©゙" doubtnut

MATHS

BOOKS - TARGET PUBLICATION

TRIGONOMETRY

Practice Set 61

1. If $\sin \theta=\frac{7}{25}$ and $\cos \theta=\frac{24}{25}$, then find $\tan \theta$.
(D) Watch Video Solution
2. If $\tan \theta=1$, then $\frac{\sin \theta+\cos \theta}{\sec \theta+\operatorname{cosec} \theta}=$
A. 1
B. $\frac{1}{2}$
C. $\frac{\sqrt{3}}{2}$
D. 0

Answer: B

- View Text Solution

3. Prove that :
$\sin ^{2} \theta$
$\frac{\cos \theta}{\cos \theta}=\sec \theta$

Watch Video Solution
4. Prove that: $\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\{\sec \theta-\tan \theta\}$, if
$-\frac{\pi}{2}<\theta<\frac{\pi}{2}$
$=-\sec \theta+\tan \theta$, if $\frac{\pi}{2}<\theta<\frac{3 \pi}{2}$

D Watch Video Solution

5. prove that $\cot \theta+\tan \theta=\operatorname{cosec} \theta \cdot \sec \theta$

D Watch Video Solution

6. Prove that
(i) $\frac{\sin \theta}{(1-\cos \theta)}=(\operatorname{cosec} \theta+\cot \theta)$
(ii) $\frac{1}{(\sec \theta-\tan \theta)}=(\sec \theta+\tan \theta)$
7. Prove that $\sin ^{4} \theta-\cos ^{4} \theta=1-2 \cos ^{2} \theta$

- Watch Video Solution

8. Prove that :
$\sec \theta+\tan \theta=\frac{\cos \theta}{1-\sin \theta}=\frac{1+\sin \theta}{\cos \theta}$
A. $\frac{1}{1+\sin \theta}$
B. $\frac{1}{1-\sin \theta}$
C. $\frac{\cos \theta}{1+\sin \theta}$
D. $\frac{\cos \theta}{1-\sin \theta}$

Answer: D
9. $\tan \theta+\frac{1}{\tan \theta}=2$ then prove that $\tan ^{2} \theta+\frac{1}{\tan ^{2} \theta}=2$

(Watch Video Solution

10. Prove: $\frac{\tan A}{\left(1+\tan ^{2} A\right)^{2}}+\frac{\cot A}{\left(1+\cot ^{2} A\right)^{2}}=\sin A \cos A$

D Watch Video Solution

11. prove that $\sec ^{4} A\left(1-\sin ^{4} A\right)-2 \tan ^{2} A=1$.
(D) Watch Video Solution
12. prove that $\frac{\tan \theta}{\sec \theta-1}=\frac{\tan \theta+\sec \theta+1}{\tan \theta+\sec \theta-1}$

(D) Watch Video Solution

Practice Set 62

1. Solve the following question:(1) A person is stading at a distance of 80 m from a church looking at its top. The angle of elevation is of 45°. Find the height of the church.

(D) Watch Video Solution

2. From the top of a lighthouse, an observer looking at a boat makes an angle of depression of 60°. If the height of the lighthouse is $90 m$, then find how far is the boat from the lighthouse.
$(\sqrt{3}=1.73)$

- Watch Video Solution

3. Two buildings are facing each other on either side of a road of width 12 m . From the top of the first building, which is 10 m high, the angle of elevation of the top of the second is 60°. What is the height of the second building?

- Watch Video Solution

4. Two poles of heights 18 metre and 7 metere are erected on
a ground. The length of the wire fastened at their tops in 22 meters. Find the angle made by the wire with the horizontal.
5. A storm broke a tree and the treetop rested 20 m from the base of the tree, making an angle of 60° with the horizontal.

Find the height of the tree.

(D) Watch Video Solution

6. A kite is flying at a height of 60 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is $60 o$. Find the length of the string, assuming that there is no sl

(Watch Video Solution

1. $\sin \theta \cdot \cos e c \theta=$?
A. 1
B. 0
C. $\frac{1}{2}$
D. $\sqrt{2}$

Answer: A

D Watch Video Solution

2. $\cos e c 45^{\circ}=.$.
A. $\frac{1}{\sqrt{2}}$
B. $\sqrt{2}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{2}{\sqrt{3}}$

Answer: B

- Watch Video Solution

3. (3) $1+\tan ^{2} \theta=$?
A. $\cot ^{2} \theta$
B. $\cos ^{2} c^{2} \theta$
C. $\sec ^{2} \theta$
D. $\tan ^{2} \theta$

Answer: C
4. What we see at a higher level from the horizontal line, angle formed is
A. angle of elevation
B. angle of depression
C. 0
D. straight angle.

