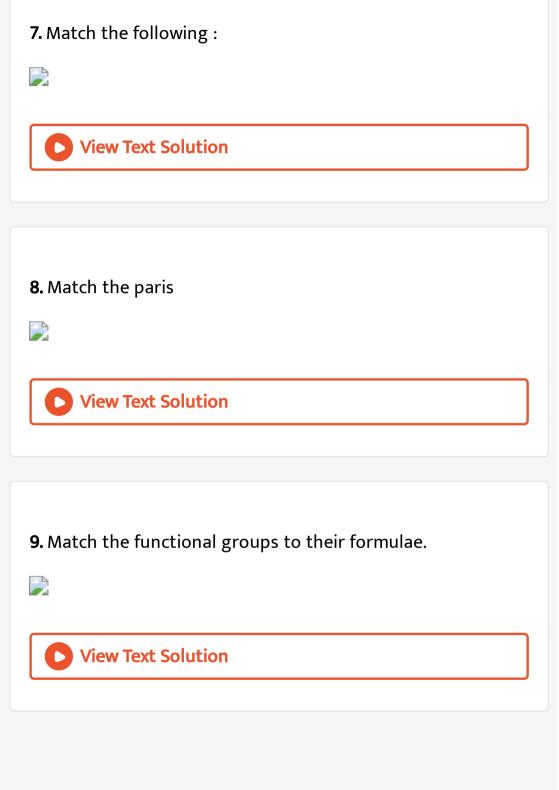
Ethane, ethene, ethyne, propene

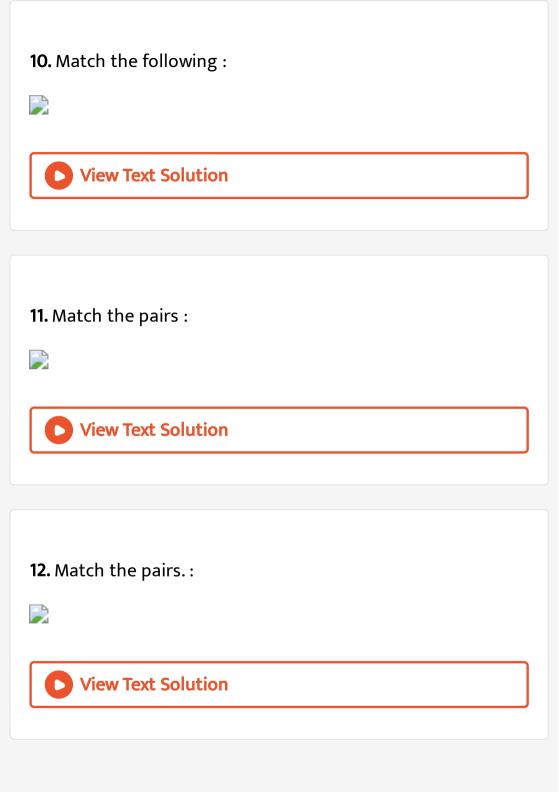
11. Methanoic acid, acetic acid, propanoic acid, butanoic acid
View Text Solution
12. Polyethylene, polysaccharide, polystyrene, polypropylene
View Text Solution
Complete The Analogy
1 Nitus and made and Organizations
1. Nitrogen molecule : Triple bond :: Oxygen molecule
Watch Video Solution

2. Carbon - carbon	single bond	: Alkanes	:: Carbon-	carbon
triple bond :				

3. Alkynes : C_nH_{2n-2} :: Alkenes : _____


4. Contains a single type of monomers : Homopolymers ::


Contains two or more types of monomers : _____



5. Cellulose : glucose :: Rubber :
Watch Video Solution
6. Nitrogen molecule : Triple bond :: Oxygen molecule :
Watch Video Solution
7. Carbon - carbon single bond : Alkanes :: Carbon- carbon
triple bond :
Watch Video Solution

8. Alkynes : $C_n H_{2n-2}$:: Alkenes :
Watch Video Solution
9. Contains a single type of monomers : Homopolymers ::
or contains a single type or monomers i nomepolymers in
Contains two or more types of monomers :
View Text Solution
10. Cellulose : glucose :: Rubber :
Watch Video Solution
Match The Following

Answer The Following Can You Recall

1. Answer the following questions in one word:

What are the types of compounds?

Watch Video Solution

2. Answer the following questions in one word:

Objects in everyday uses such as foodstuff, fibers,paper, medicines, wood fuels are made of various compounds. Which constituent elements are common in these compounds?

Watch Video Solution

3. Answer the following questions in one word:

To which group in the periodic table does the element carbon belong? Write down the electronic configuration of carbon and deduce the valency of carbon.

Watch Video Solution

4. Answer the following questions in one word:

What are the types of compounds?

Watch Video Solution

5. Answer the following questions in one word:

Objects in everyday uses such as foodstuff, fibers,paper, medicines, wood fuels are made of various compounds.

Which constituent elements are common in these compounds?

6. Answer the following questions in one word :

To which group in the periodic table does the element carbon belong? Write down the electronic configuration of carbon and deduce the valency of carbon.

Answer The Following Can You Tell

1. Answer the following questions in one word : What is meant by a chemical bond?

2. Answer the following questions in one word:

What is the number of chemical bonds that an atom of an element forms called?

3. Answer the following questions in one word:

What are the two important types of chemical bond?

4. Answer the following questions in one word : What is meant by a chemical bond?

5. Answer the following questions in one word:

What is the number of chemical bonds that an atom of an element forms called?

6. Answer the following questions in one word:

What are the two important types of chemical bond?

Answer The Following Intext Question

1. Are the melting and boiling point of carbon compounds (covalent compounds) higher or lower as compared to ionic compounds?

2. Why does carbon neither form $C^{4\,+}$ cation nor $C^{4\,-}$ anion, but forms covalent compounds?

3. Explain the term with example: Covalent bond

4. How is electron-dot structure of a molecule drawn? Explain giving example.

Watch Video Solution

5. Draw electron-dot structures with circles and line structures of the following molecules :

Hydrogen (H_2)

Watch Video Solution

6. Draw electron-dot structures with circles and line structures of the following molecules :

Nitrogen (N_2)

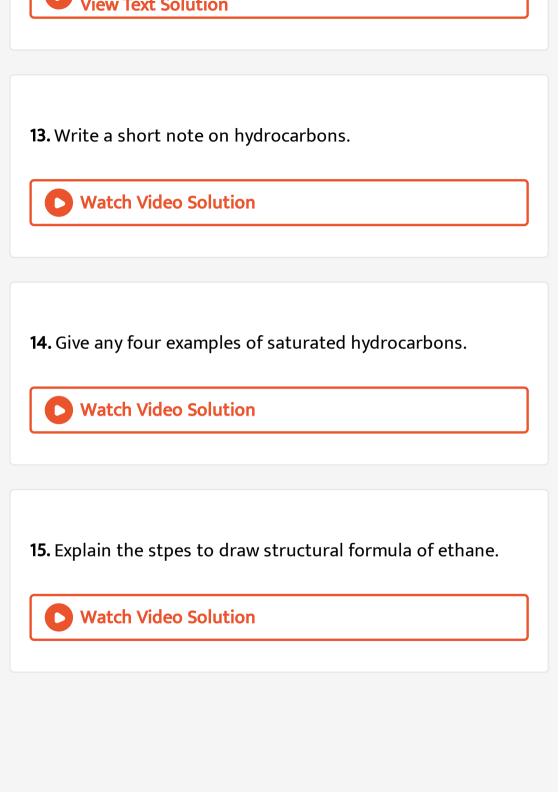
7. Draw electron-dot structures with circles and line structures of the following molecules :

Oxygen (O_2)

8. What causes the existence of very large number of carbon compunds?

9. What causes the existence of very large number of carbon compunds?

- 10. Explain two unique properties of carbon:
- i. Catenation



- **11.** Explain two unique properties of carbon :
- ii. Tetravalency:

12. Write name and molecular formula of the smallest carbon compounds.

16. Are the melting and boiling point of carbon compounds (covalent compounds) higher or lower as compared to ionic compounds?

Watch Video Solution

17. Why does carbon neither form C^{4+} cation nor C^{4-} anion, but forms covalent compounds?

18. Explain the term with example: Covalent bond

19. How is electron-dot structure of a molecule drawn? Explain giving example.

Watch Video Solution

20. Draw electron-dot structures with circles and line structures of the following molecules :

Hydrogen (H_2)

21. Draw electron-dot structures with circles and line structures of the following molecules :

Nitrogen (N_2)

Watch Video Solution

22. Draw electron-dot structures with circles and line structures of the following molecules :

Oxygen (O_2)

Watch Video Solution

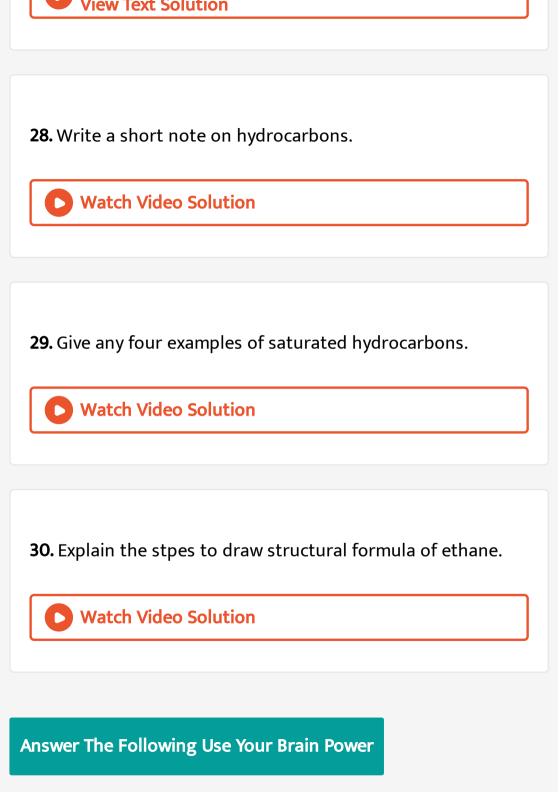
23. Carbon atoms come together in a large number to form extremely big molecules. What is the cause of this unique property of carbon?

View Text Solution

24. What causes the existence of very large number of carbon compunds?

25. Explain two unique properties of carbon:

i. Catenation


26. Explain two unique properties of carbon :

ii. Tetravalency :

27. Write name and molecular formula of the smallest carbon compounds.

1. Atomic number of Chlorine is 17. What is the number of electrons in the valence shell of Chlorine?

Watch Video Solution

2. Molecular formula of chlorine is CI_2 . Draw an electron dot and line structure of a chlorine molecule.

Watch Video Solution

3. The molecule formula of water is H_2O Draw electron dot and line structure of this triatomic molecule (use dots for electron of oxygen atom and cross for electrons of hydrogen atom)

Watch Widoo Calution

watch video Solution

4. The molecular formula of Ammonia is NH_3 Draw electron dot structure and line structure of ammonia molecule.

5. The molecular formula of carbon-dioxide is CO_2 - Draw the electron dot structure (without showing cricle) and line structure of CO_2 .

6. Answer the following questions in one word : With which bond C atom in CO_2 is bonded to each of the O

atoms?

7. The molecular formula of sulphur is S_8 in which eight sulphur atoms are bonded to each other to form a ring. Draw an electron-dot structure of S_8 withouth showing circles.