Answer: A

D Watch Video Solution

5. If $\sin \theta=11 / 61$ find the values of $\cos \theta$ using trigonometric identity.

- Watch Video Solution

6. (1) If $\tan \theta=2$, find the values of other trigonometric ratios using the identities.

- Watch Video Solution

7. If $\sec \theta=13 / 12$, find values of other trigonometric ratios.

D Watch Video Solution

8. Prove that :
$\sec \theta(1-\sin \theta)(\sec \theta+\tan \theta)=1$
9. Prove : $(\sec \theta+\tan \theta)(1-\sin \theta)=\cos \theta$.

- Watch Video Solution

10. Prove that : $\sec ^{2} \theta+\operatorname{cosec}^{2} \theta=\sec ^{2} \theta \cdot \operatorname{cosec}^{2} \theta$

D Watch Video Solution

11. Prove the following : $\cot ^{2} \theta-\tan ^{2} \theta=\cos e c^{2} \theta-\sec ^{2} \theta$

- Watch Video Solution

12. Prove that:
$\tan ^{4} \theta+\tan ^{2} \theta=\sec ^{4} \theta-\sec ^{2} \theta$
13. Prove $\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}=2 \sec ^{2} \theta$

- Watch Video Solution

14. Prove the following : $\sec ^{6} x-\tan ^{6} x=$ $1+3 \sec ^{2} x \times \tan ^{2} x$

- Watch Video Solution

15. Prove the following : $\frac{\tan \theta}{\sec \theta+1}=\frac{\sec \theta-1}{\tan \theta}$
16. Prove the following:
$\frac{\tan ^{3} \theta-1}{\tan \theta-1}=\sec ^{2} \theta+\tan \theta$

D Watch Video Solution

17. Prove that
$\frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1}=\frac{1}{(\sec \theta-\tan \theta)}$.

(D) Watch Video Solution

18. A boy standing at a distance of 48 meters from a building observes the top of the building and makes an angle of elevation of 30°. Find the height of the building.
19. From the top of a lighthouse, an observer looks at a ship and finds the angle of depression to be 30°. If the height of the lighthouse is 100 m , then find how far is that ship from the lighthouse.

- Watch Video Solution

20. Two buildings are in front of each other on a road of width 15 meters. From the top of the first building, having a height of 12 meters, the angle of elevation of the top of the second building is 30°. What is the height of the second building?
21. A ladder on the platform of a firebrigade van can be elevated at an angel of 70° to the maximum. The length of the ladder can be extended upto 20 m .If the platform is $2 m$ above the ground, find the maximum height from the ground upto which the ladder can reach $\left(\sin 70^{\circ}=0.94\right)$

D Watch Video Solution

22. While landing at an airport, a pilot made an angle of derpession of 20°. Average speed of the plane was $200 \mathrm{~km} / \mathrm{h}$.

The plane reached the ground after 54 seconds. Find the height at which the plane was when it started landing.
$\left(\sin 20^{\circ}=0.342\right)$

1. If $\sin \theta=7 / 25$ then find $\cos \theta$ and $\tan \theta$.

- Watch Video Solution

2. Solve the following question:(1) A person is stading at a distance of 80 m from a church looking at its top. The angle of elevation is of 45°. Find the height of the church.

D Watch Video Solution

3. Prove : $(\sec \theta+\tan \theta)(1-\sin \theta)=\cos \theta$.
4. $\cos \theta \cdot \sec \theta=$
A. 0
B. $\frac{1}{2}$
C. 1
D. $\sqrt{2}$

Answer: C

D Watch Video Solution

2. $\tan \theta \cdot \tan \left(90^{\circ}-\theta\right)=$
B. $\frac{1}{\sqrt{3}}$
C. 1
D. $\sqrt{3}$

Answer: C

- Watch Video Solution

3. Choose the correct answer in each of the following questions:

If $\cos \theta=\frac{4}{5}$ then $\tan \theta=?$
A. $\frac{3}{5}$
B. $\frac{3}{4}$
C. $\frac{4}{3}$
D. $\frac{5}{3}$

Answer: B

(D) Watch Video Solution

4. If $\cot \theta=\frac{7}{8}$, then $\tan ^{2} \theta=$
A. $\frac{7}{8}$
B. $\frac{8}{7}$
C. $\frac{49}{64}$
D. $\frac{64}{49}$

Answer: D
5. If $\tan \theta=\frac{4}{3}$, then $3 \sin \theta-4 \cos \theta=$
A. 0
B. 1
C. $\frac{4}{5}$
D. $\frac{3}{5}$

Answer: A

D Watch Video Solution

6. Which of the following is the value of $\sec 30^{\circ}$?
A. $\sqrt{3}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{2}{\sqrt{3}}$

Answer: D

- Watch Video Solution

7. $\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=$
A. $\sin 30^{\circ}$
B. $\sin 60^{\circ}$
C. $\cos 60^{\circ}$
D. $\tan 60^{\circ}$

Answer: B
8. $\frac{1-\cot ^{2} 45^{\circ}}{1+\cot ^{2} 45^{\circ}}=$
A. $\cos 90^{\circ}$
B. $\sin 90^{\circ}$
C. $\sin 45^{\circ}$
D. $\cos 45^{\circ}$

Answer: A

D Watch Video Solution

$9.1+\cot ^{2} \theta=\ldots .$.
A. $\sec ^{2} \theta$
B. $\cos ^{2} \theta$
C. $\operatorname{cosec}^{2} \theta$
D. $\tan ^{2} \theta$

Answer: C

D Watch Video Solution

10. $\tan ^{2}\left(90^{\circ}-\theta\right)-\operatorname{cosec} 2=$
A. 0
B. 1
C. -1
D. 2

Answer: C

D Watch Video Solution
11. If $\cos \theta=\frac{24}{25}$, then the value of $\sin \theta$ is
A. $\frac{7}{24}$
B. $\frac{7}{25}$
C. $\frac{25}{7}$
D. $\frac{24}{7}$

Answer: B

12. If $\tan \theta=\frac{3}{4}$, then $\cos ^{2} \theta-\sin ^{2} \theta=\frac{7}{25}$ (b) 1 (c) $-\frac{7}{25}$
(d) $\frac{4}{25}$
A. $\frac{3}{25}$
B. $\frac{4}{25}$
C. $\frac{7}{25}$
D. $\frac{9}{25}$

Answer: C

- Watch Video Solution

13. If $\cot \theta=\frac{3}{4}$, then $\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}=$
A. $\frac{1}{7}$
B. $\frac{2}{7}$
C. $\frac{1}{4}$
D. $\frac{3}{4}$

Answer: A

(D) Watch Video Solution

14. Find the value of $\frac{1+\tan ^{2} \theta}{1+\cot ^{2} \theta}$
A. $\sec ^{2} \theta$
B. $\cos ^{2} \theta$
C. $\cos e c^{2} \theta$
D. $\tan ^{2} \theta$

Answer: D

D Watch Video Solution
15. $\left(1-\cos ^{2} \theta\right) \cot ^{2} \theta$
A. $\sec ^{2} \theta$
B. $\cos ^{2} \theta$
C. $\cos ^{2} c^{2} \theta$
D. $\sin ^{2} \theta$

Answer: B
(D) Watch Video Solution
16. $\left(\operatorname{Sec}^{\wedge} 2 \theta-1\right)\left(\operatorname{Cosec}^{\wedge} 2 \theta-1\right)=$
A. 0
B. 1
C. $2 \sec ^{2} \theta$
D. $2 \cos e c^{2} \theta$

Answer: B
(D) Watch Video Solution
17. Write the value of $\operatorname{cosec}^{2} \theta(1+\cos \theta)(1-\cos \theta)$.
A. 0
B. 1
C. $\sec ^{2} \theta$
D. $\sin ^{2} \theta$