8. Answer the following questions in one word :

Molecular formula of propane is C_3H_8 . From the Molecular formula draw its structural formula.

9. The molecular formula of ethyne is C_2H_2 . From this, draw its structural formula and electron-dot structure.

Watch Video Solution

10. How mnay bonds have to be there in between the two carbon atoms in ethyne so as to satisfy their tetravalency?

Watch Video Solution

11. Atomic number of Chlorine is 17. What is the number of electrons in the valence shell of Chlorine?

12. Molecular formula of chlorine is CI_2 . Draw an electron dot and line structure of a chlorine molecule.

Watch Video Solution

13. The molecule formula of water is H_2O Draw electron dot and line structure of this triatomic molecule (use dots for electron of oxygen atom and cross for electrons of hydrogen atom)

Watch Video Solution

14. The molecular formula of Ammonia is NH_3 Draw electron dot structure and line structure of ammonia molecule.

Watch Widoo Calution

Water video Solution

15. The molecular formula of carbon-dioxide is CO_2 - Draw the electron dot structure (without showing cricle) and line structure of CO_2 .

16. Answer the following questions in one word:

With which bond C atom in CO_2 is bonded to each of the O atoms?

17. The molecular formula of sulphur is S_8 in which eight sulphur atoms are bonded to each other to form a ring. Draw an electron-dot structure of S_8 withouth showing circles.

Watch Video Solution

18. Answer the following questions in one word:

Molecular formula of propane is C_3H_8 . From the Molecular formula draw its structural formula.

19. The molecular formula of ethyne is C_2H_2 . From this, draw its structural formula and electron-dot structure.

Water video Solution

20. How mnay bonds have to be there in between the two carbon atoms in ethyne so as to satisfy their tetravalency?

Answer The Following

1. Write the number of covalent bonds in the molecules of butane, C_4H_{10} .

2. Explain the stpes to draw structural formula of ethane.

3. Draw an electron-dot structure of the following molecules (without showing the circles).

i. Methane

4. Draw an electron-dot structure of the following molecules (without showing the circles).

ii. Ethene

5. Draw an electron-dot structure of the following molecules (without showing the circles).

iii. Methanol

Watch Video Solution

6. Draw an electron-dot structure of the following molecules (without showing the circles).

iv. Water

Watch Video Solution

7. Write the molecular formulae and draw electron-dot structures of the following compounds :

i. Ethane

8. Answer the following questions: Draw an electron dot structure of the following molecules: Ethene

9. Explain the term with example: Unsaturated hydrocarbon

10. What is the difference between satureated hydrocarbons and unsaturated hydrocarbons ?

11. Write a short note on: Crude oil

View Text Solution

12. Explain the term with example: Structural isomerism

Watch Video Solution

13. Draw all possible structural formulae of compounds from their molecular formulae given below.

i. C_3H_8

14. Draw all possible structural formula of compounds from their molecular formula given below: $C_4 H_{10}$

Watch Video Solution

15. Draw all possible structural formulae of compounds from their molecular formulae given below.

iii. C_3H_4

Watch Video Solution

16. Write the molecular formula of the following:

i. Hexane

17. Write the molecular formula of the following: ii. Cyclohexane **Watch Video Solution 18.** Draw electron dot structure of cyclohexane. **Watch Video Solution** 19. Saturated hydrocarbons are classified into three types. Write these names giving one example each.

20. Explain the structure of benzene .
View Text Solution
21. Define the following : Hetero atom in a carbon compound
Watch Video Solution
22. Explain the term with example : Functional group
Watch Video Solution
23. Write the name of each of the following functional group:

i - OH

Watch Video Solution

24. Write the name of each of the following functional group

Watch Video Solution

25. Answer the following questions:

Give any four functional group containing oxygen as the heteroatom in it. Write name and structural formula and one example each.

26. Give names of three functinal groups containing three heteroatoms, write names and structural formulae and one example each.

Watch Video Solution

27. Identify and name the functional groups present in the following compounds.

i.
$$H- {\displaystyle \mathop{C}_{}^{} - \mathop{C}_{}^{} - \mathop{C}_{}^{} - OH} \atop {\displaystyle \mathop{|}\atop{H} \quad \ \ \, \atop{H} \quad \$$

28. Identify and name the functional groups present in the following compounds.

29. Identify and name the functional groups present in the following compounds.

30. With the help of an example explain what is mean by homologous series.

31. State the characteristics of a homologous series.

32. Write the molecular formulae of the first two members of the homologous series having functional group, -COOH.

33. Answer the following questions: By how many $-CH_2$ — (methylene) units do the formulae and the fist two members of homologous series ofalkane, methane (CH_4) and ethane (C_2H_6) differ? Similarly, by how many $-CH_2$ — Units do the neighboring members ethane (C_2H_6) and propane (C_3H_8) differ from each other?

34. How many methylene units are extra in the formula of the fourth member than the third members of the homologous series of alcohols?

35. How many methylene units are less in the formula of the second member than the third member of two homologous series of alkenes?

Watch Video Solution

36. Explain the term with example: Alkane

Watch Video Solution

37. What would be the general formula for the molecular formulae of the members of the homologous series of alkanes? What would be the value of 'n' for the first member of this series?

Watch Vidaa Calutian

38. The general molecular formula for the homologous series of alkynes is C_nH_{2n-2} . Write down the individual molecular formulae of the value 2, 3 and 4 respectively for 'n' in this formula.

Watch Video Solution

39. Complete the following flowchart and write the general formula of alkane :

40. State rules for the IUPAC nomenclature of carbon compounds. Give one example.

41. How would you name the following compounds?

42. Write the IUPAC names of the following compounds:

43. Write the IUPAC names of the following compounds:

Watch Video Solution

44. Write the IUPAC names of the following compounds:

Watch Video Solution

45. Write the IUPAC names of the following structural formulae.

 $CH_3 - CH_2 - CH_3$

Watch Video Solution

46. Write the IUPAC name of the following structural formula:

47. Write the IUPAC names of the following structural formula: CH_3CH_2-COOH

48. Write the IUPAC names of the following structural formulae.

$$CH_3 - CH_2 - NH_2$$

49. Write the IUPAC names of the following structural formula: CH_3-CHO

50. Write the IUPAC name of the following structural formula

 $: CH_3 - CO - CH_2 - CH_3$

Watch Video Solution

51. Write structural formulae for the following IUPAC names:

Pentan-2-one Molecular formula- $C_5H_{10}O$

Watch Video Solution

52. Write structural formulae for the following IUPAC names:

2-Chlorobutane: Molecular formula C_4H_9CI

53. Write structural formulae for the following IUPAC names:

Propan-2-ol: Molecular formula- C_3H_7OH

Watch Video Solution

54. Write structural formulae for the following IUPAC names:

Methanal Molecular formula- CH_2O

Watch Video Solution

55. Write structural formulae for the following IUPAC names:

Butanoic acid: Molecular formula- $C_4H_8O_2$ or

 $CH_3CH_2CH_2COOH$

56. Write structural formulae for the following IUPAC names:

1-bromopropane: Molecular formula- C_3H_7Br

Watch Video Solution

57. Write structural formulae for the following IUPAC names:

Ethanamine : Molecular formula- $C_2H_5 \ _NH_2$

Watch Video Solution

58. Write structural formulae for the following IUPAC names:

Butanone Molecular formula- C_4H_8O

59. Answer the following questions in one word:

Which is the component of biogas that makes it useful as fuel.

Watch Video Solution

60. Answer the following questions in one word:

Which product is formed by the combustion of elemental carbon?

Watch Video Solution

61. Answer the following questions in one word:

Is the biogas comustion reaction endothermic or exothermic.

62. Answer the following questions in one word:

Propane $\left(C_3H_6
ight)$ is one of the combustible component of

LPG. Write down the reaction for propane (C_3H_8)

63. Which of the following compounds will burn with a sooty flame?

64. The gas stoves have inlets for air. Explain.

65. Define the following/write notes: Oxidation Reaction **Watch Video Solution** 66. Explain the following reactions with examples: Combustion reaction **Watch Video Solution 67.** Define the following: Oxidant **Watch Video Solution**

68. How is the transformation of ethanol into ethanoic acid an oxidation reaction?

69. Define the following: Reduction

70. What is a catalyst? Write any one reaction which is brought about by use of a catalyst.

71. Differentiate between: Saturated and unsaturated Hydrocarbons.

72. What is a substitution reaction? Write the reaction involved in the chlorination of methane.

73. What is the difference between addition reaction and substitution reaction ?

74. You have learnt about four types of common reaction in the previous chapter. In which of these four types, the addition and substitution reaction of carbon compounds can be included? What are the additional details and included? What are the additional details and difference in the addition and substitution reaction?

View Text Solution

75. An organic compound P has molecular formula C_2H_4 . On reduction, it gives another compound Q with molecular formula C_2H_6 . Q reacts with chlorine in the presence of sunlight to give R having molecular formula C_2H_5Cl . Identify P, Q and R.

76. An organic compound P has molecular formula C_2H_4 . On reduction, it gives another compound Q with molecular formula C_2H_6 . Q reacts with chlorine in the presence of sunlight to give R having molecular formula C_2H_5Cl .

ii. Write the chemical equation for the conversion of P to Q.

77. Write any two physical properties of ethanol.

78. What is denatured spirit?

79. What are the harmful effects of ethanol?

Watch Video Solution

80. When ethanol is heated at $170^{\circ}C$ with conc. H_2SO_4 , it forms an organic compound 'A' and water. The compound 'A' reacts with hydrogen in the presence of nickel to form 'B'.

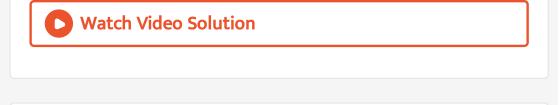
i. Name the compounds A and B. Write the chemical equations of the reactions involved.

Watch Video Solution

81. When ethanol is heated at $170^{\circ}\,C$ with conc. H_2SO_4 , it forms an organic compound 'A' and water. The compound 'A'

reacts with hydrogen in the presence of nickel to form 'B'.

ii.Identify the homologous series to which A and B belongs.



Watch Video Solution

82. When ethanol is heated at $170^{\circ}C$ with conc. H_2SO_4 , it forms an organic compound 'A' and water. The compound 'A' reacts with hydrogen in the presence of nickel to form 'B'. iii. Name the products formed when 'B' undergoes combustion in presence of sufficient amount of oxygen. Write its chemical equation.

83. What is meant by vinegar and gasohol? What are their uses?

84. Answer the following questions: State the physical properties of ethanoic acid.

85. Answer the following questions in one word:

What is glacial acetic acid?