Answer: B

D Watch Video Solution
18. $\frac{5}{\cot ^{2} \theta}-\frac{5}{\cos ^{2} \theta}=$
A. 5
B. $\frac{1}{5}$
C. -5
D. $-\frac{1}{5}$

Answer: C
19. $\frac{\sin \theta}{1+\cos \theta}=$
A. $\frac{\cos \theta}{1-\sin \theta}$
B. $\frac{1-\cos \theta}{\sin \theta}$
C. $\frac{1-\sin \theta}{\cos \theta}$
D. $\frac{1-\cos \theta}{1+\cos \theta}$

Answer: B

D Watch Video Solution

20. If $\cos e c \theta-\cot \theta=\frac{1}{3}$, then $\cos e c \theta+\cot \theta=$
B. 2
C. 3
D. 4

Answer: C

D Watch Video Solution

21. If $\sin \theta+\sin ^{2} \theta=1$ then $\cos ^{2} \theta+\cos ^{4} \theta$ is equal to
A. 0
B. 1
C. -1
D. 2

Answer: B

D Watch Video Solution

22. If $\sin \theta+\cos \theta=m$ and $\sin \theta-\cos \theta=n$, then
A. $m^{2}+n^{2}=1$
B. $m^{2}-n^{2}=1$
C. $m^{2}+n^{2}=2$
D. $m^{2}-n^{2}=2$

Answer: C
23. When we see below the horizontal line, then the angle formed is
A. A Zero degree angle
B. the angle of depression
C. the angle of elevation
D. a straight angle

Answer: B

- Watch Video Solution

24. If a pole 12 m high casts a shadow $4 \sqrt{3} \mathrm{~m}$ long on the ground then the sun's elevation is
A. 30°
B. 45°
C. 60°
D. 90°

Answer: C

- Watch Video Solution

25. A kite is flying at a height 80 m above the ground. The string of the kite which is temporarily attached to the ground makes an angle 45° with the ground. If there is no slack in the string, then the length of the string is
A. 40 m
B. $40 \sqrt{2}$
C. 80 m
D. $80 \sqrt{2}$

Answer: D

D Watch Video Solution

26. The angle of elevation of top of the tower from a point P on the ground is 30°. If the points is 45 m away from the foot of the tower, then the height of the tower is
A. 45 m
B. 15 m
C. $15 \sqrt{3}$
D. $20 \sqrt{3} m$

Answer: C

- Watch Video Solution

27. The angle of depression of a ship as observed from the top of a lighthouse is 45°. If the height of the lighthouse is 200 m , then what is the distance of the ship from the foot of the lighthouse?
A. 200 m
B. 400 m
C. 100 m
D. $200 \sqrt{3} m$

- Watch Video Solution

Additional Problems For Practice Based On Practice Set 61

1. If $\sin \theta=\frac{20}{29}$, then find the value of $\cos \theta$.

- Watch Video Solution

2. If $\sin \theta=\frac{8}{17}$, where θ is an acute angle, find the value of $\cos \theta$ by using identities.

- Watch Video Solution

3. If $\cos \theta=\frac{3}{5}$, where ' θ ' is an acute angle. Find the value of $\sin \theta$.

D Watch Video Solution

4. If $\sec \theta=\frac{25}{7}$ then find the value of $\tan \theta$.

(D) Watch Video Solution

5. If $\cot \theta=\frac{8}{15}$ then find the values of $\sin \theta$ and $\sec \theta$.
6. If $\sin \theta=\frac{5}{13}$, where θ is an acute angle, find the values of other trigonometric ratios using identities.

D Watch Video Solution

7. If $\tan \theta=\frac{20}{21}$, then find the values of other trigonometric ratios.

D Watch Video Solution

8. If $5 \sin \theta-12 \cos \theta=0$, find the values of $\sec \theta$ and $\operatorname{cosec} \theta$.
9. If $3 \sin \theta-4 \cos \theta=0$, then find the values of $\tan \theta, \sec \theta$ and $\operatorname{cosec} \theta$.

D Watch Video Solution

10. If $\cos \theta=\frac{\sqrt{3}}{2}$ then find the value of $\frac{1-\sec \theta}{1+\operatorname{cosec} \theta}$

D Watch Video Solution

11. If $\sin \theta=\frac{4}{5}$, find the value of $\frac{4 \tan \theta-5 \cos \theta}{\sec \theta+4 \cot \theta}$

- Watch Video Solution

12. Prove that:
$\frac{\sin \theta}{1-\cos \theta}=\cos e c \theta+\cot \theta$
13. Prove that :
$\tan \theta-\cot \theta=\frac{2 \sin ^{2} \theta-1}{\sin \theta \cos \theta}$

D Watch Video Solution

14. Prove that : $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\operatorname{cosec} \theta+\cot \theta$

(D) Watch Video Solution

15. Prove the trigonometric identities:
$\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}=\operatorname{cosec} \theta-\cot \theta$
16. Prove that $\sec x+\tan x=\sqrt{\frac{1+\sin x}{1-\sin x}}$

- Watch Video Solution

17. Prove that:
$\sec ^{2} \theta-\cos ^{2} \theta=\sin ^{2} \theta\left(\sec ^{2} \theta+1\right)$

- Watch Video Solution

18. Prove that:
$\cos ^{4} \theta-\cos ^{2} \theta=\sin ^{4} \theta-\sin ^{2} \theta$

- Watch Video Solution

19. Prove that $\sin ^{6} \theta+\cos ^{6} \theta=1-3 \sin ^{2} \theta \cos ^{2} \theta$

- Watch Video Solution

20. Prove that :
$\sin ^{4} \theta+\cos ^{4} \theta=1-2 \cos ^{2} \theta+2 \cos ^{4} \theta$

- Watch Video Solution

21. $\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \cos e c \theta$

(Watch Video Solution

22. $\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$
23. Prove that
$\frac{\cot \theta+\operatorname{cosec} \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}=\frac{1+\cos \theta}{\sin \theta}$.

D Watch Video Solution

24. Eliminate α, \quad if $\quad x=r \cos \alpha, y=r \sin \alpha$.

- Watch Video Solution

25. Eliminate θ from the equation
$a=x \sec \theta$ and $b=y \tan \theta$.
26. Eliminate θ if $x=a \cot \theta+b \cos e c \theta$ and $y=a \operatorname{cosec} \theta+b \cot \theta$.

- Watch Video Solution

Based On Practice Set 62

1. An observer at a distance of 10 m from a tree looks at the top of the tree, the angle of elevation is 60°.

What is the height of the tree $?(\sqrt{3}=1.73)$

(Watch Video Solution

2. From the top of a building, an observer is looking at a
parked at some distance away, makes an angle of depression of 30°. If the height of the building is 40 m , find how far the scooter is from the building. $(\sqrt{3}=1.73)$

(D) Watch Video Solution

3. (8) From the top of a lighthouse, an observer looks at a ship and finds the angle of depression to be 60°. If the lighthouse is 90 m , then find how far is that ship from the lighthouse? $(\sqrt{3}=1.73)$

- Watch Video Solution

4. A person observed the angle of elevation of the top of a tower as 30°. He walked 50 m towards the foot of the tower along level ground and found the angle of elevation of the
of the tower as 60°. Find the height of the tower.

D Watch Video Solution

5. A person standing on the bank of a river observes that the angle of elevation of the top of a tree standing on the opposite bank is 60°. When he moves 40 m away from the bank, he finds the angle of elevation to be 30°. Find the height of the tree and the width of the river. $(\sqrt{3}=1.73)$

(D) Watch Video Solution

6. To find the width the river, a man observes the top of a tower on
the opposite bank making an angle of elevation 61°. When he
moves 50 m backward from bank and observes the same top of the tower, his line of vision makes an angle of elevationfo 35°.

Find the height of the tower and width of the river. $\left(\tan 61^{\circ}=1.8,35^{\circ}=0.7\right)$

- Watch Video Solution

7. Two buildings are in front of each other on either side of a road of width 10 metres. From the top of the first building which
is 30 metres high, the angle of elevation to the top of the second
is 45°. What is the height of the second building?
8. The horizontal distance between two poles is 15 m . The angle of depression of the top of the first pole as seen from the top of the second pole is 30°. If the height of the second pole is 24 m , find the height of the first pole. $(\sqrt{3}=1.732)$

(Watch Video Solution

9. Roshani saw an eagle on the top of a tree at angle of elevation of 61°, while she was standing at the door of her house. She went on the terrace of the house so that she could see it clearly. The terrace was at a height of $4 m$. While observing the eagle from there the angle of elevation was 52°. At what height from the ground was the eagle?
$\left.\tan 61^{\circ}=1.8, \tan 52^{\circ}=1.28, \tan 29^{\circ}=0.55, \tan 38^{\circ}=0.78\right)$
10. From the top of a building 60 m high the angles of depression of
the top and the bottom of a tower are observed to be 30^{0} and 60^{0}
. Find the height of the tower.