86. Will the salt sodium acetate be neutral?

87. What are esters? Explain the preparation of ethyl ethanoate with the help of neat labelled diagram.

88. Give two uses of esters.

89. Identify the type of the following reaction of carbon compunds:

(11) $CH_1CH_2OH + 2[O] \rightarrow CH_3COOH + H_3O$ **Watch Video Solution**

(9) $CH_2 = CH_2 + Br_2 \rightarrow Br-CH_2-CH_2-Br$ (10) $2CH_3OH + 3O_3 \rightarrow 2CO_2 + 4H_2O_3$

CH,-CH,-CH,-OH → CH,-CH,-COOH

(3) CH₃-CH = CH - CH₃ + Br₂ → CH₃-CHBr - CHBr-CH₃

CH,-COOH + CH,-OH → CH,-COOCH, + H,O

 $CH_{2}-CH_{3}-CH_{4}-CH_{5}-$

CH₃-CH₂-COOH + NaOH → CH₂-CH₂-COONa + H₂O

CH₃COOC₂H₅ + NaOH → CH₃COONa + C₂H₅OH

CH,-CH,+5O, → 3CO,+4H,O

CH,-CH,+Cl, → CH,-CH,-Cl + HCl

90. Identify the type of the following reaction of carbon

compunds:

(1)

(2)

(4)

(5)

(6)

(7)

(8)

- (1) CH,-CH,-CH,-OH → CH,-CH,-COOH
- (2) CH_3 - CH_2 - CH_2 + $5O_2$ \rightarrow $3CO_2$ + $4H_2$ O
- (3) CH_3 - $CH = CH CH_3 + Br_2 \rightarrow CH_3$ - $CHBr CHBr-CH_3$
- CH₃-CH₃+Cl₂ → CH₃-CH₂-Cl₂+HCl₂ (4)
- CH_2 - CH_3 -(5)
- CH₃-CH₂-COOH + NaOH → CH₃-CH₂-COONa + H₂O (6)
- CH₃-COOH + CH₃-OH → CH₃-COOCH₃ + H₂O (7) CH₃COOC₂H₅ + NaOH → CH₃COONa + C₂H₅OH (8)
- (9) $CH_2 = CH_2 + Br_2 \rightarrow Br-CH_2-CH_2-Br$
- (10) $2CH_3OH + 3O_3 \rightarrow 2CO_2 + 4H_2O_3$
- $CH_1CH_2OH + 2[O] \rightarrow CH_1COOH + H_2O$ (11)

91. Identify the type of the following reaction of carbon compunds:

- (1) CH₃-CH₂-CH₂-OH → CH₃-CH₂-COOH
- (2) CH_3 - CH_2 - CH_2 + $5O_2$ \rightarrow $3CO_2$ + $4H_2O$
- (3) $CH_3-CH = CH CH_3 + Br_2 \rightarrow CH_3-CHBr CHBr-CH_3$
- (4) CH₃-CH₃+Cl₂ → CH₃-CH₂-Cl + HCl
- (5) CH,-CH,-CH,-CH,-OH → CH,-CH, CH = CH, + H,O
- (6) CH₃-CH₂-COOH + NaOH → CH₃-CH₂-COONa + H₂O
- (7) CH₃-COOH + CH₃-OH → CH₃-COOCH₃ + H₂O
- (8) $CH_3COOC_2H_5 + NaOH \rightarrow CH_3COONa + C_2H_5OH$
- 9) $CH_2 = CH_2 + Br_2 \rightarrow Br CH_2 CH_2 Br$
- (10) 2CH₂OH + 3O₂ → 2CO₂ + 4H₂O
- (11) $CH_3CH_2OH + 2[O] \rightarrow CH_3COOH + H_2O$

Watch Video Solution

92. Identify the type of the following reaction of carbon compunds:

 CH_3 - CH_3 -(5) CH,-CH,-COOH + NaOH → CH,-CH,-COONa + H,O (6) CH₃-COOH + CH₃-OH → CH₃-COOCH₃ + H₂O (7) CH₃COOC₂H₅ + NaOH → CH₃COONa + C₂H₅OH (8)

(11) $CH_1CH_2OH + 2[O] \rightarrow CH_3COOH + H_3O$

CH₃-CH₂-CH₂-CH₃-CH₃-COOH

CH₃-CH₂-CH₂+5O₂ → 3CO₂+4H₂O

CH,-CH,+Cl, → CH,-CH,-Cl + HCl

(9) $CH_1 = CH_1 + Br_2 \rightarrow Br_1 - CH_2 - Br_3$ (10) $2CH_3OH + 3O_3 \rightarrow 2CO_2 + 4H_2O_3$

(3) CH₃-CH = CH - CH₃ + Br, → CH₃-CHBr - CHBr-CH₃

Watch Video Solution

93. Identify the type of the following reaction of carbon

compunds:

(1)

(2)

(4)

- (1) CH₃-CH₂-CH₂-CH₃-CH₃-COOH
- (2) CH_3 - CH_2 - CH_2 + $5O_2$ \rightarrow $3CO_2$ + $4H_2$ O (3) CH_3 - $CH = CH - CH_3 + Br_2 \rightarrow CH_3$ - $CHBr - CHBr-CH_3$
- CH₃-CH₃+Cl₂ → CH₃-CH₂-Cl₂+HCl₂ (4)
- CH_2 - CH_3 -(5)CH₃-CH₂-COOH + NaOH → CH₃-CH₂-COONa + H₂O (6)
- CH₃-COOH + CH₃-OH → CH₃-COOCH₃ + H₂O (7) CH₃COOC₂H₅ + NaOH → CH₃COONa + C₂H₅OH (8)
- (9) $CH_2 = CH_2 + Br_2 \rightarrow Br-CH_2-CH_2-Br$
- (10) $2CH_3OH + 3O_3 \rightarrow 2CO_3 + 4H_2O_3$
- $CH_1CH_2OH + 2[O] \rightarrow CH_1COOH + H_2O$ (11)

94. Identify the type of the following reaction of carbon compunds:

- (1) CH₃-CH₂-CH₂-OH → CH₃-CH₂-COOH
- (2) CH_3 - CH_2 - CH_2 + $5O_2$ \rightarrow $3CO_2$ + $4H_2$ O
- (3) CH₃-CH = CH CH₃ + Br₂ → CH₃-CHBr CHBr-CH₃
- (4) CH,-CH,+Cl, → CH,-CH,-Cl + HCl
- (5) CH_3 - $CH_$
- (6) CH₃-CH₂-COOH + NaOH → CH₃-CH₂-COONa + H₂O
- (7) CH₃-COOH + CH₃-OH → CH₃-COOCH₃ + H₂O
- 8) $CH_3COOC_2H_5 + NaOH \rightarrow CH_3COONa + C_2H_5OH$
- (9) $CH_2 = CH_2 + Br_2 \rightarrow Br CH_2 CH_2 Br$
- (10) 2CH₂OH + 3O₂ → 2CO₂ + 4H₂O
- (11) $CH_3CH_2OH + 2[O] \rightarrow CH_3COOH + H_2O$

Watch Video Solution

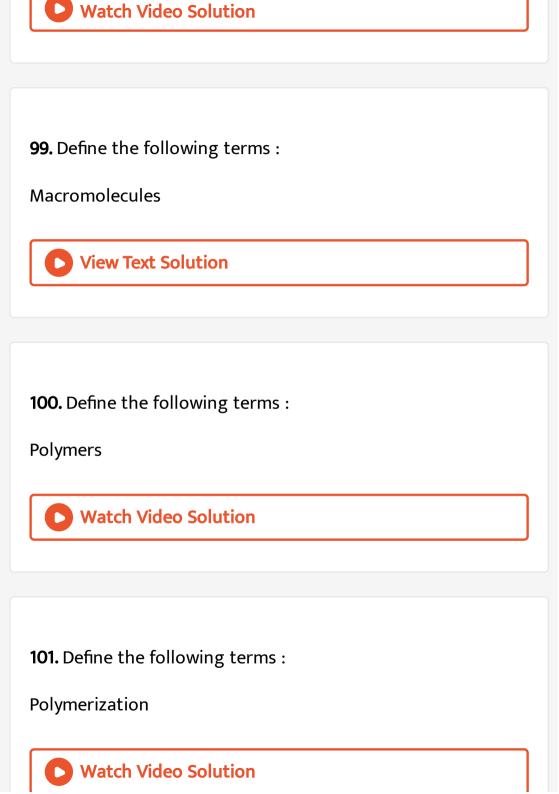
95. Identify the type of the following reaction of carbon compounds.

View lext Solution

following chemical reactions.

96. State the role of reagents shown on arrows in the

$$CH_3COOH + CH_3CH_2OH \xrightarrow{\mathrm{Conc.} H_2SO_4} CH_3COOC_2H_5 + H_2O$$


following chemical reactions. $CH_3CH_2OH \xrightarrow{KMnO_4} CH_3COOH$

97. State the role of reagents shown on arrows in the

98. What is saponification?

102. Define the following terms: Copolymer **Watch Video Solution** 103. Explain the term with example: Monomer **Watch Video Solution 104.** Explain the terms with example: Homopolymer **Watch Video Solution**

105. Give four examples of the following: Natural macromolecules **Watch Video Solution 106.** Give four examples of the following: Manmade macromolecules **Watch Video Solution 107.** Give four examples of the following:

Homopolymers

108. Structural formulae of some monomers are given below.

Write the structural formula of the homopolymer formed from them.

(a)
$$CH_2=\mathop{
m C}_{CH_3}^{CH_3}$$

Watch Video Solution

109. Structural formulae of some monomers are given below. Write the structural formula of the homopolymer formed from them.

110. From the given structural formula of polyvinyl acetate, that is used in paints and glues, deduce the name and structural formula of the corresponding monomer.

111. Give names of three natural polymers. Write the place of their occurrence and names of monomers from which they are formed.

- Watch video Solution

112. Write the number of covalent bonds in the molecules of butane, C_4H_{10} .

113. Explain the stpes to draw structural formula of ethane.

114. Draw an electron-dot structure of the following molecules (without showing the circles).

i. Methane

115. Draw an electron-dot structure of the following molecules (without showing the circles).

ii. Ethene

Watch Video Solution

116. Draw an electron-dot structure of the following molecules (without showing the circles).

iii. Methanol

Watch Video Solution

117. Draw an electron-dot structure of the following molecules (without showing the circles).

iv. Water

118. Write the molecular formulae and draw electron-dot structures of the following compounds :

i. Ethane

119. Write the molecular formulae and draw electron-dot structures of the following compounds :

i. Ethane

120. Explain the term with example : Unsaturated hydrocarbon

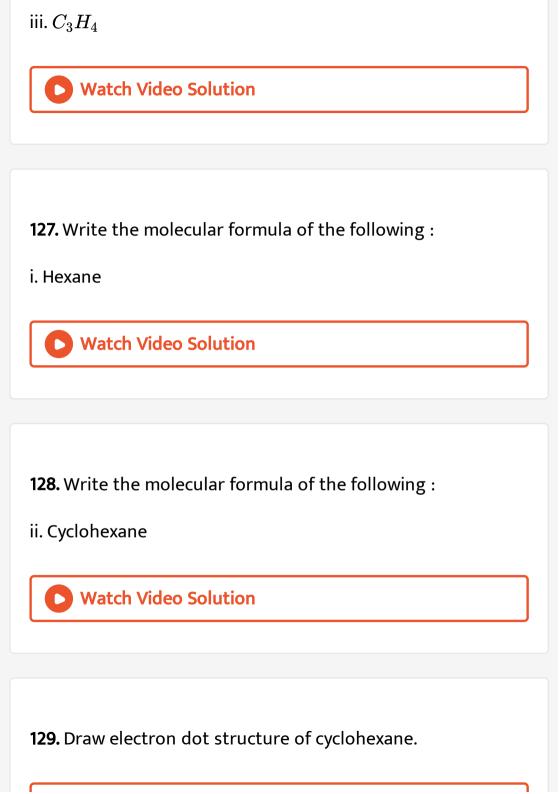
Watch Video Solution

121. What is the difference between satureated hydrocarbons and unsaturated hydrocarbons ?

122. Write a short note on : Crude oil

123. Explain the term with example: Structural isomerism

124. Draw all possible structural formulae of compounds from their molecular formulae given below.



125. Draw all possible structural formula of compounds from their molecular formula given below: $C_4 H_{10}$

126. Draw all possible structural formulae of compounds from their molecular formulae given below.

130. Saturated hydrocarbons are classified into three types.

Write these names giving one example each.