(Watch Video Solution

11. A ship of height 24 m is sighted from a lighthouse. From the top of the lighthouse the angle of depression to the top of the mast and base of the ship is 30° and 45° respectively.

How far is the ship from the lighthouse ? $(\sqrt{3}=1.73)$
12. A tree breaks due to storm and the broken part bends so that the top
of the tree touches the ground making an angle of 30° with the ground.

The distance between the foot of the tree to the point where the top
touches the ground is 10 m . Find the height of the tree.

D Watch Video Solution

13. A tree is broken by the wind. The top of that tree struck the ground at an angle of 30° and at a distance of 30 m from the root.

Find the height of the whole tree. $(\sqrt{3}=1.73)$

Chapter Assessment

1. $\cot 60^{\circ}=$
A. $\sqrt{3}$
B. $\frac{1}{\sqrt{3}}$
C. $\sqrt{2}$
D. $\frac{1}{\sqrt{2}}$

Answer: B
(Watch Video Solution
2. $\tan \theta \cdot \cot \theta=$
A. 0
B. $\sqrt{3}$
C. $\frac{1}{\sqrt{3}}$
D. 1

Answer: D

D Watch Video Solution

3. When we see at a lower level, from the horizontal line, angle formed is
A. angle of elevation
B. angle of depression
C. 0
D. straight angle.

Answer: B

- Watch Video Solution

4. If the distance of a point from the tower is equal to the height of the tower, then find the angle of elevation of the top of the tower from that point.

D Watch Video Solution

5. If $\operatorname{cosec} \theta=\frac{13}{12}$, then find the values of $\cot \theta$ and $\sin \theta$.

D Watch Video Solution

6. Prove the identity $\sin ^{2} \theta+\cos ^{2} \theta=1$ with the help of given figure.

D Watch Video Solution

7. A person standing at a distance of 90 m from a church observes the angle of elevation of its top to be 45°. Find the height of the chruch .

(Watch Video Solution

8. $\frac{\tan \theta+\sin \theta}{\tan \theta-\sin \theta}=\frac{\sec \theta+1}{\sec \theta-1}$

D Watch Video Solution

9. If $\cos \theta+\frac{1}{\cos \theta}=4$, then prove that $\cos ^{2} \theta+\frac{1}{\cos ^{2} \theta}=14$.

D Watch Video Solution

10. Prove that:
$\sec ^{6} x-\tan ^{6} x=1+3 \sec ^{2} x \times \tan ^{2} x$

- Watch Video Solution

11. A tree breaks due to storm and the broken part bends, so that
the top of the tree touches the ground making an angle of 60°
with the ground. The distance from the foot of the tree to the point
where the top touches the ground is 5 metres .

Find the height of the tree. $(\sqrt{3}=1.73)$

- Watch Video Solution

12. Two buildings are in front of each other on a road of width

15 metres. From the top of the first building, having a height of 12 metre, the angle of elevation of the top of the second building is 30°. What is the height of the second building ?
13. If $\tan \theta=1$ then find the vlue of $\frac{\sin \theta+\cos \theta}{\sec \theta+\operatorname{cosec} \theta}$

- Watch Video Solution

14. A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30°, which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be 60°. Find the time taken by the car to reach the foot of the tower from this point.

(Watch Video Solution

15. If $\sec \theta+\tan \theta=p$ then prove that $\frac{p^{2}-1}{p^{2}+1}=\sin \theta$

D Watch Video Solution

16. If $3 \tan ^{2} \theta-4 \sqrt{3} \tan \theta+3=0$, find the acute angle θ.

D Watch Video Solution

17. Eliminate θ if $x=a \cot \theta-b \operatorname{cosec} \theta \quad$ and $y=a \cot \theta+b \cos e c \theta$.

- Watch Video Solution