131. Explain the structure of benzene.

132. Explain the term with example: Hetero atom in a carbon compound

View Text Solution

133. Explain the term with example: Functional group

Watch Video Solution

134. Write the name of each of the following functional group

:

i. -OH

Watch Video Solution

135. Write the name of each of the following functional group

:

ii.-C

136. Answer the following questions:

Give any four functional group containing oxygen as the heteroatom in it. Write name and structural formula and one example each.

Watch Video Solution

137. Give names of three functinal groups containing three heteroatoms, write names and structural formulae and one example each.

138. Identify and name the functional groups present in the following compounds.

139. Identify and name the functional groups present in the following compounds.

ii.
$$H- {\displaystyle \mathop{U}_{|}} {\displaystyle \mathop{U}_{$$

140. Identify and name the functional groups present in the following compounds.

141. With the help of an example explain what is mean by homologous series.

142. State the characteristics of a homologous series.

143. Write the molecular formulae of the first two members of the homologous series having functional group, -COOH.

Watch Video Solution

144. Answer the following questions: By how many $-CH_2$ — (methylene) units do the formulae and the fist two members of homologous series ofalkane, methane (CH_4) and ethane (C_2H_6) differ? Similarly, by how many $-CH_2$ — Units do the neighboring members ethane (C_2H_6) and propane (C_3H_8) differ from each other?

145. How many methylene units are extra in the formula of the fourth member than the third members of the homologous series of alcohols?

146. How many methylene units are less in the formula of the second member than the third member of two homologous series of alkenes?

147. Explain the term with example: Alkane

148. What would be the general formula for the molecular formulae of the members of the homologous series of alkanes? What would be the value of 'n' for the first member of this series?

Watch Video Solution

149. The general molecular formula for the homologous series of alkynes is C_nH_{2n-2} . Write down the individual molecular formulae of the value 2, 3 and 4 respectively for 'n' in this formula.

150. Complete the following flowchart and write the general formula of alkane :

151. State rules for the IUPAC nomenclature of carbon compounds. Give one example.

152. How would you name the following compounds?

$$H-egin{pmatrix}H&H&H&H&H\ -C-C-C-C-C-C-C&=C-H\ H&H&H&H\end{pmatrix}$$

153. Write the IUPAC names of the following compounds:

$$H - \begin{matrix} H & H & H & H & O \ | & | & | & | & | \ H - C - C - C - C - C - C - C - O - H \ | & | & | & | \ H & H & H & H \end{matrix}$$

Watch Video Solution

154. Write the IUPAC names of the following compounds:

155. Write the IUPAC names of the following compounds:

$$H - \overset{H}{\overset{H}{\overset{}{\mid}}} - \overset{H}{\overset{}{\mid}} - \overset{H}{\overset{}{\mid}} - \overset{H}{\overset{}{\mid}} - \overset{H}{\overset{}{\mid}} - H$$

Watch Video Solution

156. Write the IUPAC names of the following structural formulae.

$$CH_3 - CH_2 - CH_3$$

Watch Video Solution

157. Write the IUPAC name of the following structural formula:

158. Write the IUPAC names of the following structural formula: CH_3CH_2-COOH

159. Write the IUPAC names of the following structural formulae.

$$CH_3 - CH_2 - NH_2$$

160. Write the IUPAC names of the following structural formula: CH_3-CHO

161. Write the IUPAC name of the following structural formula $: CH_3 - CO - CH_2 - CH_3$

162. Write structural formulae for the following IUPAC names:

Pentan-2-one Molecular formula- $C_5H_{10}O$

Watch Video Solution

163. Write structural formulae for the following IUPAC names:

2-Chlorobutane: Molecular formula C_4H_9CI

Watch Video Solution

164. Write structural formulae for the following IUPAC names:

Propan-2-ol: Molecular formula- C_3H_7OH

165. Write structural formulae for the following IUPAC names:

Methanal Molecular formula- CH_2O

Watch Video Solution

166. Write structural formulae for the following IUPAC names:

Butanoic acid: Molecular formula- $C_4H_8O_2$ or

$CH_3CH_2CH_2COOH$

Watch Video Solution

167. Write structural formulae for the following IUPAC names:

1-bromopropane: Molecular formula- C_3H_7Br

168. Write structural formulae for the following IUPAC names:

Ethanamine : Molecular formula- $C_2H_5 \ _NH_2$

Watch Video Solution

169. Write structural formulae for the following IUPAC names:

Butanone Molecular formula- C_4H_8O

Watch Video Solution

170. Answer the following questions in one word:

Which is the component of biogas that makes it useful as

fuel.

171. Answer the following questions in one word:

Which product is formed by the combustion of elemental carbon?

Watch Video Solution

172. Answer the following questions in one word:

Is the biogas comustion reaction endothermic or exothermic.

Watch Video Solution

173. Answer the following questions in one word:

Propane $\left(C_3H_6
ight)$ is one of the combustible component of

LPG. Write down the reaction for propane (C_3H_8)

Watch Widoo Colution

174. Which of the following compounds burns with sooty flame? **Watch Video Solution** 175. The gas stoves have inlets for air. Explain. **View Text Solution 176.** Define the following/write notes: Oxidation Reaction **Watch Video Solution**

177. Explain the following reactions with examples: Combustion reaction **Watch Video Solution** 178. Define the following: Oxidant **Watch Video Solution** 179. How is the transformation of ethanol into ethanoic acid an oxidation reaction? **Watch Video Solution**

180. Define the following: Reduction

181. What is a catalyst? Write any one reaction which is brought about by use of a catalyst.

182. Differentiate between: Saturated and unsaturated Hydrocarbons.

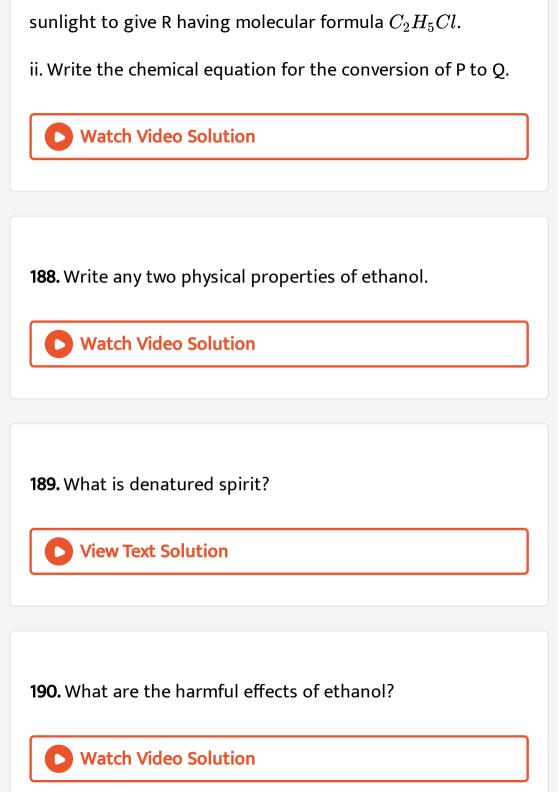
183. What is a substitution reaction? Write the reaction involved in the chlorination of methane.

Watch Video Solution

184. What is the difference between addition reaction and substitution reaction ?

Watch Video Solution

185. You have learnt about four types of common reaction in the previous chapter. In which of these four types, the addition and substitution reaction of carbon compounds can be included? What are the additional details and included?


What are the additional details and difference in the addition and substitution reaction?

186. An organic compound P has molecular formula C_2H_4 . On reduction, it gives another compound Q with molecular formula C_2H_6 . Q reacts with chlorine in the presence of sunlight to give R having molecular formula C_2H_5Cl . Identify P, Q and R.

187. An organic compound P has molecular formula C_2H_4 . On reduction, it gives another compound Q with molecular formula C_2H_6 . Q reacts with chlorine in the presence of

191. When ethanol is heated at $170^{\circ}C$ with conc. H_2SO_4 , it forms an organic compound 'A' and water. The compound 'A' reacts with hydrogen in the presence of nickel to form 'B'.

i. Name the compounds A and B. Write the chemical equations of the reactions involved.

Watch Video Solution

192. When ethanol is heated at $170^{\circ}C$ with conc. H_2SO_4 , it forms an organic compound 'A' and water. The compound 'A' reacts with hydrogen in the presence of nickel to form 'B'. ii.ldentify the homologous series to which A and B belongs.

193. When ethanol is heated at $170^{\circ}\,C$ with conc. H_2SO_4 , it forms an organic compound 'A' and water. The compound 'A' reacts with hydrogen in the presence of nickel to form 'B'. iii. Name the products formed when 'B' undergoes combustion in presence of sufficient amount of oxygen. Write its chemical equation.

Watch Video Solution

194. What is meant by vinegar and gasohol? What are their uses?

195. Answer the following questions: State the physical properties of ethanoic acid.

Watch Video Solution

196. Answer the following questions in one word:

What is glacial acetic acid?

Watch Video Solution

197. Will the salt sodium acetate be neutral?

198. What is esterification reaction? Explain the preparation of an ester with the help of a neat labelled diagram.

199. Give two uses of esters.

200. Identify the type of the following reaction of carbon compunds:

 CH_3 - CH_3 -(5) CH,-CH,-COOH + NaOH → CH,-CH,-COONa + H,O (6) CH₃-COOH + CH₃-OH → CH₃-COOCH₃ + H₂O (7) CH₃COOC₂H₅ + NaOH → CH₃COONa + C₂H₅OH (8) (9) $CH_1 = CH_1 + Br_2 \rightarrow Br_1 - CH_2 - Br_3$

CH₃-CH₂-CH₂-CH₃-CH₃-COOH

(3) CH₃-CH = CH - CH₃ + Br, → CH₃-CHBr - CHBr-CH₃

CH₃-CH₂-CH₂+5O₂ → 3CO₂+4H₂O

CH,-CH,+Cl, → CH,-CH,-Cl + HCl

(1)

(2)

(4)

(10) $2CH_3OH + 3O_3 \rightarrow 2CO_2 + 4H_2O_3$ (11) $CH_1CH_2OH + 2[O] \rightarrow CH_3COOH + H_3O$

201. Identify the type of the following reaction of carbon

compunds:

- (1) CH₃-CH₂-CH₂-CH₃-CH₃-COOH
- (2) CH_3 - CH_2 - CH_2 + $5O_2$ \rightarrow $3CO_2$ + $4H_2$ O
- (3) CH_3 - $CH = CH CH_3 + Br_2 \rightarrow CH_3$ - $CHBr CHBr-CH_3$
- CH₃-CH₃+Cl₂ → CH₃-CH₂-Cl₂+HCl₂ (4)
- CH_2 - CH_3 -(5)
- CH₃-CH₂-COOH + NaOH → CH₃-CH₂-COONa + H₂O (6) CH₃-COOH + CH₃-OH → CH₃-COOCH₃ + H₂O (7)
- CH₃COOC₂H₅ + NaOH → CH₃COONa + C₂H₅OH (8)
- (9) $CH_2 = CH_2 + Br_2 \rightarrow Br-CH_2-CH_2-Br$
- (10) $2CH_3OH + 3O_3 \rightarrow 2CO_3 + 4H_2O_3$
- $CH_1CH_2OH + 2[O] \rightarrow CH_1COOH + H_2O$ (11)

202. Identify the type of the following reaction of carbon compunds:

- (1) CH₃-CH₂-CH₂-OH → CH₃-CH₂-COOH
- (2) CH_3 - CH_2 - CH_2 + $5O_2$ \rightarrow $3CO_2$ + $4H_2O$
- (3) CH_3 - $CH = CH CH_3 + Br_2 \rightarrow CH_3$ -CHBr CHBr- CH_3
- (4) CH₃-CH₃+Cl₂ → CH₃-CH₂-Cl + HCl
- (5) CH_3 - $CH_$
- (6) CH₃-CH₂-COOH + NaOH → CH₃-CH₂-COONa + H₂O
- (7) CH₃-COOH + CH₃-OH → CH₃-COOCH₃ + H₂O
- (8) $CH_3COOC_2H_5 + NaOH \rightarrow CH_3COONa + C_2H_5OH$
- 9) $CH_2 = CH_2 + Br_2 \rightarrow Br_2 CH_2 Br_2$
- (10) 2CH₂OH + 3O₂ → 2CO₂ + 4H₂O
- (11) $CH_3CH_2OH + 2[O] \rightarrow CH_3COOH + H_2O$

Watch Video Solution

203. Identify the type of the following reaction of carbon compunds:

 CH_1 - CH_2 - CH_3 - CH_4 - CH_4 - CH_5 -(5)CH₃-CH₂-COOH + NaOH → CH₂-CH₂-COONa + H₂O (6) CH,-COOH + CH,-OH → CH,-COOCH, + H,O (7) CH₃COOC₂H₅ + NaOH → CH₃COONa + C₂H₅OH (8) (9) $CH_2 = CH_2 + Br_2 \rightarrow Br-CH_2-CH_2-Br$

CH,-CH,-CH,-OH → CH,-CH,-COOH

(3) $CH_3-CH=CH-CH_3+Br_3\rightarrow CH_3-CHBr-CH_3$

CH,-CH,+5O, → 3CO,+4H,O

CH,-CH,+Cl, → CH,-CH,-Cl + HCl

(1)

(2)

(4)

(10) $2CH_3OH + 3O_3 \rightarrow 2CO_2 + 4H_2O_3$ (11) $CH_1CH_2OH + 2[O] \rightarrow CH_3COOH + H_3O$

204. Identify the type of the following reaction of carbon

compunds:

- (1) CH,-CH,-CH,-OH → CH,-CH,-COOH
- (2) CH_3 - CH_2 - CH_2 + $5O_2$ \rightarrow $3CO_2$ + $4H_2$ O (3) CH_3 - $CH = CH - CH_3 + Br_2 \rightarrow CH_3$ - $CHBr - CHBr-CH_3$
- CH₃-CH₃+Cl₂ → CH₃-CH₂-Cl₂+HCl₂ (4)
- CH_2 - CH_3 -(5)
- CH₃-CH₂-COOH + NaOH → CH₃-CH₂-COONa + H₂O (6)
- CH₃-COOH + CH₃-OH → CH₃-COOCH₃ + H₂O (7) CH₃COOC₂H₅ + NaOH → CH₃COONa + C₂H₅OH (8)
- (9) $CH_2 = CH_2 + Br_2 \rightarrow Br-CH_2-CH_2-Br$
- (10) $2CH_3OH + 3O_3 \rightarrow 2CO_3 + 4H_2O_3$
- $CH_1CH_2OH + 2[O] \rightarrow CH_1COOH + H_2O$ (11)

205. Identify the type of the following reaction of carbon compunds:

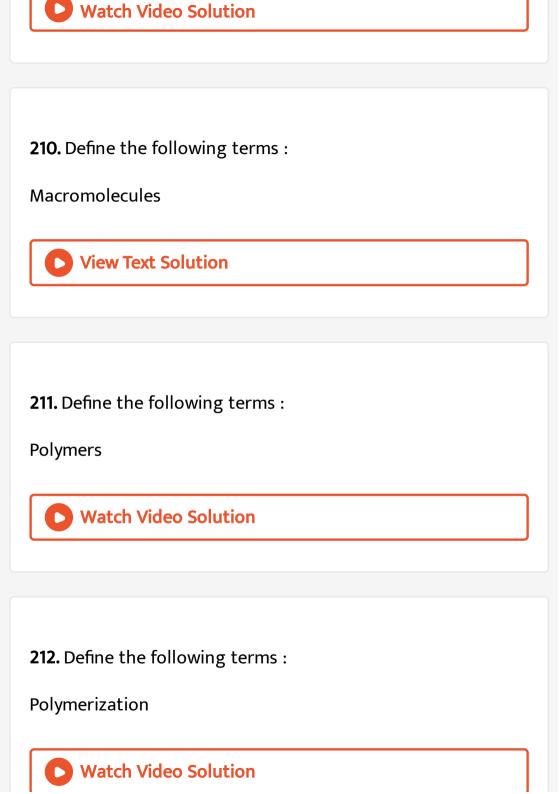
- (1) CH₃-CH₂-CH₂-OH → CH₃-CH₂-COOH
- (2) CH₃-CH₂-CH₂+5O₂ → 3CO₂+4H₂O
- (3) CH₃-CH = CH CH₃ + Br₂ → CH₃-CHBr CHBr-CH₃
- (4) CH,-CH,+Cl, → CH,-CH,-Cl + HCl
- (6) CH₃-CH₂-COOH + NaOH → CH₃-CH₂-COONa + H₂O
- (7) CH₃-COOH + CH₃-OH → CH₃-COOCH₃ + H₂O
- 8) CH₃COOC₂H₅ + NaOH → CH₃COONa + C₂H₅OH
- (9) $CH_2 = CH_2 + Br_2 \rightarrow Br CH_2 CH_2 Br$
- $(10) \quad 2CH_3OH + 3O_2 \rightarrow 2CO_2 + 4H_2O$
- (11) $CH_3CH_2OH + 2[O] \rightarrow CH_3COOH + H_2O$

Watch Video Solution

206. Identify the type of the following reaction of carbon compounds.

View lext Solution

following chemical reactions. $CH_3COOH + CH_3CH_2OH \xrightarrow{\mathrm{Conc.}H_2SO_4} CH_3COOC_2H_5 + H_2OOC_2H_5 + H_2OOC_5H_5 + H_2OOC_5H_5 + H_2OOC_5H_5 + H_2OOC_5H_5 + H_2OOC_5H_5 + H_2OOC_5H_5 + H_2OOC_5H_5$


207. State the role of reagents shown on arrows in the

following chemical reactions. $CH_3CH_2OH \xrightarrow{KMnO_4} CH_3COOH$

208. State the role of reagents shown on arrows in the

213. Define the following terms : Copolymer **Watch Video Solution** 214. Explain the term with example: Monomer **Watch Video Solution** 215. Explain the terms with example: Homopolymer **Watch Video Solution**

216. Give four examples of the following: Natural macromolecules **Watch Video Solution** 217. Give four examples of the following: Manmade macromolecules **Watch Video Solution** 218. Give four examples of the following:

Homopolymers

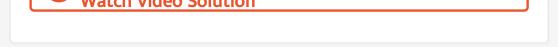
219. Structural formulae of some monomers are given below.

Write the structural formula of the homopolymer formed from them.

(a)
$$CH_2=\mathop{
m C}_{CH_3}^{CH_3}$$

220. Structural formulae of some monomers are given below. Write the structural formula of the homopolymer formed from them.

(b)
$$CH_2=\mathop{
m C}_{\stackrel{}{C}N}^{CH_3}$$



221. From the given structural formula of polyvinyl acetate, that is used in paints and glues, deduce the name and structural formula of the corresponding monomer.

$$\left[egin{array}{cccc} {
m H} & {
m C} & {
m C} & {
m H} & {
m C} & {
m C}$$

222. Give names of three natural polymers. Write the place of their occurrence and names of monomers from which they are formed.

Give Reasons

1. Carbon is a tetravalent atom.

2. Carbon generally forms compounds by covalent bonds.

3. A wax candle burns with yellow flame.

iii. These carbon particles rise in the the flame, get heated

and glow to impart yellowish colour to the flame.

Hence, a wax candle burns with yellow flame.

View Text Solution

4. Propene undergoes addition reaction.

iii. Unsaturated compounds contain multiple bonds as their functional group and hence, they undergo addition reaction to forms a saturated compound as the product.

Hence, propene undergoes addition reaction.

View Text Solution

5. Carbon is a tetravalent atom.

View Text Solution

6. Carbon generally forms compounds by covalent bonds.

7. A wax candle burns with yellow flame.

iii. These carbon particles rise in the the flame, get heated and glow to impart yellowish colour to the flame.

Hence, a wax candle burns with yellow flame.

8. Propene undergoes addition reaction.

iii. Unsaturated compounds contain multiple bonds as their functional group and hence, they undergo addition reaction

to forms a saturated compound as the product.

Hence, propene undergoes addition reaction.

Give Balanced Chemical Equation

1. Complete the following equations:

$$CH_3COOH + Na_2CO_3
ightarrow$$

2. Complete the following equations:

$$CH_4 + O_2
ightarrow$$

$$C_2H_5OH+Na
ightarrow$$

Watch Video Solution

4. Complete the following equations :

$$CH_3COOC_2H_5 + NaOH \rightarrow$$

Watch Video Solution

5. Complete the following equations:

$$CH_3COOH + NaOH \rightarrow$$

$$C_2H_5OH + CH_3COOH \rightarrow$$

Watch Video Solution

7. Write the chemical equation for the conversion of ethanol to ethanoic acid in the presence of $KMnO_4$.

Watch Video Solution

8. Answer the following questions: How is ethene prepared from ethanol? Give the reaction involved in it.

$$CH_3COOH + Na_2CO_3
ightarrow$$

Watch Video Solution

10. Complete the following equations :

$$CH_4 + O_2 \rightarrow$$

Watch Video Solution

11. Complete the following equations:

$$C_2H_5OH+Na
ightarrow$$

 $CH_3COOC_2H_5 + NaOH
ightarrow$

Watch Video Solution

13. Complete the following equations :

$$CH_3COOH + NaOH \rightarrow$$

Watch Video Solution

14. Complete the following equations:

$$C_2H_5OH + CH_3COOH \rightarrow$$

15. Write the chemical equation for the conversion of ethanol to ethanoic acid in the presence of $KMnO_4$.

16. Answer the following questions: How is ethene prepared from ethanol? Give the reaction involved in it.

Distinguish Between

1. Differentiate between: Covalent compounds and Ionic compounds.

2. Differentiate between: Saturated and unsaturated Hydrocarbons.

3. Differentiate between: Covalent compounds and Ionic compounds.

4. What is the difference between satureated hydrocarbons and unsaturated hydrocarbons ?

Complete The Given Chart Table

1. The first column of the following table shows straight chains of carbon atom. Write the structural formulae of the corresponding straight chain hydrocarbons in the second column satisfying the tetravalency to the carbon atom by joining them to hydrogen atoms. Work out the molecular formula from this and write it down in the third column. The name of the hydrocarbon is given in the fourth column.

2. Complete the following chat.

3. Complete the table:

Fill in the gaps in the following tables of different homologous series.

i. Homologous series of alkanes:

4. Complete the table :

Fill in the gaps in the following tables of different homologous series.

ii. Homologous series of alcohols:

5. Complete the table :

Fill in the gaps in the following tables of different homologous series.

iii. Homologous series of alkenes:

6. Write the names of first four members of homologous series of alcohols.

7. Complete the following table.

8. Complete the table.

The following table shown common names and structural formulae of a few carbon compounds.

Complete the table by writing their IUPAC names in the third column.

9. Complete the following table.

10. Given the table below, identify substances which contain multiple bonds. Indicate number of multiple bonds and also identify substances which decolourize I_2 .

11. Complete the following table:

View lext Solution

12. The first column of the following table shows straight chains of carbon atom. Write the structural formulae of the corresponding straight chain hydrocarbons in the second column satisfying the tetravalency to the carbon atom by joining them to hydrogen atoms. Work out the molecular formula from this and write it down in the third column. The name of the hydrocarbon is given in the fourth column.

13. Complete the following chat.

View Text Solution

14. Complete the table :

Fill in the gaps in the following tables of different homologous series.

i. Homologous series of alkanes:

15. Complete the table:

Fill in the gaps in the following tables of different homologous series.

ii. Homologous series of alcohols:

View Text Solution

16. Complete the table :

Fill in the gaps in the following tables of different homologous series.

iii. Homologous series of alkenes:

17. Write the names of first four members of homologous series of alcohols.

18. Complete the following table.

19. Complete the table.

The following table shown common names and structural formulae of a few carbon compounds.

Complete the table by writing their IUPAC names in the third column.

20. Complete the following table.

View Text Solution

21. Given the table below, identify substances which contain multiple bonds. Indicate number of multiple bonds and also identify substances which decolourize I_2 .

22. Complete the following table:

View Text Solution

Questions Based On Diagram

1. Given below are two different types of molecular models of methane.

Identify ball and stick model and space filling model.

2. Given below are two different types of molecular models of methane.

Identify ball and stick model and space filling model.

3. The experimental setup showing the reaction between ethanoic acid and sodium carbonate is as shown below:

Identify the gas evolved in the above experiment.

View Text Solution

4. The experimental setup showing the reaction between ethanoic acid and sodium carbonate is as shown below:

What happens when the evolved gas reacts with lime water?

Give the chemical equation involved.

View Text Solution

5. The experimental setup showing the reaction between ethanoic acid and sodium carbonate is as shown below:

iii. Write the chemical equation for the reaction of ethanoic acid with sodium carbonate.

View Text Solution

6. Given below are two different types of molecular models of methane.

Identify ball and stick model and space filling model.

7. Given below are two different types of molecular models of methane.

Identify ball and stick model and space filling model.

8. The experimental setup showing the reaction between ethanoic acid and sodium carbonate is as shown below:

Identify the gas evolved in the above experiment.

9. The experimental setup showing the reaction between ethanoic acid and sodium carbonate is as shown below:

What happens when the evolved gas reacts with lime water?

Give the chemical equation involved.

View Text Solution

10. The experimental setup showing the reaction between ethanoic acid and sodium carbonate is as shown below:

iii. Write the chemical equation for the reaction of ethanoic acid with sodium carbonate.

Questions Based On Paragraph

1. Give Scientific reasons: Carbon can form a large number of compounds.

Watch Video Solution

2. Carbon forms a large number of compounds because of its two unique properties formed many have long straight chains of carbon, branched chains of carbon or rings of carbon. In these compounds, carbon atoms may form single, double or triple covalent bonds. Compounds in which the carbon atoms are linked to each other by single bonds are called saturated carbon compounds whereas compounds having at least one carbon-carbon double or triple bond are

called unsaturated carbon compounds. Compounds containing only carbon and hydrogen are known as hydrocarbons. Based on the above information, answer the following questions.

ii. Give two examples of carbon compounds which have ring structure.

Watch Video Solution

3. Carbon forms a large number of compounds because of its two unique properties formed many have long straight chains of carbon, branched chains of carbon or rings of carbon. In these compounds, carbon atoms may form single, double or triple covalent bonds. Compounds in which the carbon atoms are linked to each other by single bonds are called saturated carbon compounds whereas compounds

having at least one carbon-carbon double or triple bond are called unsaturated carbon compounds. Compounds containing only carbon and hydrogen are known as hydrocarbons. Based on the above information, answer the following questions.

iii. What are saturated hydrocarbons? Give one example.

4. Carbon forms a large number of compounds because of its two unique properties formed many have long straight chains of carbon, branched chains of carbon or rings of carbon. In these compounds, carbon atoms may form single, double or triple covalent bonds. Compounds in which the carbon atoms are linked to each other by single bonds are called saturated carbon compounds whereas compounds

having at least one carbon-carbon double or triple bond are called unsaturated carbon compounds. Compounds containing only carbon and hydrogen are known as hydrocarbons. Based on the above information, answer the following questions.

iv. Give IUPAC names of first two members of hydrocarbon which contain carbon-carbon double bonds.

Watch Video Solution

5. Carbon forms a large number of compounds because of its two unique properties formed many have long straight chains of carbon, branched chains of carbon or rings of carbon. In these compounds, carbon atoms may form single, double or triple covalent bonds. Compounds in which the carbon atoms are linked to each other by single bonds are

called saturated carbon compounds whereas compounds having at least one carbon-carbon double or triple bond are called unsaturated carbon compounds. Compounds containing only carbon and hydrogen are known as hydrocarbons. Based on the above information, answer the following questions.

v. What is common name and molecular formula of ethyne?

Watch Video Solution

6. Carbon forms a large number of compounds because of its two unique properties formed many have long straight chains of carbon, branched chains of carbon or rings of carbon. In these compounds, carbon atoms may form single, double or triple covalent bonds. Compounds in which the carbon atoms are linked to each other by single bonds are

called saturated carbon compounds whereas compounds having at least one carbon-carbon double or triple bond are called unsaturated carbon compounds. Compounds containing only carbon and hydrogen are known as hydrocarbons. Based on the above information, answer the following questions.

i. Why does carbon form large number of compounds?

7. Carbon forms a large number of compounds because of its two unique properties formed many have long straight chains of carbon, branched chains of carbon or rings of carbon. In these compounds, carbon atoms may form single, double or triple covalent bonds. Compounds in which the carbon atoms are linked to each other by single bonds are

called saturated carbon compounds whereas compounds having at least one carbon-carbon double or triple bond are called unsaturated carbon compounds. Compounds containing only carbon and hydrogen are known as hydrocarbons. Based on the above information, answer the following questions.

ii. Give two examples of carbon compounds which have ring structure.

8. Carbon forms a large number of compounds because of its two unique properties formed many have long straight chains of carbon, branched chains of carbon or rings of carbon. In these compounds, carbon atoms may form single, double or triple covalent bonds. Compounds in which the

carbon atoms are linked to each other by single bonds are called saturated carbon compounds whereas compounds having at least one carbon-carbon double or triple bond are called unsaturated carbon compounds. Compounds containing only carbon and hydrogen are known as hydrocarbons. Based on the above information, answer the following questions.

iii. What are saturated hydrocarbons? Give one example.

9. Carbon forms a large number of compounds because of its two unique properties formed many have long straight chains of carbon, branched chains of carbon or rings of carbon. In these compounds, carbon atoms may form single, double or triple covalent bonds. Compounds in which the

carbon atoms are linked to each other by single bonds are called saturated carbon compounds whereas compounds having at least one carbon-carbon double or triple bond are called unsaturated carbon compounds. Compounds containing only carbon and hydrogen are known as hydrocarbons. Based on the above information, answer the following questions.

iv. Give IUPAC names of first two members of hydrocarbon which contain carbon-carbon double bonds.

10. Carbon forms a large number of compounds because of its two unique properties formed many have long straight chains of carbon, branched chains of carbon or rings of carbon. In these compounds, carbon atoms may form single,

double or triple covalent bonds. Compounds in which the carbon atoms are linked to each other by single bonds are called saturated carbon compounds whereas compounds having at least one carbon-carbon double or triple bond are called unsaturated carbon compounds. Compounds containing only carbon and hydrogen are known as hydrocarbons. Based on the above information, answer the following questions.

v. What is common name and molecular formula of ethyne?

Apply Your Knowledge Use Your Brain Power

1. Hydrogen peroxide decomposes on its own by the following reactin. $H-O-O-H
ightarrow 2H-O-H+O_2$

From this, what will be your inference about the strength of O-O, Covalent bond.

2. Tell from the above example whether oxygen has catenation power or hot?

3. Inspect the molecular formulae of the members of Alkenes. Do you find any relationship in the number of carbon atoms and the number of hydrogen atoms in the molecular formulae.

4. If the numbe of carbon atoms in the molecular formulae of alkenes is denoted by 'n' what will be the numbe rof hydrogen atom?

Watch Video Solution

5. Write down structure formulae of the first four members of the various homologous series formed by making use of the functional groups :

View Text Solution

6. General formula of the homologous series of alkanes is $C_nH_{2n+2}.$ Write down the molecular formula of the $8^{
m th}$ and

 $12^{
m th}$ member using this.

7. Draw three structural formulae having molecular formula $C_5 H_{12}$.

8. Give the names n-pentane, isopentane (i-pentane) and neopentane to the above three structural formulae.

(Use the same logic as used in the names of the isomeric butanes for this purpose.)

9. Draw all possible structural formulae having molecular formula C_6H_{14} . Give names to all the isomers. Which difficulties were faced by you while naming?

Watch Video Solution

10. In the Chlorination, substitution reaction of propane, two isomeric products containing one chlorine atom are obtained. Draw their sturctural formula and give their IUPAC names.

Watch Video Solution

11. Explain by writing a reaction, what will happen when pieces of sodium metal are put in n-propyl alcohol.

12. Explain by writing a reaction, what will happen when pieces of sodium metal are put in n-propyl alcohol.

13. Answer the following questions in one word :

Which one of ethanoic acid and hydrochloric acid is stronger?

14. Answer the following questions in one word :

Which indicator paper out of blue litmus paper and pH paper

is useful to distinguish between ethanoic acid and hydrochloric acid?

15. When carbon dioxide is passed through lime water it turns milky. Why?

16. Explain the reaction that would take place when a piece of sodium metal is dropped in ethanoic acid.

17. Two test tubes contain two colourless liquids ethanol and ethanoic acid. Explain by writing reaction which chemical test you would perform to tell which substance is present in which test tube.

Watch Video Solution

18. When fat is heated with sodium hydroxide solution, soap and glycerin are formed. Which functional group might be present in fat and glycerin?

Watch Video Solution

19. Hydrogen peroxide decomposes on its own by the following reactin. $H-O-O-H
ightarrow 2H-O-H+O_2$

From this, what will be your inference about the strength of O-O, Covalent bond.

20. Tell from the above example whether oxygen has catenation power or hot?

21. Inspect the molecular formulae of the members of Alkenes. Do you find any relationship in the number of carbon atoms and the number of hydrogen atoms in the molecular formulae.

22. If the numbe of carbon atoms in the molecular formulae of alkenes is denoted by 'n' what will be the numbe rof hydrogen atom?

Watch Video Solution

23. Write down structure formulae of the first four members of the various homologous series formed by making use of the functional groups :

View Text Solution

24. General formula of the homologous series of alkanes is $C_nH_{2n+2}.$ Write down the molecular formula of the $8^{
m th}$ and

 $12^{
m th}$ member using this.

25. Draw three structural formulae having molecular formula C_5H_{12} .

26. Give the names n-pentane, isopentane (i-pentane) and neopentane to the above three structural formulae.

(Use the same logic as used in the names of the isomeric butanes for this purpose.)

27. Draw all possible structural formulae having molecular formula C_6H_{14} . Give names to all the isomers. Which difficulties were faced by you while naming?

Watch Video Solution

28. In the Chlorination, substitution reaction of propane, two isomeric products containing one chlorine atom are obtained. Draw their sturctural formula and give their IUPAC names.

29. Explain by writing a reaction, what will happen when pieces of sodium metal are put in n-propyl alcohol.

30. Explain by writing a reaction, which product will be formed on heating n-butyl alcohol with concentrated sulphuric acid.

31. Answer the following questions in one word:

Which one of ethanoic acid and hydrochloric acid is stronger?

Watch Video Solution

32. Answer the following questions in one word:

Which indicator paper out of blue litmus paper and pH paper is useful to distinguish between ethanoic acid and hydrochloric acid?

Watch Video Solution

33. When carbon dioxide is passed through lime water it turns milky. Why?

Watch Video Solution

34. Explain the reaction that would take place when a piece of sodium metal is dropped in ethanoic acid.

Watch Widoo Calution

35. Two test tubes contain two colourless liquids ethanol and ethanoic acid. Explain by writing reaction which chemical test you would perform to tell which substance is present in which test tube.

36. When fat is heated with sodium hydroxide solution, soap and glycerin are formed. Which functional group might be present in fat and glycerin?

1. Apparatus: Bunsen burner, copper gauze, metal plate, etc.

Chemicals: Ethanol, acetic acid, naphthalene

Procedure: Place one of the above chemicals (3-4 drops or a pinch) on clean copper gauze at room temperature, hold it on a blue flame of the Bunsen burner and observe.

Is smoke/soot seen to form due to combustion? Hold the metal plate on the flame when the substance is undergoing combustion. Does any diposit get collected on the plate? Which colour? Repeat the same procedure using other chemicals from the above list.

2. The proportion of carbon atoms in ethanol (C_2H_5OH) and naphthalene $(C_{10}H_5)$

3. A mixture of pure oxygen and acetylene is burnt for welding. Can you explain why a mixture of acetylene and air is not used?

4. Light a Bunsen burner. Open and close the air hole at the bottom of the burner by means of the movable ring around it. When do you get yellow sooty flame? When do you get blue flame?

5. Nisha observed that the bottoms of cooking utensils were turning black in colour while the flame of her stove is yellow in colour.Her daughter suggested cleaning the air holes of the stove to get a clean, blue flame. She also told her mother that this would prevent the fuel from getting wasted.

What could be the reason for this sooty flame?

View Text Solution

6. Nisha observed that the bottoms of cooking utensils were turning black in colour while the flame of her stove is yellow in colour.Her daughter suggested cleaning the air holes of the stove to get a clean, blue flame. She also told her mother that this would prevent the fuel from getting wasted.

How does cleaning the air holes of the stove help in saving the fuel?

7. Apparatus: Test tube, Bunsen burner, measuring cylinder, dropper, etc.

Chemicals: Ethanol, dilute solution to it and warm the mixture by holding the test tube on the burner for a while.

Do drop wise addition of a dilute solution of potassium permanganate to this warm mixutre with stirring.

Does the typical pink colour of potassium permanganate stay as it is on addition? Does the pink colour stop vanishing and stays on after some time of the addition process?

8. Apparatus: Test tubes, droppers, etc.

Chemicals: Tincture iodine, bromine water, liquefied vanaspati ghee, various vegetable oils (peanut, safflower, sunflower, olive, etc.)

Procedure: Take 4 mL oil in a test tube and add 4 drops of tincture iodine or bromine water in it. Shake the test tube. Find out whether the original colour of bromine or iodine disappears or not. Repeat the same procedure using other oils and vanaspati ghee.

What inference will you draw from this?

9. Apparatus: Test tubes, droppers, etc.

Chemicals : Tincture iodine, bromine water, liquefied

vanaspati ghee, various vegetable oils (peanut, safflower, sunflower, olive, etc.)

Procedure: Take 4 mL oil in a test tube and add 4 drops of tincture iodine or bromine water in it. Shake the test tube. Find out whether the original colour of bromine or iodine disappears or not. Repeat the same procedure using other oils and vanaspati ghee.

Which of the substances do contain multiple bonds?

10. Apparatus: Big test tube, delivery tube fitted in a rubber cork, knife, candle, etc.

Chemicals: Sodium metal, ethanol, magnesium ribbon, etc.

Procedure: Take 10 mL ethanol in a big test tube. Cut Sodium metal into 2-3 pieces of a cereal grain size. Put the sodium

pieces into the ethanol in the test tube and fix the gas delivery tube to the test tube. Take a burning candle near the outlet of the gas delivery tube and observe.

Which is the combustible gas coming out of the gas delivery tube?

Watch Video Solution

11. Apparatus: Big test tube, delivery tube fitted in a rubber cork, knife, candle, etc.

Chemicals: Sodium metal, ethanol, magnesium ribbon, etc.

Procedure: Take 10 mL ethanol in a big test tube. Cut Sodium metal into 2-3 pieces of a cereal grain size. Put the sodium pieces into the ethanol in the test tube and fix the gas delivery tube to the test tube. Take a burning candle near the outlet of the gas delivery tube and observe.

Why do the sodium pieces appear to dance on the surface of ethanol?

View Text Solution

12. Apparatus: Big test tube, delivery tube fitted in a rubber cork, knife, candle, etc.

Chemicals: Sodium metal, ethanol, magnesium ribbon, etc.

Procedure: Take 10 mL ethanol in a big test tube. Cut Sodium metal into 2-3 pieces of a cereal grain size. Put the sodium pieces into the ethanol in the test tube and fix the gas delivery tube to the test tube. Take a burning candle near the outlet of the gas delivery tube and observe.

Repeat the above procedure using magnesium ribbon instead of sodium. Do you see gas bubble released from the piece of magnesium ribbon?

13. Apparatus: Big test tube, delivery tube fitted in a rubber cork, knife, candle, etc.

Chemicals: Sodium metal, ethanol, magnesium ribbon, etc.

Procedure: Take 10 mL ethanol in a big test tube. Cut Sodium metal into 2-3 pieces of a cereal grain size. Put the sodium pieces into the ethanol in the test tube and fix the gas delivery tube to the test tube. Take a burning candle near the outlet of the gas delivery tube and observe.

Does magnesium metal react with ethanol?

View Text Solution

14. Apparatus : Glazed tile, glass rods, pH paper, blue litmus paper.

Chemicals: Dilute ethanoic acid, dilute hydrochloric acid
Procedure: Place two strips of blue litmus paper on a glazed
tile. Put one drop of dilute hydrochloric acid on one strip
with the help of a glass rod. Put one drop dilute ethanoic
acid with the help of another glass rod on the other strip.
Note the colour change taken place in the litmus strip.
Repeat the same procedure using strips of pH paper. Note all
the observation in the following table.

15. Apparatus: Big test tube, small test tube, bent gas delivery tube, rubber cork, thistle funnel, stand, etc.

Chemicals: Acetic acid, sodium carbonate power, freshly prepared lime water.

Procedure: Arrange the apparatus as shown in figure. Place sodium carbonate power in the big test tube. Pour 10 mL acetic acid through the thistle funnel. Observe the changes taking place in the two test tubes.

Which gets does come out as effervescence in the big test tube?

16. Apparatus: Big test tube, small test tube, bent gas delivery tube, rubber cork, thistle funnel, stand, etc.

Chemicals: Acetic acid, sodium carbonate power, freshly prepared lime water.

Procedure: Arrange the apparatus as shown in figure. Place sodium carbonate power in the big test tube. Pour 10 mL acetic acid through the thistle funnel. Observe the changes taking place in the two test tubes.

Why are bubbles seen in the small test tube.

17. Apparatus: Big test tube, small test tube, bent gas delivery tube, rubber cork, thistle funnel, stand, etc.

Chemicals: Acetic acid, sodium carbonate power, freshly prepared lime water.

Procedure: Arrange the apparatus as shown in figure. Place sodium carbonate power in the big test tube. Pour 10 mL acetic acid through the thistle funnel. Observe the changes taking place in the two test tubes.

What is the colour change in the lime water? Write the related equation.

18. Apparatus: Test tube, beakers, burner, etc.

Chemicals: Glacial ethanoic acid, ethanol, concentrated sulphuric acid, etc.

Procedure: Take 1 mL ethanol and 1 mL glacial ethanoic acid

in a test tube. Add a few drops of concentrated sulphuric acid in it. Keeps this test tube in the beaker containing hot water (hot water bath) for five minutes. Then take 20-30 mL water in another beaker, and pour the above reaction mixture in it and smell it.

What can you say about the smell of the reaction mixture?

Watch Video Solution

19. Apparatus: Bunsen burner, copper gauze, metal plate, etc.

Chemicals: Ethanol, acetic acid, naphthalene

Procedure: Place one of the above chemicals (3-4 drops or a pinch) on clean copper gauze at room temperature, hold it on a blue flame of the Bunsen burner and observe.

Is smoke/soot seen to form due to combustion? Hold the metal plate on the flame when the substance is undergoing

combustion. Does any diposit get collected on the plate?
Which colour? Repeat the same procedure using other chemicals from the above list.

View Text Solution

20. The proportion of carbon atoms in ethanol (C_2H_5OH) and naphthalene $(C_{10}H_5)$

21. A mixture of pure oxygen and acetylene is burnt for welding. Can you explain why a mixture of acetylene and air is not used?

22. Light a Bunsen burner. Open and close the air hole at the bottom of the burner by means of the movable ring around it. When do you get yellow sooty flame? When do you get blue flame?

View Text Solution

23. Nisha observed that the bottoms of cooking utensils were turning black in colour while the flame of her stove is yellow in colour. Her daughter suggested cleaning the air holes of the stove to get a clean, blue flame. She also told her mother that this would prevent the fuel from getting wasted.

What could be the reason for this sooty flame?

Niew Text Solution

24. Nisha observed that the bottoms of cooking utensils were turning black in colour while the flame of her stove is yellow in colour.Her daughter suggested cleaning the air holes of the stove to get a clean, blue flame. She also told her mother that this would prevent the fuel from getting wasted.

How does cleaning the air holes of the stove help in saving the fuel?

25. Apparatus: Test tube, Bunsen burner, measuring cylinder, dropper, etc.

Chemicals: Ethanol, dilute solution to it and warm the mixture by holding the test tube on the burner for a while.

Do drop wise addition of a dilute solution of potassium

permanganate to this warm mixutre with stirring.

Does the typical pink colour of potassium permanganate stay as it is on addition? Does the pink colour stop vanishing and stays on after some time of the addition process?

View Text Solution

26. Apparatus: Test tubes, droppers, etc.

Chemicals: Tincture iodine, bromine water, liquefied vanaspati ghee, various vegetable oils (peanut, safflower, sunflower, olive, etc.)

Procedure: Take 4 mL oil in a test tube and add 4 drops of tincture iodine or bromine water in it. Shake the test tube. Find out whether the original colour of bromine or iodine disappears or not. Repeat the same procedure using other

oils and vanaspati ghee.

What inference will you draw from this?

View Text Solution

27. Apparatus: Test tubes, droppers, etc.

Chemicals: Tincture iodine, bromine water, liquefied vanaspati ghee, various vegetable oils (peanut, safflower, sunflower, olive, etc.)

Procedure: Take 4 mL oil in a test tube and add 4 drops of tincture iodine or bromine water in it. Shake the test tube. Find out whether the original colour of bromine or iodine

disappears or not. Repeat the same procedure using other oils and vanaspati ghee.

Which of the substances do contain multiple bonds?

28. Apparatus: Big test tube, delivery tube fitted in a rubber cork, knife, candle, etc.

Chemicals: Sodium metal, ethanol, magnesium ribbon, etc.

Procedure: Take 10 mL ethanol in a big test tube. Cut Sodium metal into 2-3 pieces of a cereal grain size. Put the sodium pieces into the ethanol in the test tube and fix the gas delivery tube to the test tube. Take a burning candle near the outlet of the gas delivery tube and observe.

Which is the combustible gas coming out of the gas delivery tube?

Watch Video Solution

29. Apparatus: Big test tube, delivery tube fitted in a rubber cork, knife, candle, etc.

Chemicals: Sodium metal, ethanol, magnesium ribbon, etc.

Procedure: Take 10 mL ethanol in a big test tube. Cut Sodium metal into 2-3 pieces of a cereal grain size. Put the sodium pieces into the ethanol in the test tube and fix the gas delivery tube to the test tube. Take a burning candle near the outlet of the gas delivery tube and observe.

Why do the sodium pieces appear to dance on the surface of ethanol?

30. Apparatus: Big test tube, delivery tube fitted in a rubber cork, knife, candle, etc.

Chemicals: Sodium metal, ethanol, magnesium ribbon, etc.

Procedure: Take 10 mL ethanol in a big test tube. Cut Sodium metal into 2-3 pieces of a cereal grain size. Put the sodium pieces into the ethanol in the test tube and fix the gas delivery tube to the test tube. Take a burning candle near the outlet of the gas delivery tube and observe.

Repeat the above procedure using magnesium ribbon instead of sodium. Do you see gas bubble released from the piece of magnesium ribbon?

31. Apparatus: Big test tube, delivery tube fitted in a rubber cork, knife, candle, etc.

Chemicals: Sodium metal, ethanol, magnesium ribbon, etc.

Procedure: Take 10 mL ethanol in a big test tube. Cut Sodium

metal into 2-3 pieces of a cereal grain size. Put the sodium pieces into the ethanol in the test tube and fix the gas delivery tube to the test tube. Take a burning candle near the outlet of the gas delivery tube and observe.

Does magnesium metal react with ethanol?

32. Apparatus : Glazed tile, glass rods, pH paper, blue litmus paper.

Chemicals: Dilute ethanoic acid, dilute hydrochloric acid

Procedure: Place two strips of blue litmus paper on a glazed
tile. Put one drop of dilute hydrochloric acid on one strip
with the help of a glass rod. Put one drop dilute ethanoic
acid with the help of another glass rod on the other strip.

Note the colour change taken place in the litmus strip.

Repeat the same procedure using strips of pH paper. Note all the observation in the following table.

33. Apparatus: Big test tube, small test tube, bent gas delivery tube, rubber cork, thistle funnel, stand, etc.

Chemicals: Acetic acid, sodium carbonate power, freshly prepared lime water.

Procedure: Arrange the apparatus as shown in figure. Place sodium carbonate power in the big test tube. Pour 10 mL acetic acid through the thistle funnel. Observe the changes taking place in the two test tubes.

Which gets does come out as effervescence in the big test tube?

34. Apparatus: Big test tube, small test tube, bent gas delivery tube, rubber cork, thistle funnel, stand, etc.

Chemicals: Acetic acid, sodium carbonate power, freshly prepared lime water.

Procedure: Arrange the apparatus as shown in figure. Place sodium carbonate power in the big test tube. Pour 10 mL acetic acid through the thistle funnel. Observe the changes taking place in the two test tubes.

Why are bubbles seen in the small test tube.

35. Apparatus: Big test tube, small test tube, bent gas delivery tube, rubber cork, thistle funnel, stand, etc.

Chemicals: Acetic acid, sodium carbonate power, freshly prepared lime water.

Procedure: Arrange the apparatus as shown in figure. Place sodium carbonate power in the big test tube. Pour 10 mL acetic acid through the thistle funnel. Observe the changes taking place in the two test tubes.

What is the colour change in the lime water? Write the related equation.

36. Apparatus: Test tube, beakers, burner, etc.

Chemicals: Glacial ethanoic acid, ethanol, concentrated sulphuric acid, etc.

Procedure: Take 1 mL ethanol and 1 mL glacial ethanoic acid in a test tube. Add a few drops of concentrated sulphuric acid in it. Keeps this test tube in the beaker containing hot water (hot water bath) for five minutes. Then take 20-30 mL water in another beaker, and pour the above reaction mixture in it and smell it.

What can you say about the smell of the reaction mixture?

Watch Video Solution

Apply Your Knowledge Can You Tell

1. What are the chemical names of the nutrients that we get from the food stuff, namely cereals, pulses and meat?

2. What are the chemcial substances that make cloth, furniture, and elastic objects?

3. What are the chemical names of the nutrients that we get from the food stuff, namely cereals, pulses and meat?

4. What are the chemcial substances that make cloth, furniture, and elastic objects?

Chapter Assessment Choose The Correct Alternative

1. When ethanol reacts with sodium, a gas is evolved which

A. burns with pop sound

B. turns lime water milky

C. carbon compounds

D. has a foul smell of rotten eggs

Answer: A Watch Video Solution

- 2. Which of the following compounds burns with sooty flame?
 - A. Ethanol
 - B. Butane
 - C. Hexane
 - D. Naphthalene

Answer:

Watch Video Solution

3. In laboratory, a student added 3 mL ethanol and 5 mL sodium carbonate in a test tube and warmed the mixture for few minutes. He then slowly added few drops of potassium permanganate to this warm solution with constant stirring. He observed that the pink colour of potassium permanganate had disappeared. This is because ______

- A. ethanol is reduced to ethane
- B. ethanol is oxidized to acetic acid
- C. ethanol is reduced to methanoic acid
- D. ethanol is oxidized to acetone.

Answer:

Watch Video Solution

4. The structure of the monomer unit of Telfon is ______

.

A.
$$CH_2=CH-C\equiv N$$

$$\mathsf{B.}\, CH_2 = CH_2$$

$$\mathsf{C.}\ CF_2 = CF_2$$

$$D. CH_3 - CH = CH_2$$

Answer:

Watch Video Solution

5. When ethanol reacts with sodium, a gas is evolved which

____·

A. burns with pop sound B. turns lime water milky C. CARBON COMPOUNDS D. has a foul smell of rotten eggs **Answer: A Watch Video Solution** 6. Which of the following compounds burns with sooty flame? A. Ethanol B. Butane C. Hexane D. Naphthalene

Answer:

7. In laboratory, a student added 3 mL ethanol and 5 mL sodium carbonate in a test tube and warmed the mixture for few minutes. He then slowly added few drops of potassium permanganate to this warm solution with constant stirring. He observed that the pink colour of potassium permanganate had disappeared. This is because ______

A. ethanol is reduced to ethane

- B. ethanol is oxidized to acetic acid
- C. ethanol is reduced to methanoic acid

D. ethanol is oxidized to acetone.

Answer:

Watch Video Solution

8. The structure of the monomer unit of Telfon is _____

A.
$$CH_2 = CH - C \equiv N$$

$$\operatorname{B.}CH_2=CH_2$$

$$\mathsf{C.}\,CH_2=CF_2$$

$$D. CH_3 - CH = CH_2$$

Answer:

Watch Video Solution

Chapter Assessment Answer The Following

1. Name the monomer of natural rubber.

Watch Video Solution

2. Complete the analogy and explain.

Ethane: _____: Acetylene: Unsaturated hydrocarbon.

Watch Video Solution

3. True of false. If false, write the correct sentence.

When benzene burns in air, it gives clean blue flame.

Watch Video Solution

4. What is homologous series ? Write the name and molecular formula of the $2^{\rm nd}$ member of homologous series of alkenes

5. Name the components of cooking gas. Write their molecular formulae.

6. Complete the following reactions.

$$CH_3CH_2OH \xrightarrow{\text{Hot conc.}} +$$

$$2CH_3CH_2OH + 2Na
ightarrow \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$CH_3COOH + NaOH \rightarrow ____+ ___$$

7. Select the appropriate option and complete the following				
paragraph.				
(single,	doub	ole,	I	hydrocarbons,
$C_2H_4,C_2H_6,CHCl_3,CH_3Cl,$ methane, ethane)				
Carbon compounds contain carbon and hydrogen as the only				
two elements are called The smallest hydrocarbon				
is Ar	nother hydroca	rbon is	w	ith molecular
formula In both these hydrocarbons, the valencies				
of all the atoms are satisfied by the bonds. If one				
hydrogen a	tom of meth	ane is	replaced	by another
monovalent element chlorine, then a new carbon compounds				
is formed. 1	The molecular	formula	of this	compound is

8. Draw all possible structural formulae having molecular formula C_6H_{14} . Give names to all the isomers. Which difficulties were faced by you while naming?

9. What is esterification reaction? Explain the preparation of an ester with the help of a neat labelled diagram.

10. Name the monomer of natural rubber.

11. Complete the analogy and explain.

Ethane: _____: Acetylene: Unsaturated hydrocarbon.

Watch Video Solution

12. True of false. If false, write the correct sentence.

When benzene burns in air, it gives clean blue flame.

Watch Video Solution

13. What is homologous series ? Write the name and molecular formula of the $2^{\rm nd}$ member of homologous series of alkenes.

Watch Video Solution

14. Name the components of cooking gas. Write their molecular formulae.

Watch Video Solution

15. Complete the following reactions.

$$CH_3CH_2OH \xrightarrow{ ext{Hot conc.}} +$$

$$2CH_3CH_2OH + 2Na
ightarrow$$
 ______ + _____

$$CH_3COOH + NaOH
ightarrow$$

paragraph. (single, double. hydrocarbons, $C_2H_4, C_2H_6, CHCl_3, CH_3Cl$, methane, ethane) Carbon compounds contain carbon and hydrogen as the only two elements are called _____. The smallest hydrocarbon is ______ with molecular formula ____. In both these hydrocarbons, the valencies of all the atoms are satisfied by the bonds. If one hydrogen atom of methane is replaced by another monovalent element chlorine, then a new carbon compounds is formed. The molecular formula of this compound is

16. Select the appropriate option and complete the following

17. Draw all possible structural formulae having molecular formula C_6H_{14} . Give names to all the isomers. Which difficulties were faced by you while naming?

Watch Video Solution

18. What is esterification reaction? Explain the preparation of an ester with the help of a neat labelled diagram.

Watch Video Solution

Chapter Assessment Give Scientific Reasons

1. State whether the following statements are true or false. If false, then rewrite the correct statements: Carbon is

tetravalent and it can undergo catenation. **Watch Video Solution** 2. True of false. If false, write the correct sentence. Propene undergoes addition reaction. **Watch Video Solution 3.** True of false. If false, write the correct sentence. Propene undergoes addition reaction. **Watch Video Solution**